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Abstract

We provide an amended version of Corollaries 7 and 9 in [De Terán,
Iannazzo, Poloni, Robol, “Solvability and uniqueness criteria for gener-
alized Sylvester-type equations”]. These results characterize the unique
solvability of the matrix equation AXB + CX

?
D = E (where the coef-

ficients need not be square) in terms of an equivalent condition on the
spectrum of certain matrix pencils of the same size as one of its coeffi-
cients.
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1 Setting

We consider the generalized ?-Sylvester equation

AXB + CX?D = E (1)
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for the unknown X ∈ Cm×n, with ? being either the transpose (>) or the
conjugate transpose (∗), and A ∈ Cp×m, B ∈ Cn×q, C ∈ Cp×n, D ∈ Cm×q.

We follow the same notation and definitions as in [3], but we need to in-
troduce some further notions. In particular, we deal with certain matrices and
matrix pencils that always have |m − n| zero or infinite eigenvalues which are
dimension-induced, that is, they are present simply because of the sizes of the
coefficient matrices they are constructed from (see [6]). Hence we define a vari-
ant of the spectrum in which these eigenvalues are omitted:

Λ̂(P) :=

{
Λ(P), if m∞(P) > |m− n|,

Λ(P) \ {∞}, if m∞(P) = |m− n|,

Λ̃(P) :=

{
Λ(P), if m0(P) > |m− n|,

Λ(P) \ {0}, if m0(P) = |m− n|.

Following [6], we refer to the eigenvalues in either Λ̂(P) or Λ̃(P) as core eigen-

values. If M is a square matrix, we use the notation Λ̃(M) to denote Λ̃(λI−M).
We recall that he pencil P(λ) has an infinite eigenvalue if and only if its reversal,
revP(λ), has the zero eigenvalue. The multiplicity of the infinite eigenvalue in
P(λ) is the multiplicity of the zero eigenvalue in revP(λ), thus

Λ̃(revP) =
{
λ−1 : λ ∈ Λ̂(P)

}
, (2)

with 0−1 =∞ and ∞−1 = 0.
By λ? we denote either λ, if ? = >, or λ, if ? = ∗, with λ being the complex

conjugate of λ.

2 Amended corollaries

In [3], we provided several corollaries that convert the conditions in [3, Th. 3]
into conditions on pencils and matrices of smaller size. Unfortunately, some
issues with the counting of dimension-induced eigenvalues were brought to our
attention after the final stage of production of that paper was reached.

The following amended version of [3, Cor. 7] has the same statement, but

with the symbols Λ replaced by Λ̂.

Corollary 1 ( [3, Cor. 7], amended version). Let A ∈ Cp×m, B ∈ Cn×q, C ∈
Cp×n, and D ∈ Cm×q. Then the equation AXB + CX?D = E has a unique
solution, for any right-hand side E, if and only if one of the following situations
holds:

(a) p = m 6 n = q, A is invertible, the pencil P1(λ) := B? − λD?A−1C is
regular and

– If ? = >, Λ̂(P1) \ {1} is reciprocal free and m1(P1) 6 1.

– If ? = ∗, Λ̂(P1) is ∗-reciprocal free.
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(b) p = m > n = q, B is invertible, the pencil P2(λ) := A? − λDB−1C? is
regular and

– If ? = >, Λ̂(P2) \ {1} is reciprocal free and m1(P2) 6 1.

– If ? = ∗, Λ̂(P2) is ∗-reciprocal free.

(c) p = n 6 m = q, C is invertible, the pencil P3(λ) := D? − λB?C−1A is
regular and

– If ? = >, Λ̂(P3) \ {1} is reciprocal free and m1(P3) 6 1.

– If ? = ∗, Λ̂(P3) is ∗-reciprocal free.

(d) p = n > m = q, D is invertible, the pencil P4(λ) := C? − λBD−1A? is
regular and

– If ? = >, Λ̂(P4) \ {1} is reciprocal free and m1(P4) 6 1.

– If ? = ∗, Λ̂(P4) is ∗-reciprocal free.

Proof. Let us assume first that (1) has a unique solution, for any right-hand
side E. Then [3, Th. 3] implies that at least one of the following situations
holds: (C1) p = m < n = q and A is invertible, (C2) p = m > n = q and B is
invertible, (C3) p = n < m = q and C is invertible, (C4) p = n > m = q and D
is invertible, or (C5) p = m = n = q. Let us first assume that case (C1) holds.
We can perform the following unimodular equivalence on Q(λ):[

I −λD?A−1

0 I

] [
λD? B?

A λC

]
=

[
0 B? − λ2D?A−1C
A λC

]
. (3)

Taking determinants in (3) we arrive at

det(Q(λ)) = ±det(A) det(P1(λ2)). (4)

This shows that P1 is regular. Note that D?A−1C has rank at most m < n,
hence det(P1(λ)) has degree at most m and |n−m| dimension-induced infinite
eigenvalues are present in Λ(P1). Similarly, Q(λ) has |n−m| dimension-induced
infinite eigenvalues. The left- and right-hand sides of Equation (4) are nonzero

polynomials in λ with degree at most 2m; therefore we have Λ̂(Q) =

√
Λ̂(P1) :={

µ : µ2 ∈ Λ̂(P1)
}

, including multiplicities and core infinite eigenvalues. Then
[3, Th. 3] implies that part (a) in the statement holds.

If case (C4) holds, then we apply the ? operator in (1) and the previous
arguments to the new equation and its corresponding pencil C − λAD−?B?,
namely

(
P4(λ?)

)?
, and part (d) of the statement follows.

If case (C3) holds, then after introducing the change of variables Y = X?,
the roles of A,B and C,D are exchanged, so we apply the same arguments as
in case (C1) to the corresponding pencil, P3(λ) and we get part (c).

In case (C2), we apply the ? operator in (1) and introduce the change of
variables Y = X?. Then we apply the same arguments as for case (C1) to the
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new equation and its corresponding pencil A − λCB−?D?, namely
(
P2(λ?)

)?
,

and part (b) of the statement follows.
Finally, if we are in case (C5), [2, Cor. 12] guarantees that at least one of

A,B,C,D is invertible and thus at least one of (a)–(d) in the statement holds,
and we are done.

To prove the converse, let us assume that any of (a)–(d) in the statement
holds. Then, reversing the previous arguments and using (2), we can conclude
that at least one of the situations (i)–(iii) in the statement of [3, Th. 3] occurs,
and [3, Th. 3] implies that (1) has a unique solution, for any right-hand side.

The statement and proof of [3, Cor. 8] are true without need for corrections.
The statement of [3, Cor. 9] still holds, but its proof needs a correction.

Corollary 2 ( [3, Cor. 9]). Let A,B ∈ Cn×m. Then the equation AXB+X? =
E has a unique solution, for any right-hand side E, if and only if the following
conditions hold:

• If ? = >, Λ(AB>) \ {1} is reciprocal free and m1(AB>) 6 1.

• If ? = ∗, Λ(AB∗) is ∗-reciprocal free.

Proof. It is sufficient to observe that the condition in Corollary 1 (taking C = I,
D = I) is equivalent to the condition stated on the spectrum of AB?, for each
of the cases in Corollary 1. If m > n, we are in case (c), with P3 = I − λB?A.
The eigenvalues of P3 are the reciprocals of the eigenvalues of B?A. Note that
B?A has m − n dimension-induced zero eigenvalues and Λ̃(B?A) = Λ(AB?)
(this equality follows from [4, Theorem 1.3.20]). Hence the set Λ(AB?) is the

reciprocal of Λ̂(P3), so one of the two is (∗-)reciprocal-free if and only if the
other is, while the multiplicity of 1 is the same in both spectra.

Similarly, if m < n, we can take P4(λ) = I − λBA?; then Λ̂(P4) is the

reciprocal of Λ̃(BA?), or, applying the ? operator, the (∗-)reciprocal of Λ̃(AB?).

Since a matrix never has ∞ as an eigenvalue, Λ̃(AB?) is a (∗-)reciprocal-free
set if and only if Λ(AB?) is so, regardless of the additional zero eigenvalues.

The cases with m = n can be proved in a similar way.

A version of [3] which incorporates these corrections is available at https:

//arxiv.org/abs/1608.01183.
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