Corrigendum to "Solvability and uniqueness criteria for generalized Sylvester-type equations" *

Fernando De $\mathrm{Terán}^1,\;$ Bruno $\mathrm{Iannazzo}^2,\;\mathrm{Federico}\;\mathrm{Poloni}^3,\;\mathrm{and}\;$ Leonardo Robol^4

¹Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain. fteran@math.uc3m.es. Corresponding author.

² Dipartimento di Matematica e Informatica, Università di Perugia, Via Vanvitelli 1, 06123 Perugia, Italy. bruno.iannazzo@dmi.unipg.it.

³ Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy. federico.poloni@unipi.it.

⁴Institute of Information Science and Technologies "A. Faedo", ISTI-CNR, Via G. Moruzzi, 1, 56124 Pisa, Italy. leonardo.robol@isti.cnr.it.

October 22, 2017

Abstract

We provide an amended version of Corollaries 7 and 9 in [De Terán, Iannazzo, Poloni, Robol, "Solvability and uniqueness criteria for generalized Sylvester-type equations"]. These results characterize the unique solvability of the matrix equation $AXB + CX^*D = E$ (where the coefficients need not be square) in terms of an equivalent condition on the spectrum of certain matrix pencils of the same size as one of its coefficients.

 ${\bf Keywords.}$ Sylvester equation, eigenvalues, matrix pencil, matrix equation

AMS classification: 15A22, 15A24, 65F15

1 Setting

We consider the generalized \star -Sylvester equation

$$AXB + CX^*D = E \tag{1}$$

^{*}This work was partially supported by the Ministerio de Economía y Competitividad of Spain through grants MTM2015-68805-REDT, and MTM2015-65798-P (F. De Terán), and by an INdAM/GNCS Research Project 2016 (B. Iannazzo, F. Poloni, and L. Robol). Part of this work was done during a visit of the first author to the Università di Perugia as a Visiting Researcher.

for the unknown $X \in \mathbb{C}^{m \times n}$, with \star being either the transpose (\top) or the conjugate transpose (*), and $A \in \mathbb{C}^{p \times m}, B \in \mathbb{C}^{n \times q}, C \in \mathbb{C}^{p \times n}, D \in \mathbb{C}^{m \times q}$.

We follow the same notation and definitions as in [3], but we need to introduce some further notions. In particular, we deal with certain matrices and matrix pencils that always have |m - n| zero or infinite eigenvalues which are *dimension-induced*, that is, they are present simply because of the sizes of the coefficient matrices they are constructed from (see [6]). Hence we define a variant of the spectrum in which these eigenvalues are omitted:

$$\begin{split} \widehat{\Lambda}(\mathcal{P}) &:= \begin{cases} \Lambda(\mathcal{P}), & \text{if } m_{\infty}(\mathcal{P}) > |m-n|, \\ \Lambda(\mathcal{P}) \setminus \{\infty\}, & \text{if } m_{\infty}(\mathcal{P}) = |m-n|, \end{cases} \\ \widetilde{\Lambda}(\mathcal{P}) &:= \begin{cases} \Lambda(\mathcal{P}), & \text{if } m_0(\mathcal{P}) > |m-n|, \\ \Lambda(\mathcal{P}) \setminus \{0\}, & \text{if } m_0(\mathcal{P}) = |m-n|. \end{cases} \end{split}$$

Following [6], we refer to the eigenvalues in either $\widehat{\Lambda}(\mathcal{P})$ or $\widetilde{\Lambda}(\mathcal{P})$ as core eigenvalues. If M is a square matrix, we use the notation $\widetilde{\Lambda}(M)$ to denote $\widetilde{\Lambda}(\lambda I - M)$. We recall that he pencil $\mathcal{P}(\lambda)$ has an infinite eigenvalue if and only if its reversal, rev $\mathcal{P}(\lambda)$, has the zero eigenvalue. The multiplicity of the infinite eigenvalue in $\mathcal{P}(\lambda)$ is the multiplicity of the zero eigenvalue in rev $\mathcal{P}(\lambda)$, thus

$$\widetilde{\Lambda}(\operatorname{rev}\mathcal{P}) = \left\{\lambda^{-1} : \lambda \in \widehat{\Lambda}(\mathcal{P})\right\},\tag{2}$$

with $0^{-1} = \infty$ and $\infty^{-1} = 0$.

By λ^* we denote either λ , if $\star = \top$, or $\overline{\lambda}$, if $\star = *$, with $\overline{\lambda}$ being the complex conjugate of λ .

2 Amended corollaries

In [3], we provided several corollaries that convert the conditions in [3, Th. 3] into conditions on pencils and matrices of smaller size. Unfortunately, some issues with the counting of dimension-induced eigenvalues were brought to our attention after the final stage of production of that paper was reached.

The following amended version of [3, Cor. 7] has the same statement, but with the symbols Λ replaced by $\widehat{\Lambda}$.

Corollary 1 ([3, Cor. 7], amended version). Let $A \in \mathbb{C}^{p \times m}$, $B \in \mathbb{C}^{n \times q}$, $C \in \mathbb{C}^{p \times n}$, and $D \in \mathbb{C}^{m \times q}$. Then the equation $AXB + CX^*D = E$ has a unique solution, for any right-hand side E, if and only if one of the following situations holds:

- (a) $p = m \leq n = q$, A is invertible, the pencil $\mathcal{P}_1(\lambda) := B^* \lambda D^* A^{-1} C$ is regular and
 - If $\star = \top$, $\widehat{\Lambda}(\mathcal{P}_1) \setminus \{1\}$ is reciprocal free and $m_1(\mathcal{P}_1) \leq 1$. - If $\star = *$, $\widehat{\Lambda}(\mathcal{P}_1)$ is *-reciprocal free.

(b) $p = m \ge n = q$, B is invertible, the pencil $\mathcal{P}_2(\lambda) := A^* - \lambda DB^{-1}C^*$ is regular and

- If
$$\star = \top$$
, $\widehat{\Lambda}(\mathcal{P}_2) \setminus \{1\}$ is reciprocal free and $m_1(\mathcal{P}_2) \leq 1$.
- If $\star = *$, $\widehat{\Lambda}(\mathcal{P}_2)$ is *-reciprocal free.

- (c) $p = n \leq m = q$, C is invertible, the pencil $\mathcal{P}_3(\lambda) := D^* \lambda B^* C^{-1} A$ is regular and
 - If $\star = \top$, $\widehat{\Lambda}(\mathcal{P}_3) \setminus \{1\}$ is reciprocal free and $m_1(\mathcal{P}_3) \leq 1$. - If $\star = *$, $\widehat{\Lambda}(\mathcal{P}_3)$ is *-reciprocal free.
- (d) $p = n \ge m = q$, D is invertible, the pencil $\mathcal{P}_4(\lambda) := C^* \lambda B D^{-1} A^*$ is regular and
 - If $\star = \top$, $\widehat{\Lambda}(\mathcal{P}_4) \setminus \{1\}$ is reciprocal free and $m_1(\mathcal{P}_4) \leq 1$. - If $\star = *$, $\widehat{\Lambda}(\mathcal{P}_4)$ is *-reciprocal free.

Proof. Let us assume first that (1) has a unique solution, for any right-hand side E. Then [3, Th. 3] implies that at least one of the following situations holds: (C1) p = m < n = q and A is invertible, (C2) p = m > n = q and B is invertible, (C3) p = n < m = q and C is invertible, (C4) p = n > m = q and D is invertible, or (C5) p = m = n = q. Let us first assume that case (C1) holds. We can perform the following unimodular equivalence on $\mathcal{Q}(\lambda)$:

$$\begin{bmatrix} I & -\lambda D^* A^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} \lambda D^* & B^* \\ A & \lambda C \end{bmatrix} = \begin{bmatrix} 0 & B^* - \lambda^2 D^* A^{-1} C \\ A & \lambda C \end{bmatrix}.$$
 (3)

Taking determinants in (3) we arrive at

$$\det(\mathcal{Q}(\lambda)) = \pm \det(A) \det(\mathcal{P}_1(\lambda^2)).$$
(4)

This shows that \mathcal{P}_1 is regular. Note that $D^*A^{-1}C$ has rank at most m < n, hence det $(\mathcal{P}_1(\lambda))$ has degree at most m and |n - m| dimension-induced infinite eigenvalues are present in $\Lambda(\mathcal{P}_1)$. Similarly, $\mathcal{Q}(\lambda)$ has |n - m| dimension-induced infinite eigenvalues. The left- and right-hand sides of Equation (4) are nonzero polynomials in λ with degree at most 2m; therefore we have $\widehat{\Lambda}(\mathcal{Q}) = \sqrt{\widehat{\Lambda}(\mathcal{P}_1)} :=$ $\{\mu : \mu^2 \in \widehat{\Lambda}(\mathcal{P}_1)\}$, including multiplicities and core infinite eigenvalues. Then [3, Th. 3] implies that part (a) in the statement holds.

If case (C4) holds, then we apply the \star operator in (1) and the previous arguments to the new equation and its corresponding pencil $C - \lambda A D^{-\star} B^{\star}$, namely $(\mathcal{P}_4(\lambda^{\star}))^{\star}$, and part (d) of the statement follows.

If case (C3) holds, then after introducing the change of variables $Y = X^*$, the roles of A, B and C, D are exchanged, so we apply the same arguments as in case (C1) to the corresponding pencil, $\mathcal{P}_3(\lambda)$ and we get part (c).

In case (C2), we apply the \star operator in (1) and introduce the change of variables $Y = X^{\star}$. Then we apply the same arguments as for case (C1) to the

new equation and its corresponding pencil $A - \lambda CB^{-*}D^*$, namely $(\mathcal{P}_2(\lambda^*))^*$, and part (b) of the statement follows.

Finally, if we are in case (C5), [2, Cor. 12] guarantees that at least one of A, B, C, D is invertible and thus at least one of (a)–(d) in the statement holds, and we are done.

To prove the converse, let us assume that any of (a)-(d) in the statement holds. Then, reversing the previous arguments and using (2), we can conclude that at least one of the situations (i)–(iii) in the statement of [3, Th. 3] occurs, and [3, Th. 3] implies that (1) has a unique solution, for any right-hand side.

The statement and proof of [3, Cor. 8] are true without need for corrections. The statement of [3, Cor. 9] still holds, but its proof needs a correction.

Corollary 2 ([3, Cor. 9]). Let $A, B \in \mathbb{C}^{n \times m}$. Then the equation $AXB + X^* = E$ has a unique solution, for any right-hand side E, if and only if the following conditions hold:

- If $\star = \top$, $\Lambda(AB^{\top}) \setminus \{1\}$ is reciprocal free and $m_1(AB^{\top}) \leq 1$.
- If $\star = *$, $\Lambda(AB^*)$ is *-reciprocal free.

Proof. It is sufficient to observe that the condition in Corollary 1 (taking C = I, D = I) is equivalent to the condition stated on the spectrum of AB^* , for each of the cases in Corollary 1. If m > n, we are in case (c), with $\mathcal{P}_3 = I - \lambda B^* A$. The eigenvalues of \mathcal{P}_3 are the reciprocals of the eigenvalues of B^*A . Note that B^*A has m - n dimension-induced zero eigenvalues and $\tilde{\Lambda}(B^*A) = \Lambda(AB^*)$ (this equality follows from [4, Theorem 1.3.20]). Hence the set $\Lambda(AB^*)$ is the reciprocal of $\hat{\Lambda}(\mathcal{P}_3)$, so one of the two is (*-)reciprocal-free if and only if the other is, while the multiplicity of 1 is the same in both spectra.

Similarly, if m < n, we can take $\mathcal{P}_4(\lambda) = I - \lambda BA^*$; then $\widehat{\Lambda}(\mathcal{P}_4)$ is the reciprocal of $\widetilde{\Lambda}(BA^*)$, or, applying the \star operator, the (*-)reciprocal of $\widetilde{\Lambda}(AB^*)$. Since a matrix never has ∞ as an eigenvalue, $\widetilde{\Lambda}(AB^*)$ is a (*-)reciprocal-free set if and only if $\Lambda(AB^*)$ is so, regardless of the additional zero eigenvalues.

The cases with m = n can be proved in a similar way.

A version of [3] which incorporates these corrections is available at https: //arxiv.org/abs/1608.01183.

3 Acknowledgments

We are grateful to an anonymous reviewer of [3] for pointing us out to the issues discussed in this corrigendum.

References

- [1] R. Byers and D. Kressner. Structured condition numbers for invariant subspaces. SIAM J. Matrix Anal. Appl., 28(2):326–347, 2006.
- [2] F. De Terán and B. Iannazzo. Uniqueness of solution of a generalized *-Sylvester matrix equation. *Linear Algebra Appl.*, 493:323–335, 2016.
- F. De Terán, B. Iannazzo, F. Poloni, and L. Robol. Solvability and uniqueness criteria for generalized Sylvester-type equations. *Linear Algebra Appl.*, 2017. In press. Available on https://doi.org/10.1016/j.laa.2017.07. 010.
- [4] R. A. Horn and C. R. Johnson. *Matrix Analysis*. Cambridge University Press, 1985.
- [5] D. Kressner, C. Schröder, and D. S. Watkins. Implicit QR algorithms for palindromic and even eigenvalue problems. *Numer. Algorithms*, 51(2):209– 238, 2009.
- [6] V. V. Sergeichuk. Computation of canonical matrices for chains and cycles of linear mappings. *Linear Algebra Appl.*, 376:235–263, 2004.