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Abstract

Consider a finite set of identical entities, called robots,
which can move freely in the Euclidean plane. Let p(t)
denote the location of robot p at time t; a robot p can
see robot q at time t if at that time no other robot
lies in the line segment p(t)q(t). We consider the ba-
sic problem called Mutual Visibility: starting from ar-
bitrary distinct locations, within finite time the robots
must reach, without collisions, a configuration where
they all see each other. This problem must be solved
by each entity autonomously executing the same algo-
rithm. We study this problem in the standard model of
semi-synchronous oblivious robots.

The extensive literature on computability in such a
model has never considered this problem because it has
always assumed that three collinear robots are mutu-
ally visible. In this paper we remove this assumption,
and present an algorithm that solves Mutual Visibility.
To prove its correctness, we solve a seemingly unre-
lated problem, Communicating Vessels, which is inter-
esting in its own right. As a byproduct of our solution,
we also solve a classical problem for oblivious robots,
Near-Gathering, even if one robot is faulty and unable
to move.

1 Introduction

Model and previous work. Consider a set of n mo-
bile computational entities, called robots, located in the
Euclidean plane, each at a distinct point. The robots
are anonymous, indistinguishable, without any direct
means of communication; each robot is provided with its
own local coordinate system (possibly different from the
other robots’ systems). They operate in rounds, how-
ever not all robots are necessarily active at all rounds.
In a round, each active robot determines the position
(in its own coordinate system) of the other robots, it
performs some local computation to determine a desti-
nation point, and it moves to this point. The choice of
which robots are activated in each round is made by an
adversary, but each robot is activated infinitely often.

∗Università degli Studi di Roma “La Sapienza”, Italy,
diluna@dis.uniroma1.it
†University of Ottawa, Canada, flocchin@site.uottawa.ca,

viglietta@gmail.com
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The robots are oblivious: at the end of a round, they for-
get all their observations and computations. This model
of semi-synchronous oblivious mobile robots has been
extensively studied, for instance, in [2, 5, 7, 8, 10, 11].
All these investigations share the assumption that vis-
ibility is unobstructed; that is, three collinear robots
are mutually visible. Not much is known on comput-
ing when the visibility of these robots is obstructed by
the presence of other robots; that is, if two robots p
and q are located at p(t) and q(t) at round t, they
can see each other if and only if no other robot lies
in the segment p(t)q(t) at that time. In fact, the few
studies on obstructed visibility have been done in differ-
ent models: the model of robots in the one-dimensional
space R1 (see [3]); the model of robots with lights, where
robots have bounded direct communication capabilities
and persistent memory (see [6]); and the so-called fat
robots model, where robots are not points but unit discs,
collisions are allowed and can be used as an explicit com-
putational tool (e.g., [1, 4, 8]). Note that, in our model,
because robots are oblivious and anonymous and exe-
cute the same protocol, if p(t) = q(t) (a collision), then
the activation adversary can force p(t′) = q(t′) for all
t′ > t. Thus, unless this is the intended outcome, colli-
sion avoidance is always a requirement for all algorithms
in our model.

Our contribution. In this paper we start the investi-
gation of computing with obstructed visibility, and con-
sider the most basic problem, Mutual Visibility, where
the robots start from arbitrary distinct positions in the
plane and must reach a configuration when they all see
each other. This problem is clearly at the basis of any
subsequent task requiring complete visibility.

In Section 3.1 we present an algorithm that solves
Mutual Visibility without collisions. Each of the n robots
moves independently from the others, following its local
algorithm, until the robots form a convex n-gon, in spite
of the decisions of the scheduling adversary. At this
point they all see each other, so the problem is solved
and the robots may terminate the execution. Moreover,
during this process, they never move outside the convex
hull of the robots’ original positions (the only exception
being when they are initially all collinear). Not exceed-
ing the original convex hull is a desirable feature, e.g.,
if the robots are initially delimiting an area that is un-
safe outside its border. The algorithm works without
any agreement among the robots on a common unit of
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distance, or North direction, or handedness. Actually,
these parameters may even change, from activation to
activation, for the same robot.

To prove the correctness of our algorithm, in Sec-
tion 3.3 we solve a seemingly unrelated problem, Com-
municating Vessels, which is interesting in its own right.

As a byproduct of our solution, we also solve a clas-
sical problem for oblivious robots: collision-less conver-
gence to a point or Near-Gathering (see [8, 9]). In fact,
we show that, if the robots continue to follow our al-
gorithm once they reach full visibility, the convex hull
of their positions converges to a point, and the robots
approach it without colliding.

Finally, we observe an interesting property of fault-
tolerance of our algorithm: if a single robot is faulty and
becomes unable to move, the robots will still solve Near-
Gathering, converging to the faulty robot’s location.

2 Definitions

We use the standard model of semi-synchronous oblivi-
ous robots (e.g., see [8]). Let R = {r1, r2, · · · , rn} be a
set of autonomous oblivious mobile robots operating in
the Euclidean plane. We denote by ri(t) ∈ R2 the posi-
tion occupied by robot ri ∈ R at time t ∈ N; these posi-
tions are expressed here in a global coordinate system,
which is used for description purposes, but is unknown
to the robots.

We say that robot ri sees robot rj at time t if and
only if the line segment ri(t)rj(t) does not contain any
other robot at that time. Two robots ri and rj are said
to collide at time t if ri(t) = rj(t).

Each robot is provided with its own local coordinate
system centered in itself, and its own unit of distance.
However, there might be no agreement among different
robots on the coordinate system, on its handedness, or
on the unit of distance; moreover, the coordinate system
of a robot might not be preserved over time and might
be modified by an adversary.

The robots are anonymous (i.e., without internal
identifiers), indistinguishable (i.e., without external
markings), without any direct means of communication.
Each robot is provided with a private copy of the same
algorithm, which it executes locally every time it is ac-
tivated. At each time instant, a robot is either active
or inactive. If active at time t ∈ N, a robot performs
a Look–Compute–Move sequence of operations: it de-
termines the positions, in its own coordinate system, of
the visible robots (Look); using these positions and the
value of n as input, the robot executes the algorithm
to determine a destination point (Compute); finally, the
robot moves to the computed destination, if it is differ-
ent from its current location (Move). This sequence of
operations is executed “atomically”, and ends by time
t + 1. The choice of which robots are active at time t

is made by an adversary, called scheduler, subject only
to the fairness restriction that each robot be activated
infinitely often. We stress that, at any given round, the
scheduler may activate any subset of robots, from the
empty set to all of R. A robot can also decide to ter-
minate its execution during a Compute phase. When a
robot has terminated, it can never move again.

3 Solving the Mutual Visibility problem

The Mutual Visibility problem is solved if the robots
reach a configuration in which they have all terminated
their execution, and no three of them are collinear. In
other words, all the robots must be mutually visible and
in n distinct locations (assuming that n > 3). Such a
configuration must be reached from any initial configu-
ration in which the robots’ positions are all distinct (this
is a necessary condition, as noted in Section 1), and re-
gardless of the activation pattern decided by the sched-
uler. In the following we present Algorithm 1, which
solves Mutual Visibility.

3.1 Algorithm description

Let us consider the convex hull of the robots’ locations,
at a given time. The robots lying on its boundary are
called external robots, while the ones lying in its interior
are the internal robots. The main idea of Algorithm 1
is to make only the external robots move, so to shrink
the convex hull. When a former internal robot becomes
external, it starts moving as well. Eventually, all the
robots become external, and at this point they all see
each other. Since the robots know n, they recognize this
situation, and they can terminate.

Observe that a robot may not know where the con-
vex hull’s vertices are located, because they may be ob-
structed by other robots. However, it can at least de-
termine whether it is an external or an internal robot.
Indeed, being an internal robot is equivalent to being in
the interior of the convex hull of the visible robots.

If an active robot ri, located at p, realizes that it
is internal, it does not move. Otherwise, it locates its
clockwise and counterclockwise neighbors on the convex
hull’s boundary, say located at a and b, which are neces-
sarily visible. Then, ri attempts to move somewhere in
the triangle pab, in such a way to shrink the convex hull,
and possibly make its boundary acquire one or more
new robots. To avoid collisions with other robots that
may be moving at the same time, ri’s movements are re-
stricted to a smaller triangle, shaded in gray in Figure 1.
Moreover, to avoid becoming an internal robot, ri does
not cross any line parallel to ab that passes through an-
other robot, as shown in Figure 1(a). In particular, if
no such line intersects the gray area, ri makes a default
move, and it moves halfway toward the midpoint of the
segment ab, as indicated in Figure 1(b).
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Figure 1: Move of an external robot, in two different
cases. Robots’ locations are indicated as small circles.

The above rules are sufficient to solve the Mutual Vis-
ibility problem in most cases, but there are some ex-
ceptions. It is easy to see that there are configurations
in which Mutual Visibility is never solved until an inter-
nal robot moves, regardless of the algorithm employed.
For instance, suppose that the configuration is centrally
symmetric, with one robot lying at the center. Let the
local coordinate systems of any two symmetric robots
be oriented symmetrically and have the same unit dis-
tance, and assume that the scheduler chooses to acti-
vate all robots at every turn. Then, every two sym-
metric robots have symmetric views, and therefore they
move symmetrically. If the central robot—which is an
internal robot—never moves, then the configuration re-
mains centrally symmetric, and the central robot always
obstructs all pairs of symmetric robots. Hence Mutual
Visibility is never solved, no matter what algorithm is
executed.

It turns out that our rules can be fixed in a simple
way to resolve also this special case: if there is only one
internal robot, it moves to the midpoint of any edge of
the convex hull. Note that the only internal robot nec-
essarily sees all the others, and therefore it can identify
the configuration, due to its knowledge of n.

Finally, the configurations in which all the robots are
collinear need special handling. In this case it is impos-
sible to solve Mutual Visibility unless some robots leave
the current convex hull. In Algorithm 1, if a robot sees
only one other robot, it realizes that all robots lie on
a line, and that it occupies an endpoint. Therefore, it
moves orthogonally to that line. When this is done, the
previous rules apply.

Algorithm 1: Solving the Mutual Visibility problem

Input:
V: set of locations of the robots visible to me
(myself included) expressed in a coordinate system
centered at my location;
n: total number of robots (both visible and
invisible).

1 p←− (0, 0)
2 H ←− convex hull of V
3 if H has n non-degenerate vertices then
4 Terminate

5 else if |V| = 2 then
6 a←− location of the other visible robot
7 Move orthogonally to pa by any amount

8 else if I lie on the boundary of H then
9 a←− my ccw neighbor on the boundary of H

10 b←− my cw neighbor on the boundary of H
11 γ ←− 1/2
12 if p /∈ ab then
13 foreach c ∈ V \ {p} do
14 Let α, β be such that c = α · a+ β · b
15 if α+ β < γ then γ ←− α+ β

16 u←− γ · (2a+ b)/3
17 v ←− γ · (a+ 2b)/3
18 Move to the midpoint of any connected

component of uv \ (V \ {p})
19 else if H has n− 1 non-degenerate vertices then
20 Move to the midpoint of any edge of H

3.2 Correctness: invariants

In the following we discuss some basic invariants, which
will serve to prove the correctess of Algorithm 1. Let
H(t) denote the convex hull of {r1(t), r2(t), · · · , rn(t)}.

Suppose that, for some t ∈ N, H(t) is not a line seg-
ment: the situation is illustrated in Figure 2. Every
external robot is bound to remain in the corresponding
gray triangle, and by construction all such triangles are
disjoint. Moreover, if there is only one internal robot
and it is activated, it moves to the midpoint of an edge
of H(t), which does not lie in any gray triangle. It fol-
lows that, no matter which robots are activated at time
t, they will not collide. Also, H(t+ 1) ⊆ H(t).

Observe that a robot r ∈ R is external at time t if
and only if there is a half-plane bounded by a straight
line through r(t) whose interior contains no robots at
time t. Now, referring to Figure 1, it is clear that a
robot that is external at time t will also be external at
time t + 1. Indeed, if r(t) = p, r will stop at the first
horizontal line that contains a robot, or it will make a
default move. Therefore, at time t + 1, r will be found
on the line uv, and no robot will lie above this line.
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Figure 2: Combined motion of all external robots.

Additionally, if no new robots become external be-
tween time t and t+1, then the ordering of the external
robots around the convex hull is preserved from time t
to time t+1. This easily follows from the fact that every
robot remains in its own gray triangle (cf. Figure 2).

3.3 Correctness: convergence

We seek to prove that Algoritm 1 makes every robot
eventually become external. As it will be apparent in
the proof of Theorem 6, the crux of the problem is the
situation in which only default moves are made (cf. Fig-
ure 1(b)). In Lemma 5 we will prove that in this case,
if no new robots become external or terminate, all the
robots converge to the same limit point. We reduce this
sub-problem to the Communicating Vessels problem, as
detailed next.

Since we are assuming that only the external robots
move, and that their movements depend only on the po-
sitions of other external robots, we may as well assume
that all robots are external, and that their indices follow
their order around the convex hull. Indeed, by the in-
variants observed in Section 3.2, all robots will remain
external throughout the execution, and their ordering
around the convex hull will remain the same. So, let
ri−1, ri, ri+1 be three external robots, which appear on
the boundary of H(t) consecutively in this order. Let
ri perform a default move at time t. Then, the new
position of ri is a convex combination of the current
positions of these three robots, and precisely

ri(t+ 1) =
ri−1(t)

4
+
ri(t)

2
+
ri+1(t)

4
. (1)

In general, as different sets of external robots are acti-
vated in several rounds, and nothing but default moves
are made, the new location of each robot is always a
convex combination of the original positions of all the
robots, obtained by applying (1) to the set of active
robots, at every round. In formulas,

ri(t0 + t) =

n∑
j=1

αi,j,t · rj(t0),

with αi,j,t > 0 and
∑n

j=1 αi,j,t = 1, assuming that the
robots start making only default moves at time t0. Let
I = {1, 2, · · · , n}. We fix j ∈ I, and we let wi,t =
αi,j,t − αi−1,j,t, where indices are taken modulo n. We
claim that

lim
t→∞

w1,t = lim
t→∞

w2,t = · · · = lim
t→∞

wn,t = 0. (2)

If such a claim is true (for all j ∈ I), it implies that the
robots get arbitrarily close to each other, as t grows.
This, paired with the fact that H(t0 + t+1) ⊆ H(t0 + t)
for every t, as observed in Section 3.2, allows us to con-
clude that the robots converge to the same limit point.

Our claim can be generalized and reformulated in the
following terms. Suppose that n vessels containing wa-
ter are arranged in a circle, and there is a pipe between
each pair of adjacent vessels, regulated by a valve. At
every second, some of the valves are opened and others
are closed, in such a way that each of the n valves stays
open for infinitely many seconds, in total. If a valve be-
tween two adjacent vessels stays open between seconds t
and t+ 1, then 1/4 of the surplus of water, measured at
second t, flows from the fuller vessel to the emptier one.
Our claim is that the amount of water converges to the
same limit in all vessels, no matter how the valves are
opened and closed. We call this problem Communicating
Vessels.

In this formulation, the amount of water in the i-th
vessel at time t ∈ N would be our previous wi,t. How-
ever, here we somewhat abstract from the Mutual Visi-
bility problem, and we consider a slightly more general
initial configuration, in which the wi,0’s are arbitrary
real numbers. We set vi,t = 1 if the valve between the
i-th and the (i+1)-th vessel is open between time t and
t + 1 (indices are taken modulo n), and vi,t = 0 oth-
erwise. It is easy to verify that activating robot ri at
time t in our previous discussion corresponds to setting
vi,t = 1 in the Communicating Vessels formulation.

Let us denote by wt the vector whose i-th entry is wi,t,
and let qi,t = wi+1,t−wi,t. We first prove an inequality
on the Euclidean norms of the vectors wt. Note that
the inequality holds regardless of what assumptions are
made on the opening pattern of the valves.

Lemma 1 For every t ∈ N,

‖wt‖2 − ‖wt+1‖2 >
1

4

n∑
i=1

vi,t · q2i,t. (3)

Proof. For brevity, let a = wi−1,t, b = wi,t, c = wi+1,t;
hence, qi−1,t = b− a and qi,t = c− b.

Suppose first that vi−1,t = vi,t = 1, i.e., both valves
connecting the i-th vessel with its neighbors are open.
Then, wi,t+1 = (a+ 2b+ c)/4. We have

w2
i−1,t

4
+
w2

i,t

2
+
w2

i+1,t

4
− w2

i,t+1 >
q2i−1,t

8
+
q2i,t
8
, (4)



which can be obtained by dropping the term (a−c)2/16
from the algebraic identity

a2

4
+
b2

2
+
c2

4
− (a+ 2b+ c)2

16
=

(a− b)2

8
+

(b− c)2

8
+

(a− c)2

16
.

Now, suppose instead that vi−1,t = 1 and vi,t = 0. Then
we have wi,t+1 = (a+ 3b)/4, and

w2
i−1,t

4
+

3w2
i,t

4
− w2

i,t+1 =
3q2i−1,t

16
>
q2i−1,t

8
, (5)

where the first equality comes from the identity

a2

4
+

3b2

4
− (a+ 3b)2

16
=

3(a− b)2

16
.

If vi−1,t = 0 and vi,t = 1, an analogous argument gives

3w2
i,t

4
+
w2

i+1,t

4
− w2

i,t+1 >
q2i,t
8
. (6)

Finally, if vi−1,t = vi,t = 0, wi,t+1 = wi,t, and trivially

w2
i,t − w2

i,t+1 = 0. (7)

We sum for each i ∈ I the relevant inequality among
(4), (5), (6), (7), depending on the value of vi−1,t and
vi,t. Each of the terms q2i,t/8 appears twice if and only

if vi,t = 1, and the coefficients of the terms in w2
i,t sum

to 1 for every i, hence we get (3). �

From the previous lemma, it immediately follows that
the sequence (‖wt‖)t>0 is non-increasing. Since it is also
bounded below by 0, it converges to a limit, which we
call `. Let Mt = maxi∈I{wi,t} and mt = mini∈I{wi,t}.
Observe that each entry of wt+1 is a convex combination
of entries of wt, hence (Mt)t>0 is non-increasing and
(mt)t>0 is non-decreasing. Therefore they both con-
verge, and we let M = limt→∞Mt and m = limt→∞mt.

Corollary 2

m 6
`√
n
6M.

Proof. For every t ∈ N, we have

nM2
t >

n∑
i=1

w2
i,t = ‖wt‖2 > `2,

which proves the second inequality. As for the first in-
equality, for every ε > 0 and large-enough t, we have
nm2

t 6 ‖wt‖2 6 `2 + ε. �

For the next lemma, we let Vi = {t ∈ N | vi,t = 1}.

Lemma 3 Suppose that |Vi| = ∞ for at least n − 1
distinct values of i ∈ I. Then,

M = m =
`√
n
.

Proof. Due to Corollary 2, it is enough to prove that
M −m = 0. By contradiction, assume M −m > 0, and
let δ = (M −m)/(n+ 1) > 0. We have

lim
t→∞

(
‖wt‖2 − ‖wt+1‖2

)
= `2 − `2 = 0,

hence there exists T ∈ N such that ‖wt‖2 − ‖wt+1‖2 <
δ2/4 for every t > T . By Lemma 1,

q2i,t
4
6 ‖wt‖2 − ‖wt+1‖2 <

δ2

4

for every t > T and every i such that vi,t = 1. This
implies |qi,t| < δ, that is, a necessary condition for the
valve between the i-th and the (i + 1)-th vessel to be
open at time t > T is that |wi+1,t −wi,t| < δ. Consider
now the n+ 1 open intervals

(m,m+ δ), (m+ δ,m+ 2δ), · · · , (m+ nδ,M),

each of width δ. Since MT > M and mT 6 m, there
are wi,T ’s above and below all these intervals. Moreover,
by the pigeonhole principle, at least one of the intervals
contains no wi,T ’s, for any i ∈ I. In other words, we can
find a partition I1 ∪ I2 = I, with I1 and I2 both non-
empty, and a threshold value λ such that wi,T 6 λ for
every i ∈ I1, and wi,T > λ+δ for every i ∈ I2. Hence, at
time T , only valves between entries of wt whose indices
belong to the same Ik can be open. It is now easy to
prove by induction on t > T the following facts:

• maxi∈I1{wi,t} 6 λ,

• mini∈I2{wi,t} > λ+ δ,

• vi,t = 0 whenever i and i+1 belong to two different
classes of the partition.

Since I1 and I2 are non-empty, there must be at least
two distinct indices i′ ∈ I1 and i′′ ∈ I2 such that i′+1 ∈
I2 and i′′+1 ∈ I1 (where indices are taken modulo n). It
follows that the i′-th and i′′-th valve are never open for
t > T , and this contradicts the hypothesis that |Vi| <∞
for at most one choice of i ∈ I. �

This solves the Communicating Vessels problem.

Corollary 4 Under the hypotheses of Lemma 3, for ev-
ery i ∈ I,

lim
t→∞

wi,t =
`√
n

=

∑n
j=1 wj,0

n
.

Proof. By Lemma 3, since mt 6 wi,t 6 Mt, all the
limits coincide. Moreover, the sum of the wi,t’s does
not depend on t; hence their average, taken at any time,
must be equal to the joint limit. �

Let us return to the Mutual Visibility problem, to prove
our final lemma.
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Lemma 5 If, at every round, each robot makes a de-
fault move (cf. Figure 1(b)) or stays still, and no new
robots become external or terminate, then all robots’ lo-
cations converge to the same limit point.

Proof. As discussed at the beginning of Section 3.3,
this is implied by (2). Recall that wi,0 = αi,j,0−αi−1,j,0,
and hence

∑n
i=1 wi,0 = 0. Then, (2) follows immediately

from Corollary 4. �

We are now ready to prove our main theorem.

Theorem 6 Algorithm 1 solves Mutual Visibility.

Proof. If the initial convex hull is a line segment, it
becomes a non-degenerate polygon as soon as one of
the endpoints is activated. It is also easy to observe
(cf. Figure 2) that, from this configuration, the convex
hull may never become a line segment. So the invariants
discussed in Section 3.2 apply, possibly after a few initial
rounds: no two robots will ever collide, and an external
robot will never become internal.

Assume by contradiction that Mutual Visibility is not
solved, hence the execution never terminates, and there-
fore the set of external robots reaches a maximum
E ( R, say, at time T ∈ N. If there is only one internal
robot, it becomes external as soon as it is activated, due
to line 20 of the algorithm, contradicting the maximal-
ity of E . Therefore there are at least two internal robots
at every time t > T . On the other hand, if an external
robot makes a non-default move at any time t > T , a
new robot becomes external at time t+1. Indeed, refer-
ring to Figure 1(a), the line uv passes through p(t+ 1)
and c(t + 1), and no robot lies above this line at time
t+ 1. Hence c has become a new external robot, which
again contradicts the maximality of E .

As a consequence, only default moves are made af-
ter time T , and by Lemma 5 the robots converge to
the same limit point. But since there are at least two
internal robots, this means that at least one of them
has to move, implying that it becomes external at some
point (by the above assumption, only external robots
can move), a contradiction. �

4 Related problems and alternative models

We briefly discuss the Mutual Visibility problem in differ-
ent robot models, and some applications of Algorithm 1
to related problems.

Forming a convex configuration. As already ob-
served, Algorithm 1 also solves the Convex Formation
problem, where the robots have to terminate in a strictly
convex position. Moreover, no robot ever crosses the
perimeter of the initial convex hull unless, of course, all
the robots are initially collinear.

Near gathering. If lines 3, 4, 19, 20 are removed
from Algorithm 1, it solves the Near-Gathering problem,
even with no knowledge of n. Indeed, if there is only
one internal robot, either it will become external, or
the other robots will converge to its location. If n is
known, the robots can also terminate when they get
close enough.

Unreliable moves. Suppose that an adversary has
the ability to stop any robot during its Move phase,
before it reaches the computed destination, but after
it has moved by at least δ towards it. By including δ
in our computations in Section 3.3, we can prove that
Algorithm 1 solves Mutual Visibility, Convex Formation
and Near-Gathering in this model, too.

Fault tolerance. Observe that Lemma 3 requires only
n − 1 valves to be opened infinitely often, as opposed
to n. This implies that, if the robots do not terminate,
they converge to a point even if one robot is unable to
move. Therefore, in the presence of one faulty robot,
Algorithm 1 still solves Near-Gathering. (If two robots
are faulty, Near-Gathering is unsolvable.) Similarly, Mu-
tual Visibility and Convex Formation are solved in the
presence of a faulty robot, provided that it is located on
the boundary of the convex hull.

Sequential scheduler. If the scheduler is sequential,
i.e., it activates only one robot at a time, there is a
simple algorithm to solve Mutual Visibility, even with no
knowledge of n, and even if the moves are unreliable and
two robots are faulty. (If three robots are faulty, Mu-
tual Visibility is unsolvable.) When a robot is activated,
it just moves by a small amount, without crossing or
landing on any line that passes through two robots that
it can currently see (including itself), and then it im-
mediately terminates. Clearly, when a robot moves as
described, it becomes visible to all other robots. Hence,
when all robots have moved at least once, Mutual Visi-
bility is solved.
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[5] X. Défago and S. Souissi. Non-uniform circle formation
algorithm for oblivious mobile robots with convergence
toward uniformity. Theor. Comput. Sci., 396(1,3):97–
112, 2008.



[6] G. Di Luna, P. Flocchini, S. Gan Chaudhuri, N. San-
toro, and G. Viglietta. Robots with lights: overcoming
obstructed visibility without colliding. In Proc. of SSS
2014, to appear.
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