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Abstract

The matrix equation X + AX ' AT = B, arising in parameter estimation of certain
time series models, is solvable only for certain values of the matrices A, B. We present
a numerical method to modify A, B in order to make the matrix equation solvable.
Since solvability depends on the location of the eigenvalues of the palindromic matrix
polynomial A2A + AB + AT, our method works by moving those eigenvalues to specified
locations using first order spectral perturbation theory. The method is heuristic but
works in practice, as is supported by several compelling numerical examples. These ex-
amples arise from parameter estimation of a common time series model, the multivariate
ARMA(1,1).
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1 Introduction

Time series models play an important role in applications, for instance in econometrics [7, 22].
In order to return meaningful results, the parameters of a model need to be fit to the observed
data, or estimated. We discuss a parameter estimation procedure, one of whose steps consists
of solving the nonlinear matrix equation

X +AX AT = B, (1)

where A, B € R™" with B > 0 (i.e., B is Hermitian and positive definite). We are interested
in making sure that there is a solution X € R™", X > 0. It is known (e.g., [8]) that such a
solution exists if and only if the matrix Laurent polynomial

Q) =M+ B+ 11AT

is regular (i.e., the matrix Q(A) is nonsingular for at least one value of A € C) and Q(A) >0
(i.e., Q(N) is Hermitian and positive semidefinite) for each complex value A on the unit circle.
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Moreover, a solution X with p(X"1AT) < 1 (as it is needed in applications; where p(-)
denotes the spectral radius) exists if and only if Q(A) > 0 for each unimodular A. Assuming
positive definiteness of Q(A) for at least one such A, the last condition is equivalent to stating
that @ has no generalized eigenvalues on the unit circle. We note that ) is palindromic, i.e.,
QM"Y = Q(\)T. For these Laurent polynomials it is known that generalized eigenvalues on
the unit circle are a generic possibility (i.e., they do not occur on a measure-zero subset of
the parameters only) [23, 28].

In practice, often the coefficients A and B are affected by errors, e.g., because they
come out of data measurements, or their determination involves some form of linearization,
truncation, or other such simplifications. Then it may well be the case that the original
intended matrix equation admits a solution, whereas the perturbed one — which is available
in practice — does not.

In this paper, we propose an algorithm to compute perturbations A = A+ E, B =
B + F, with ||E|| and ||F| small, such that Equation (1) (with A, B replaced by A, B)
is guaranteed to be solvable. This is achieved by removing all generalized eigenvalues of
Q(\) = M + B+ X' AT from the unit circle. The presented method is a modification of
the method in [5]. Instead of moving eigenvalues of palindromic matrix Laurent polynomials
off the unit circle, there eigenvalues of symmetric-skew-symmetric pencils are moved off the
imaginary axis. The motivation there is the passivation of linear time invariant dynamical
systems, and the method is based upon earlier work in this direction [1, 4, 12, 29, 30, 31].
Other related methods include [14, 13] where pseudospectral methods are used and [2]
where negative imaginariness of descriptor systems is enforced. In contrast to our method,
those in [1, 13] are guaranteed to find the smallest perturbation, but only for merging two
eigenvalues at a time, and they do not allow restricting the perturbation to a linear space.
We refer the reader to [5] for further discussion of this issue in a related case.

Let us also mention that the matrix equation (1) is related to discrete algebraic Riccati
equations (DARE) as follows [8, Proposition 7.1]: if X solves (1) (with B = I) then it also
solves the DARE X = AXAT + AAT — AX (-1 + X)"1XAT.

The idea of our algorithm is to take a set of matrix pairs (E;, F;), ¢ =1,2,...,m, and to

compute the approximate location of the generalized eigenvalues of @), with

i=1 =1

using first-order eigenvalue perturbation results. Such approximate locations depend linearly
on the scalar weights d;. Hence, by solving a linear system of equations, we can determine a
choice of the §;, i = 1,2,...,m, that moves the generalized eigenvalues closer to a specified
location. Using several steps of this procedure, the eigenvalues can be moved in sufficiently
small steps to a different location. In particular, we can move the eigenvalues on the unit
circle in directions that make them coalesce into pairs and then leave the circle.

Our motivation for enforcing solvability of (1) came from a practical problem in economet-
rics. A task often encountered there is the parameter estimation of models for economic time
series. In particular, we focus on the multivariate autoregressive model with moving average;
in short multivariate/vector ARMA(1,1) model, or even shorter VARMA(1,1) model [22].
Given the parameters ®,0 € R%¢ ¢ € R? and randomly drawn noise vectors @; € R, this
process produces a vector sequence (&;)¢=12,. . in R? by

i’t:(bi't,1+c+ﬂt—9ﬁt,1, t:2,3,....

The task is to recover (i.e., estimate) the parameters ®, 0, ¢ from an observed finite sub-
sequence (&;)¢=1,...n. As an alternative to the common maximum likelihood estimation
procedure [22], or in order to produce good starting values for the same procedure, we
propose a moment-based estimator (also known as a method of moments), i.e., an estimator
which only uses moments of the time series (here, mean and autocorrelations) to estimate
the parameters.



Moment-based estimators exist in the econometrics literature for univariate ARMA
processes [20]. An extension to multivariate models, which requires more advanced linear
algebra techniques, was suggested in [26] for a specific econometric model, the multivariate
GARCH(1,1) model. We describe it here for the more general VARMA(1,1) model.

The basic idea of the procedure consists of computing the finite-sample moments

1 N—k
= NZ N A £Ut+k— Ty — M)T7 (2)

t=1

(which converge to the true mean and autocovariance matrices for N — 00) and then fitting
the parameters to obtain a model that matches the observed moments as closely as possible.

In particular, our moment-based estimator requires the solution of a matrix equation of
the form (1). Unfortunately, the finite-sample moments (2) converge rather slowly to the true
asymptotic ones, i.e., substantial deviations are not unlikely. Therefore, one may encounter
the situation described above, where the matrix equation at hand admits no solution that
satisfies all the required assumptions. The regularization technique presented in this paper
can then be used to obtain solutions in cases in which the estimator would fail otherwise;
the robustness of the resulting method is greatly increased.

This paper is structured as follows: first the solvability enforcement method is developed in
sections 2-4. More precisely, Section 2 introduces spectral plots, the main tool to understand
how the enforcement works. Section 3 collects a few results on perturbation theory of
unimodular eigenvalues of palindromic Laurent polynomials. All parts are then combined to
the enforcement method in Section 4. In the second part of the paper, we develop and test
the moment-based estimator for VARMA models in Section 5. Finally, we discuss the results
of the numerical experiments and offer some conclusions in Section 6.

We will use the following notation. We use I,, (or just I) for the identity matrix of order
n. We denote by A, AT, and A* the conjugate, the transpose, and the conjugate transpose
of a matrix A, respectively. The symbol p(A) denotes the spectral radius of a matrix, i.e.,

p(A) o A cigcrIlI\}gl)éc of A|/\‘
For a vector « we denote by |z|| its standard Euclidean norm. For a matrix A, |4, :=
(p(A*A))1/2 denotes the spectral norm, whereas || A|  := (> i |la;j|*)*/? the Frobenius norm.
The latter, used in error computations, relates directly to the notion of RMS (root mean
square) error, common in the statistical community.

2 Spectral plots

Let A, B € R»", B = BT, and consider the matrix Laurent polynomial Q(\) = AA + B +
A"1AT. Such a polynomial is called palindromic because of the structure imposed on its
coefficients: reversing the order of the coefficients results in the original Laurent polynomial,
only transposed. We assume here and in the following that Q(\) is regular, that is, det Q(\)
does not vanish for each A € C.

Observe that for all A € C with A # 0 we have (Q(X‘l))* = Q(\). Since for A = e™ on

the unit circle we have

we see that
(Q(e™))" = Q(e),

i.e., @ is Hermitian on the unit circle. We wish to perturb A and B such that the parameter-
dependent matrix Q()\) (arising from @Q(A) upon perturbation of A and B) is positive definite
for each choice of the parameter A on the unit circle.

A wuseful tool for visualizing the eigenvalues of @ on the unit circle is a spectral plot such
as the one in Figure 1. On the x-axis we display the interval [—7, 7]; for each value w in



Figure 1: The spectral plot of a certain 4 x 4 matrix Laurent polynomial @ on the unit circle
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Figure 2: Successive iterations of the solvability enforcement procedure. In each iteration,
we aim to construct a perturbation that shifts the generalized eigenvalues by a distance 0.2
in the direction indicated by their sign characteristic.

this interval, we plot the eigenvalues of the Hermitian matrix Q(e*). Obviously the plot is
2m-periodic and symmetric (because Q(e*) = Q(e*“+2™) = (Q(e=*))T). For instance, one
sees from the graph that all the lines lie above the x-axis for w = /2, so Q(e*™/?) is positive
definite. Instead, for w = 0 (and in fact for most values of w) there is an eigenvalue below
the imaginary axis, thus Q(e'°) is not positive definite. There are four points in which the
lines cross the x-axis and these correspond to the values of w for which Q(e") is singular,
i.e., for which e is a generalized eigenvalue of () on the unit circle.

Notice that the lines corresponding to different eigenvalues in our spectral plot example
come very close to each other, but never cross. This is not an error in the graph, but an
instance of a peculiar phenomenon known as eigenvalue avoidance, see, e.g., [21, p. 140]
or [3].

To understand what we need to do to enforce positivity, we make use of a heuristic
argument based on this spectral plot. A continuous perturbation that renders Q(\) positive
definite on the whole unit circle will have to move up the two bumps that extend below the
x-axis. For instance, we display in Figure 2 six successive snapshots from a modification
which has the effect of making the pencil positive definite without altering too much the
shape of the eigenvalue curves.

Let us now consider what happens during this process to the four intersections between



the lines and the x-axis, which we now label w1, ws, w3, wy starting from left. The two central
intersections wo and ws move towards each other, until they coalesce and then disappear
(i-e., the curve does not cross the x-axis anymore). The other two intersections wy and wy
move towards the borders of the graph, coalesce at w = 7 and then disappear as well. In
particular, we see that the intersections w; in which the slope of the line crossing the x-axis is
positive (i = 1,3) need to be moved to the left, and the w; for which it is negative (i = 2,4)
need to be moved to the right. This is a crucial observation.

One usually defines the (generalized) eigenvalues and eigenvectors of the matrix polynomial
Q as the pairs (A, v) € C x C™ such that Q(A)v = 0 and v # 0. This is a different notion
than that of the eigenvalues appearing in the spectral plot. To avoid confusion between the
two, in this paper we do not drop the adjective generalized.

The spectral plot gives nevertheless some information on the generalized eigenvalues
of Q: the matrix Laurent polynomial ) has a generalized eigenvalue A = " on the unit
circle if and only if Q(e*) is singular, i.e., a line in the spectral plot touches the real axis at
x = w. From this observation, it is apparent that the presence of generalized eigenvalues of
@ on the unit circle is no isolated phenomenon, but rather it is stable with respect to small
structured perturbations, i.e., perturbations that keep the palindromic structure: if some
lines cross the x-axis, small perturbations will not change this fact. Moreover, the sign of the
slope with which the line crosses the x-axis is known in the literature as sign characteristic
of the unimodular generalized eigenvalue [10], and it is well known that only two close-by
generalized eigenvalues with opposite sign characteristics can move off the unit circle through
small perturbations.

Our perturbation algorithm borrows from this intuition and consists of making several
small perturbations to A and B incrementally, trying to move iteratively the unimodular
generalized eigenvalues in the right direction according to their sign characteristic. Eventually,
the generalized eigenvalues coalesce in pairs with opposite sign characteristics and then leave
the unit circle.

In order to relate the change of the generalized eigenvalues to a certain small perturbation
of the two matrices A, B, we rely on first-order perturbation theory for generalized eigenvalues
of palindromic Laurent polynomials.

3 Palindromic perturbation theory

In this section, we survey some results on generalized eigenvalue perturbations which are
useful for developing our regularization algorithm.

Theorem 1. Let A, B € R™" with B = BT and let \og # 0 € C, be a simple generalized
eigenvalue of the regular palindromic matriz Laurent polynomial Q(\) := AA+ B + A\~1AT
with right eigenvector vy and left eigenvector ug. Then, ug (A — )\52AT) vg # 0, and there
exists a function ® : R™" x R™™ — C which fulfills ®(E,F) = o(|E, F||) for (E,F) — 0
such that

- uy (ME +F + X "ET) vy

)\0 . )\0 — " 2T

ug (A - A ) o

+®(E,F) (3)
is a generalized eigenvalue of the perturbed matriz Laurent polynomial
MA+E)+(B+F)+ X2 A+ E)T.

Proof. This is a special case of [27, Lemma 2.7], obtained by setting

T <>\, {Vez (E)D —ANA+E)+(B+F)+ A ' (A+E)T.



For generalized eigenvalues on the unit circle A\g = €' we have that right eigenvectors
vg (1., Q(e™°)vy = 0) also satisfy

0= (Q(e"™)vo)” = v (Q(e™*))" = v5Q(e"),

i.e., they are also left eigenvectors.

We wish to give an explicit expression for the slopes of the lines crossing the x-axis in the
spectral plot. We first need to recall the following classical result in matrix perturbation
theory [18, Section I1.6.2]: given an analytical Hermitian matrix function H(w) of a real
parameter w, one can choose an orthonormal basis of eigenvectors which is an analytical
function of w.

Lemma 2. Let A,B € R™" with B = BT and let A\ = €*° be a unimodular generalized
eigenvalue of the matriz Laurent polynomial Q(\) = MA + B + AX"YAT. Let vy be a corre-
sponding eigenvector; if Ao is a multiple eigenvalue, then vy needs to be chosen in such a
way that it can be continued analytically as a function vo(w) in a neighborhood of wy.
Then, the spectral plot for Q) contains a line that crosses the z-azxis at (wo,0) with slope
oo 1= —23(Aovg Avg).
Proof. As claimed above, the spectral plot passes through the point (wp, 0) since the matrix
Q(Xo) is singular and thus it has a zero eigenvalue. As stated above, one can choose analytic
functions v(w) and #(w) such that v(w) is an eigenvector of Q(e™) with eigenvalue 6(w),
|z(w)|| =1 for each w, and v(wgy) = v, B(wy) = 0.
The slope of the line through (wp, 0) is given by

df(w)
dw

O(wo) =

w=wq

We compute it by differentiating the relation 8(w) = v(w)*Q(e*)v(w) with respect to w and
evaluating the resulting expression in wy. We get

2 . * W * ) . * d e“”
Blusn) = i) QU™ (o) + vleo) Q) (o) + (o) LR ()
—0(wo)v(wo)=0  =v(wo)*O(wo)=0 wmwo
= v (e “° A — 16”0 AT )yy = =23 (e"™viAvg). O

Finally, we specialize Theorem 1 to unimodular generalized eigenvalues of a palindromic
matrix Laurent polynomial.

Theorem 3. Let A,B € R™" with B = BT and let Q(\) = MA + B + A\"'AT have a
simple unimodular generalized eigenvalue Ao = e'°, with eigenvector vy and spectral slope
o0 = —23(AvgAvg). Let Q(A) := M(A+ E)+ B+ F + A YA+ E)T be a sufficiently
small perturbation of Q(A), with F = FT. Then oo # 0 and Q has a generalized eigenvalue
Ao = €0 such that
o0(@o — wo) = —vi Fog — 2R(e*v Evg) + ®(E, F). (4)
for some function ®(E, F) with ®(E, F) = o(|E, F||).
Proof. First note that Theorem 1 implies that og # 0. Applying some algebraic manipulations
to (3), we get
v (e“OE + F + e o ET )y,
V5 (A — e 2o AT )y,
v Fog + 2R(e"0ui Evg)
vi(—e0 A + emwo ATy,
vg Fug + 2R(e"vi Evg)
100
— oo (1 T ’USF’U() + 2§R(61wOUSEUO)
100

wo ezwo

e + ®(E,F)

— elUJO + 67,(./.)0

+ ®(E,F)

— elwo _|_ elu)o

+ ®(E,F)

) + ®(E,F).



Taking complex logarithms and using the expansion log(1 + ¢) = € + o(¢) leads to

*Fog 4 2R(eovs B = 5
4 W60 A PREDGE0) | g, p), (B, F) = of B, FI)

Wy = Wy -
0

from which (4) follows. O

This establishes a first order relation between the change of a unimodular eigenvalue and
the perturbation of the coefficients.

4 Solvability enforcement

In this section, we wish to derive a procedure for making a small-norm modification of a
palindromic Laurent matrix polynomial that moves the unimodular generalized eigenvalues
(approximately) in a different nearby location. The derivation is along the lines of [5] (with
modifications to account for the different type of structure of the matrix polynomial).

Suppose that the matrix polynomial Q(\) = AA+ B+ A1 AT has unimodular generalized
eigenvalues A\; = €'/, for j = 1,2,...,£. Let 0; and v; denote the spectral slope and the
eigenvector associated to Aj, normalized such that ||v;|| = 1.

We are looking for a perturbed matrix polynomial Q(\) = A(A+E)+B+F+A"1(A+E)T,
with |E| and ||F| small, that has generalized eigenvalues close to specified points e/,
j=1,2,...,¢ on the unit circle. We assume that the @; are chosen in a way such that
|©; — w,| is small for all j.

Moreover, we wish to allow only perturbations in the special form

m

(E,F) =Y (Ei,F)5; (5)
i=1
for some §; € R, where (E;, F;) € R™" x R*" with F; = F for each i = 1,2,...,m, is a
suitably chosen basis of allowed modifications to the pair (A, B).
For instance, if n = 2, a natural choice for this perturbation basis is

([661,0),([6],0),([66],0), ([8],0), (0, [561) - (0[5 91, (0, [T 51) - (6)

This choice gives all possible perturbations on the entries of each matrix that preserve the
symmetry of B. However, one can choose a different basis (E;, F;), for the perturbation
space, restricting the choice to perturbations having a stronger linear structure. We shall
need this additional freedom in Section 5.3.

We define for each m,n € N the operator vec (-) : C"™™ — C™" that stacks the columns
of the matrix in its argument, i.e.,

(vec (M))(j—1)m+i = M;;.

It is well-known (e.g., [16]) that vec (AXB) = (BT ® A) vec (X) for each triple of matrices
A, X, B of compatible size, where ® denotes the Kronecker product.
Using these tools, we can rewrite (5) as
o1
vec (E)| _ |vec(Eq) -+ vec(En)| | .
[ } B [vec (F1) - - vec (Fm)} 6:

and (4) as

0j(@j — wj) = [F2R(e (v @v)))  —(v] @ v))] [322 E?;]

= [-2R(e™ (v] ®@v})) —R(v] @v))] [



The last equality holds because F' is real symmetric, thus

(’U]T ®v;)vec (F) = vjFvj = R(vj Fvj) =R ((UJT ®v;)vec(F)) =R ((UJT ®vj;)) vec (F).

We set
et (vl @v})) —ROT @) o1(@01 — wr)
. ! ! 1. Y1 [vee (E1) -+ vec(Enm) )
A - ) B = ’
: : vec (F1) --- vec(Fy,) :
—R(e* (v ®@v;)) —R(vg @ vp) oe(We — we)
and § = [d1,...,0,,]7, thus obtaining the system of ¢ linear equations in m unknowns
Ad = B. (7)

So, any sufficiently small perturbation (5) satisfying (7) moves the unimodular generalized
eigenvalues approximately to the wanted positions. We are interested in the smallest such
perturbation. To this end we assume that system (7) is underdetermined, m > ¢, but
full-rank. Hence, we can use a simple QR factorization to compute its minimum-norm
solution. In fact (e.g., [11]), the minimum norm solution is given by 6 = QR~T B, where
AT = QR denotes a thin QR factorization.

To sum up, our regularization algorithm is as follows.

Algorithm 1.

Input: A, B = BT € R™" such that Q()\)
Output: A, B = BT € R™" such that
eigenvalues.

AA+ B+ X7 AT s regular.
(A) = M + B + A'AT has no unimodular

Ol

1. A« A\ B+ B

2. Compute the unimodular generalized eigenvalues A\; = '3 of Q()\), j=1,2,...,¢ and
the associated eigenvectors v;. If there is none, terminate the algorithm. Also compute
the spectral slopes o = 23(\;jv} Av}).

3. Determine suitable locations for the perturbed generalized eigenvalues @; “in the right
direction” and not too far away from the w;. For instance, we used in the following
experiments @; = w; — 7sign(o;), with step size 7 = 1072 (unless specified otherwise).
Other choices are discussed in [5].

4. Assemble the system (7) and compute its minimum-norm solution 4.
5. Set A+ A+ S 6E;, B+« B+ > 8;F; and repeat from step 2.

Typically, several iterations of this procedure are needed to achieve a matrix polynomial
with no unimodular generalized eigenvalues. The smaller the step size 7 is, the more iterations
are needed, but the smaller is the resulting total perturbation to A and B. In any case, all
these results come from first-order approximations, so there is no formal guarantee that what
we are computing is the smallest possible perturbation that makes Q(A) positive definite on
the unit circle.

4.1 A numerical example

As a first example of our solvability enforcement procedure, we describe in more detail the
experiment already portrayed in Figures 1 and 2. We start from the matrices

1 0 0 0 3210
01 1 0 2 3 21

A= 01 -1 0}’ B= 1 2 3 2’ (8)
00 0 -1 01 2 3



TTT 1T 1 T T ‘H\\\\ T ‘H\\\\ T ‘H\\\\ T T P
1ot
=) =
- -
= 1108 2
= 7 %
[ s
E L el
2 - i
Q L7 Na¥
o= - +
z L 1102 £
g S
=t S
-~
=)
3 S
E 5
g 110t g
g £
L Liii1 Liii1 Liii1 100
100 1071 102 10—3 10~

T

Figure 3: Absolute magnitude of the final perturbation, ||[A — A, B — B]||¢, and number of
iterations in the solvability enforcement procedure for different values of the step size 7

for which the resulting spectral plot was given in Figure 1. We ran Algorithm 1 with a step
size of 7 = 0.2; the step-size was increased in this experiment to reduce the number of needed
steps and make Figure 2 clearer. We reported the spectral plot for the resulting polynomial
Q()) after each iteration of the procedure in Figure 2. One can see that the profile of the
topmost eigenvalue curves is almost unchanged, while the bottom ones are modified slightly
at each iteration, and these modifications have the overall effect of slowly pushing them
upwards. After six iterations, the resulting palindromic Laurent matrix polynomial Q()) is
positive definite on the whole unit circle (as shown in the bottom-right graph), and thus it
has no more unimodular generalized eigenvalues. The resulting matrices returned by the
algorithm are

0.816  0.183 0.0379 —0.0565 3.16 1.67 0.956 0.0913
A~ 0.183 0915 0.775 0.152 B~ 1.67 3.28 1.62 1.13
0.0379  0.775 —0.647 —0.173 |’ 0.956 1.62 3.41 1.55
—0.0565 0.152 —-0.173 —0.922 0.0913 1.13 1.56 3.13

The relative magnitude of the obtained perturbation is

14— Al
1Al

Such a large value is not unexpected, since the plot in Figure 1 extends significantly below
the real axis, thus quite a large perturbation is needed.

The step size 7 plays a role here. With a smaller value of 7, one expects the resulting
perturbation to be smaller, since the approximated first-order eigenvalue locations are
interpolated more finely; on the other hand, the number of needed steps should increase as
well. This expectation is supported by Figure 3 where we report the resulting values for
different choices of 7 in this example.

More experiments from applications are discussed in the following sections.

1B — Bllp

= 0.2755,
Bl

= 0.1398.



5 Parameter estimation for Weak VARMA (1,1) models

Here we show how solvability enforcement of the matrix equation (1) can improve parameter
estimation for VARMA(1,1) models. A multivariate time series (i.e., a sequence of d-
variate probability variables) (x;)¢=12,. . in R? obeys a weak VARMA(1,1) model (vector
autoregressive model with moving average) if it satisfies a relation of the form

vy —Pry 1 =cH+u —Ouy_y, t=2,3,... (9)

with parameters ®,© € R%*? and ¢ € R%. Here, (ut) is a d-variate weak white noise process,
i.e., it satisfies

1. E[u¢] = 0 for all ¢ (zero mean);
2. ]E[ututTH] =0 for all ¢ and all j # 0 (uncorrelatedness).

Here and in the following, E[-] denotes the expected value of a random variable. Moreover,
we adopt the convention that the observed or estimated value of a random variable or
exact asymptotic quantity is denoted by the same letter with a hat; so, for instance, x; is a
multivariate random variable while Z; is a real vector that corresponds to a realization of x;.

The task of estimating the parameters ®, O, and ¢ of a VARMA(1,1) model, given a
finite number N of observations 21, ..., 2y € R?, is more challenging than the corresponding
problem for the more common model with © = 0 (known as AR(1) model).

The dominant approach is mazimum likelihood (ML) estimation which can be applied
when wuq,us, ... are independent and identically distributed random variables. The ML
estimator is defined as . . o

(®rrr, Onr) = argmax L(®, ©), (10)

where L(®,0) denots the likelihood of the estimates ®, © (and of &, if it is not provided
by the application), that is, the probability density that a process satisfying (9) (with
®, 0 replaced by ®,0) generated the observed time series (#;).,. The main issue with
maximum likelihood estimation is that the optimization problem (10) is very complex to
solve numerically. It is generally a non-convex problem, and the number of parameters grows
quadratically with the dimension d of the time series. Standard optimization methods may
require thousands of iterations to converge [17], and each of these iterations requires at
least one pass through all the time series data 21, ...,2Zy. Moreover, most ML estimation
approaches assume Gaussian independent noise u;, tempting practitioners to run them blindly
even when the noise process is known not to be Gaussian independent. Admittedly, doing
so is not completely unjustified, as in this case the real likelihood function can be replaced
by the one that would be obtained if the u; were Gaussian independent, leading to the
quasi-mazimum likelihood approach [22, Section 16.4]. However, the obtained asymptotic
results are considerably weaker, since replacing the likelihood function is only a heuristic
procedure.

We suggest here instead a moment-based estimator (also known as method of moments),
that is, an estimator that is based on computing the moments of the time series and solving
specific equations involving them. Moment-based estimators are known for a wide variety
of statistical models [22]. Their precision is typically inferior to that of ML estimators, but
they are simpler and they require less assumptions on the underlying probability distribution.
Moreover, they can be used to provide good initial estimates for maximum likelihood routines.
Moment-based estimators have been proposed in the literature for univariate ARMA models
(d = 1) [20, 24], in which they require simply solving a (scalar) quadratic equation. An
extension to multivariate models, which requires more advanced linear algebra techniques, was
suggested in [26] for a specific econometric model, the multivariate GARCH(1,1) model; we
describe it here for the more general case of a weak VARMA(1,1) model. Our moment-based
estimator requires only the mean of the time series and the first three autocorrelations,
which can all be approximated with just one pass through the data. It is therefore orders of
magnitude faster than an ML estimator, and thus feasible even for large data sets.
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Additional assumptions We make the following classical additional assumptions on the
weak VARMA(1,1) process. We recall that we denote the spectral radius of a matrix M by

p(M).
1. p(®) < 1 (asymptotic stationarity) and p(©) < 1 (invertibility).
2. The process is ergodic, i.e., for any measurable function f, the average over time
% Zf;l f (&) converges for almost all possible observations Z; of the random variables

x4 to a value (possibly co) that is also the limit of E[f(x)] for t — oco. We adopt the
shorthand E;[x¢] := lim;—, o E[z;] to denote the stationary limit.

3. The variance of the noise E[u,ul ] is finite.

In particular, we do not assume that the u; are independent (but only that they are
uncorrelated, see above), nor that they have the same law, nor a specific distribution such as
the Gaussian one.

5.1 Estimating ¢ and ¢

We define the asymptotic mean p := E¢[x:] and for £ = 0,1, ... the asymptotic autocovariances
My, = Ei[#112F], where #; := z; — p. It follows from our assumptions that p and Mj,,
k=0,1,2,..., exist and are finite.

We have by (9)

(I — D) =Exy — Pay—1] = Eife + ur — Oui—q] = c.
This allows us to write a version of (9) without the term c,
Tt — PTi_1 = up — Oup_1.
Hence, for k > 2 we have the Yule-Walker relation
M, =E; [ft-«-kftT] =E[(®Tt4-1 + Usr — @Ut-i-k—l)@T] = Et[q’fHk—ﬂ’tT} = OM;_;.

Here we used that for these k the terms E¢[uy 127 ] and Ey[usy 177 | vanish, because wusyp—1
and w4, are uncorrelated with the values of u; for all j <t (and thus also with z;).

This property allows estimating ® and c easily: since asymptotically consistent estimates
of i and Mj, are readily available from the data in the form of /i and M; by (2) we can
compute for instance & = MoM; ! and é = (I — ®)j.

Remark 4. An alternative strategy, using all the available finite-sample moments, is
choosing weights (w;)Y, > 0 and solving in the least squares sense the overdetermined
system

['LUQMQ ”LU3M3 cee wNMN] = é [’LUQMl ’U.)3M2 ce wNMN—l] .

However, it is not clear what the best choice for the weights w; is. As a consequence, the
accuracy of the different estimates obtained by MM, _11 may vary wildly, and the experiments
do not show a visible pattern for their distribution. We do not pursue this approach further.

5.2 Estimating O

Estimating the remaining parameter © requires more effort. The following strategy was
suggested in [26] for another econometric model, but it can be applied to a generic weak
VARMA(1,1) model with minor modifications.

Let ¥ .= E; [ututT] be the asymptotic covariance matrix of u; and define z; := Ty —®Z;_1 =
uy — Ouy_1. Then the asymptotic covariance matrix I'g of z; can be computed in two different
ways as

Lo = Eyfz2]] = Be[(Tp — ®Tp 1) (2 — BT 1)T | = My — DM — M DT + DM DT,
= E¢[(us — Ous1)(uy — Oup1)"] = X+ OXOT.
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In the second expression we used the fact that E[u;ul ;] = 0, since noises at different times
are uncorrelated. Similarly, for I'y := E;[2;412{] we obtain I'; = M; — ®M, = —OX.
The first expresswns for I'g and I'y can be used to compute their estimates I‘O and F1
frokaandq)as . . o o o
Lo = My — oML — M, 07 + &M 7,
Iy = M; — dM,.
The second expressions for I'g and I'y,
Ih=%+0xe’,
r, =-63,

(11)

may, using simple algebraic manipulations, be transformed into two decoupled equations in
Y and Y := O7, respectively:

o= +I27'T7], (12)
NY?4+T0Y +I7T =o. (13)

The last equation (13) is a quadratic matrix equation. The following result shows how a
solution Y = ©T can be constructed using generalized eigenpairs.

Theorem 5. [9, Section 4.2] Let To, T € R*? with Ty = T be such that the matriz Laurent
polynomial T(\) := ATy + T + A™TT is regular, and has 2d distinct generalized eigenvalues.
Then, each solution of the matriz equation (13) can be written in the form

Y = [vl vy ... vd] diag(A1, Az, - -+, Aa) [vl vy ... vd]fl , (14)
where (A\j,v;), 7=1,2,....d, are d of the 2d generalized eigenpairs of T

The generalized eigenpairs of I (necessary for the construction of Y) can be approximated
by generalized eigenpairs of f‘()\) := A’y + T'p + ATy, These in turn can be computed
by several approaches, e.g., using a Schur form (or structured Schur form [19, 28]) of a
linearization of the polynomial AT'()) [15, 23] or by doubling-type algorithms [25].

Summarizing the results so far, a first preliminary VARMA estimator could consist of
computing i) f, My, My, M, by (2); ii) P = MQMl_l and ¢ = (I — i’)ﬂ, iii) I'o, Ty by (11);
iv) d eigenpairs of I’ by any suitable method; and V) ©as YT in (14).

An issue that remains is whether the such obtained O satisfies p(©) < 1 (as required by
our additional assumption 1). Another issue is the solvability of (12). By our derivation (12)
is solvable, because ¥ is known to be a solution. However, we replaced I'y and I'; by
their estimates [y and fl, which results in a perturbation of the intended equation. Then
solvability has to be assessed by other means. We will use the following theorem, which is a
minor modification of the results in [8].

Theorem 6. Let I'g,I'; € R%4 with Ty = I‘(:)F. Then there exist matrices ¥ € R¥* with
Y >0 andY = —-X71TT with p(Y) < 1 that solve (12) and (13), respectively, if and only if
the parametric matriz T'()\) := Ay + T + A"'T'T is Hermitian positive definite for every A
on the unit circle.

In this case, T’ has exactly d generalized eigenvalues (counted with algebraic multiplicity)
instde the unit circle.

In light of Theorem 6 all is well whenever f‘o and f‘l is such that I' does not have
unimodular generalized eigenvalues. Unfortunately, this cannot be guaranteed; unimodular
generalized eigenvalues may exist. In this case the estimates I'g and I'y cannot be considered
accurate and thus it is justified to perturb them slightly. The method described in Section 4
can be used to obtain nearby I‘O and I‘1 such that I‘()\) = )\I‘l + I‘o + A\~ 1I‘1 is without
unimodular generalized eigenvalues. This amounts to inserting an extra step in above
prehmlnary algorihm inbetween steps iii) and iv) consisting of computing FO and Fl from FO
and Ty using Algorithm 1.

We will improve this estimator further in the following subsection.
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5.3 Inflation and final algorithm

The perturbation technique described in Section 4 depends on a choice of linear perturbations
(B, Fy),i=1,2,...,m. It is natural to use componentwise unit perturbations in each entry
of I'y and I'y, i.e., perturbations with one or two 1 entries and all the other entries zero, as
in (6). In this way, if we apply the result to the d x d Laurent polynomial Ay 4T + A’lflT,
we obtain perturbed matrices T, I'; which are close to I'o and I'y in the Frobenius norm.

However, I'g and I'; are rather artificial functions of the moments, and it is not clear why
one should be concerned in keeping the perturbation on them small. It seems a more sound
strategy to search matrices M; that are close in norm to the estimated moments of the time
series M;. This is not easy to do within our approach, since the I'; are nonlinear functions of
the Mi, and thus, even using first-order approximations only, the linearized perturbation
basis (E;, F;) would be a rather complicated function of the M;.

We suggest an alternative strategy instead that computes Y from the generalized eigen-
values of an inflated matrix Laurent polynomial of dimension 3d x 3d. A similar construction
was used in [6]. We state the following theorem in a slightly more general form than required,
by including a free parameter k. In this paper we will use k£ = 1 only.

Theorem 7. Letk € N, k> 1. Let MO,Ml,Mk,MkH € R with My = MOT be given
matrices, with M,, invertible. Set & := MkHMk_l and define Iy and Ty as in (11). Let
(Aiyvi), © = 1,2,...,2d, be the generalized eigenpairs of the matriz Laurent polynomial
D(A) := Al + T 4+ A7,

Then, the matrix Laurent polynomial

R My 0 0 j\:40 ]\:41 MF‘H MlT ME)F 0
RN :=X|My 0 O+ | MI' My M, |+Xx']0 0 0
0 0 0 M,%F_H MF 0 0 0 o0
has:
e 2d generalized eigenvalues \;, i = 1,...,2d, where the \; are as defined above, with
etgenvectors

V4

*

*

respectively, where by * we denote a d x 1 block whose content is not of interest here;

e 2d generalized eigenvalues \; =0, i = 2d + 1,...,4d, with eigenvectors given by the

columns of
0 0
Id 0 ) (15)
0 I4
e 2d generalized eigenvalues \; = 0o, 1 = 4d 4+ 1,...,6d, with eigenvalues given once

again by the columns of (15).

We recall that the eigenvectors of a quadratic matrix polynomial need not be linearly
independent, or even distinct, so it should not be surprising that the eigenvalues 0 and co
share the same eigenvectors.

Proof. Note that

Mo N
MT 0

and (substituting ® by MkHMk_l in (11))

_[o0 gt
Mt M M MT

Po = NIy — NE N TNIT, | — Ny N AT 4+ Ny NI NI VLT NI,
Py = Nly — Ny NI .
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Define

i I, 0
L) = Ny M) [N A
S
I I 0
- [ 0 MT } {Ml +AMO} I
| a1 -1 -T T 2d
L Mk: _Mk MOMk Mk+1
i I 0 0
= —T I; 0
(M N (MT + AM) — M ' Mp®T) 0 Iy

One can check explicitly that

: Py 0 o0
(LGNTRNLA) = | 0 My My
0o MI o

As the latter matrix Laurent polynomial is block diagonal, it is easy to see that it has 2d
generalized eigenvalues at zero and 2d at co, both with eigenvectors given by the columns
of (15), and 2d generalized eigenvalues which coincide with the generalized eigenvalues \; of
Q(\), with eigenvectors

v;

0

0

respectively. Multiplying them by L(X\)~!, we get the generalized eigenvalues of R(\). In

particular, the multiplication preserves the top block containing v;. Also (15) is preserved. [

Theorem 7 shows that we can apply the positivity enforcement technique to R(/\) instead
of to I'(\); the additional 0 and co generalized eigenvalues are far away from the unit circle
and pose no problem. Since the coefficients of R(\) (in contrast to those of I'(\)) are linear
functions of the matrices ]\Zfi, it is easy to construct a perturbation basis that corresponds to
perturbing each entry of each M; separately. One could say that our application is one of
the rare cases in which a 200% inflation is beneficial in economics.

We have now derived our complete moment-based estimator which is stated below.

Algorithm 2.

Input: &1,39,...,8x € R?

Output: Estimates ¢, $, O for the parameters ¢, &, O of a weak VARMA(1,1) model that
could have generated %1, Z2,...,2TN

1. Compute the finite-sample moments fi, My, My, Mo using (2).

2. Set ) N )
M, 0 0 My, M, M

A« [Ny 0 0|, B« |M{ M, M,

0 00 My ME oo

3. Compute a perturbation basis (E;, I;) for (A, B) that corresponds to perturbing each
entry of each My, k = 0,1, 2, separately.

4. Apply the perturbation technique described in Section 4, Algorithm 1 with the per-
turbation basis as chosen above, to obtain a nearby A, B associated to M;, i = 0,1, 2,
with no generalized eigenvalues on the unit circle.
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5. Compute the generalized eigenpairs of AA+B+A"1A” inside the unit circle; ignore those
with eigenvectors in the form (15), and call the d remaining ones (A;,w;),j =1,...,d.

6. Let D = diag(A1,...,Aq) and V the upper d x d block of the matrix [wl wy - wd].

7. Compute © = Y7 = (VDV-1)T,
8. Compute & = MyM; ' and é = (I — ®)j.

Remark 8. Consistency is an important statistical property of an estimator producing an
estimate M of a quantity M based on N observations. In the statistical literature, the esti-
mator (and informally also the estimate M itself) is said to be consistent if limy_, M=M
for almost all possible observations. The finite-sample moments /i and Mj, are consistent by
ergodicity, and the moment-based estimator constructed here (without solvability enforce-
ment) is an analytic function of these moments (provided p(B) < 1), hence it is consistent
as well. Moreover, consistency (being an asymptotic property) is not affected by solvability
enforcement at all, since solvability enforcement is not needed if the finite-sample moments
are sufficiently close to their asymptotic values, which is the case for sufficiently large N.
Thus our moment-based estimator, Algorithm 2, is consistent. As mentioned above, it is
also computationally inexpensive. As a consequence, the moment-based estimates make an
attractive choice as initial values for iterative implementations of more complicated estimators
(such as the above-mentioned quasi-maximum likelihood estimator).

5.4 Numerical experiments

We considered two test cases for our experiments; both are VARMA (1,1) models (9) with
Gaussian independent noise u; with mean 0 and variance I. For this kind of noise and for
given parameters ¢, ®, © we can produce a time series by a simple MATLAB program like

function [X,U]=simulateVARMA (c,Phi, Theta ,N,d)
X(:,1)=c; U(:,1)=randn(d,1);
for t=2:N
U(:,t)=randn(d,1);
X(:,t)=Phi*xX(:,t=1)+c+U(:,t)—ThetaxU(:,t —1);
end

where randn is MATLAB’s buit-in normal distributed random number generator. We then
construct the finite sample moments /i, My, My, M> by (2) and the parameter estimates
e, ®,6 by Algorithm 2 and assess the quality of these estimates as a function of the number
of observations N. In particular we consider the following quantities:

e the relative errors of the finite-sample moments to the exact moments,

| My — My||
| M|l

_ Nl =4l

err «— ) Mk,err =
[l

For moment-based methods the quality of the finite-sample moments is crucial. We
cannot expect high quality parameter estimates form low quality moment estimates.

e the errors of the parameter estimates, given by

llé —ell

Cerr +=— V7 7> ro-— (I) (0] 5 and © ro-— @ ©
€ Et[”«rt”] e H ”2 € ” HQE

AR

The motivation to measure these errors like this stems from an important application.
Typically, one is interested in using the obtained parameter estimates to predict a value
for z; as

xf =+ i)xt_l + up — (:)ut_l.
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Subtracting (9), one can bound the absolute prediction error as
e — @ill <l = cll + 1@ = @[y llw-1]l + 10 = Oy lur—1].

Taking expectations and scaling by Eq[||z;||] we have

Eefllof — el _ lle—cll | 5 Eellzeall]l | e Ee [l w1 ]
< + (1o — 2 +llo-9] :
B[l 1] B[l ] 2 B[l 2 B[l
Hence, using Ei[||z:—1|]] = E¢[||z:¢]|] and the analogous relation for u;, the relative

expected norm of the prediction error is bounAded by Athe sum of cerr, Perr, Ocrr Which
are thus suitable measures of the errors of ¢, ®, and O, respectively.

“ o err err err . .
e the same error measures — denoted by ¢, @7, and O — for (approximations of)

the maximum likelihood estimates. These estimates were obtained by two steps of
Gauss-Newton optimization on the log-likelihood function with some basic step size
control. The iteration was initialized with the moment-based estimates.

These values are considered for comparison purposes only. A competitive ML method
is outside the scope of this text.

e the average value of the relative perturbation

I[A B]-[A Bl
IfA - Bl

AA,B =

resulting from solvability enforcement, with A and B as in Algorithm 2.

e a function of the form constant - N~'/2, to highlight the convergence rate of these
quantities. Indeed, for Gaussian noise, the expected convergence rate is N~%/2, as a
consequence of the central limit theorem.

All given numbers are the averages over 10 different experiments (utilizing the same parameters
¢, ®,0; but different noise vectors ;).

Experiment 1 The first model is of dimension d = 4 with

1 0.16 0.20 0.12 0.09 0.01 -0.23 0.70 -0.37
o= 1 ®— 0.13 0.03 0.10 0.02 o— 0.50 0 0.23 0.23
1(’ 0.20 0.15 0.12 0.16{° -0.13 -0.25 -0.33 -—-0.14
1 0.16 0.06 0.19 0.08 —-0.21 0.20 -0.61 0.44
(16)

The results are given in Figure 4. As one can see in the left plot, the finite-sample moments
do converge to their asymptotic values with the expected rate of N~/2. Among the moments
u is estimated best, followed by My, Mj, and, finally, Ms. In this experiment we have
p(®) = 0.5, p(©) = 0.55, i.e., the spectral radii are distant from 1, and thus solvability
enforcement should not be needed for at least moderately accurate estimates of the moments.
Indeed, as can be seen from the dotted curve depicting A 4 g, solvability enforcement was
not needed for N > 4-103. When it was required, the perturbation on the moment estimates
was negligible compared to the error on these values.

In the right plot we see that also the moment based parameter estimates converge with
rate N~1/2. The estimate of © is notably better than that of ® with the error of ¢ being
somewhere in between those two. The errors of the maximum likelihood estimates, depicted in
red, behave roughly like the moment-based estimates in terms of convergence rate. However,
their absolute error is half an order of magnitude better.
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Experiment 2 The second model is given by

1 0.84  0.084 0.79 0.06
‘= H  ®= {0.042 0.84] , ©O= [0.09 0.79} ' (7

The results are given in Figure 5. Almost all we said in the first example still applies here:
the errors decline steadily; the method works.

The difference is that now the spectral radii are much closer to 1, namely p(®) =~ 0.9
and p(©) ~ 0.86. As a consequence, more observations are needed to get the same accuracy
(although the convergence rate is still N G %), and solvability enforcement of the matrix
equation is needed until a much larger value of N. This example shows the importance of
solvability enforcement for the robustness of the moment-based estimator.

As a further visualization of the impact of solvability enforcement, we set N = 10* and
display a scatter plot (Figure 6) showing, for 100 different experiments, on the x-axis the
maximum of the errors on the moments and on the y-axis the maximum of the errors on
the moment-based parameter estimates. In some sense, the abscissa measures the error of
the input data for our procedure, and the ordinate values measures the error of the output.
The symbol used in the plot is a red o for the experiments in which we needed to enforce
solvability, and a blue + if the resulting Q(\) was already positive definite on the whole unit
circle.

One can see that the values line up diagonally, albeit very roughly. This is expected,
since the larger the distance from the real moments, the worse the estimated parameters
are, but this relation is not perfectly linear. Nevertheless, the red data points lie on average
on this line rather than above it, and this supports the hypothesis that, when solvability
enforcement is needed, it does not have a negative impact on the expected accuracy of the
solution.

Moreover, in all these experiments, the cost of the solvability enforcement step was
smaller than that of computing the finite-sample moments M;, since we are only performing
computations with matrices of size d < N. On the other hand, even two steps of the
maximume-likelihood estimator take significantly longer than the moment computation and
the moment-based estimation procedure. For instance, on the second experiment, for
N = 5000 the moment-based estimator needed only 2% of the CPU time used by ML.

We end this section with a remark on the seemingly large estimation error; 10~ or 1072
is usually not considered small in the linear algebra community. Nevertheless, this level
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of accuracy is not uncommon in this kind of models, especially considering that we are
estimating a large number of parameters using observations affected by large errors. The
estimated data still show the main features of the underlying model.

6 Comments and conclusions

The availability of a fast and efficient moment based estimator is relevant in practical
applications. The procedure we introduced can produce reasonably accurate parameter
estimates in an efficient way. Its main shortcoming, the need to solve a possibly unsolvable
matrix equation, is cured by our enforcement technique.

The results obtained with solvability enforcement are encouraging. The error obtained in
the estimated model parameters after the regularization is of the same magnitude as that
obtained in cases in which this technique is not needed. Hence, this additional step does not
enlarge the error and makes the estimation procedure more resilient: in all cases where the
original data results in an unsolvable model, with this technique we can return a meaningful
result rather than aborting with a failure message. In some cases, this enforcement is needed
in the majority of the experiments. In addition, positivity enforcement comes almost for free
in terms of computational work, since the dominant cost within the moment-based estimator
is the computation of the finite-sample moments (scaling with the length N of the time
series), whereas all remaining steps only involve d x d (or 3d x 3d) matrices, independent of
N.

Since the resulting estimator is fast, it can be used with more data, allowing for higher
density in the time series (for stock exchange data, for instance, data at 5-minutes intervals
are now commonly available).

Overall, our experiments seem to support the conclusions that:

e the moment-based estimator produces reasonably good and consistent parameter
estimates;

e solvability enforcement makes the procedure much more robust at negligible cost;

e moment-based estimates are still inferior to ML estimates in terms of accuracy, but
they are viable starting values for iterative maximum likelihood methods;

e the moment-based estimator is much faster than a ML procedure.
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