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SUMMARY

We present some advances, both from a theoretical and framputational point of view, on a quadratic vector
equation (QVE) arising in Markovian Binary Trees. Concaegthe theoretical advances, some irreducibility
assumptions are relaxed, and the minimality of the solutibthe QVE is expressed in terms of properties of
the Jacobian of a suitable function. From the computatipaat of view, we elaborate on the Perron vector-based
iteration proposed in[1]. In particular we provide a coiaitwhich ensures that the Perron iteration converges to
the sought solution of the QVE. Moreover we introduce a var@d the algorithm which consists in applying the
Newton method instead of a fixed-point iteration. This mdthas the same convergence behaviour as the Perron
iteration, since it tends to converge faster for closerttieal problems. Moreover, unlike the Perron iteratidre t
method has a quadratic convergence. Finally, we show th&tpibssible to alter the bilinear form defining the
QVE in several ways without changing the solution. This rfiodtion has an impact on convergence speed of the
algorithms.
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1. Introduction

Markovian Binary Trees (MBTSs) are a particular family of bching processes, which are used to
model the growth of populations consisting of several tygfaadividuals who evolve independently
and may produce a variable number of offsprings during thistime. MBTs have applications
in biology, epidemiology and also in telecommunicationteyss. We refer the reader tol [2, 3] for
definitions, properties and applications.

One important issue related to MBTs is the computation of gékenction probability of the
population, which can be characterized as the minimal ngaine solution

z* eRY, withRY := {v e RN :v; >0,i=1,...,N},
of the quadratic vector equation (QVE for short)
x=a+b(zx,x), 1)
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2 D.A. BINI, B. MEINI, F. POLONI

wherea € RY, b : RY x RY — RY is a vector-valued bilinear form, such that the vector
e = (1,1,...,1)T is always a solution of{1). To denote the entries»@h coordinates, we use the
notationb; ;i := ein(ej, er), whereey is the/th vector of the canonical basis. With this choice,

(b(z,y))i = D bijrwyn-
Gk

In many papers the notatidris,t) = B(s ® t), with B € Rf”ﬂ and® denoting the Kronecker
product, is used instead; one can see that the two représestare equivalent. We favor the former,
since it highlights the symmetry features of the problem. Méntion the fact that the functions
obtained by fixing the first or the second argument of the &iimform, i.e.,b(y,-) andb(-, z) for
suitabley, = € RY, are linear maps frori} to itself, and thus they can be represented\oyx N
matrices with nonnegative entries.

The MBT is called subcritical, supercritical or criticaltife spectral radiug(R) of the matrix

R:=b(e,) +b(-e) (2)

is strictly less than one, strictly greater than one, or etpuane, respectively.

Under the stated assumptions, one can prove the existelacainfimal nonnegative solution in the
componentwise ordering. A proof using minimal hypothesgwésented iri[4]. In the subcritical and
critical cases the minimal nonnegative solution is the wegf all ones, while in the supercritical case
x* < e, x* # e. Thus, only the supercritical case is of interest for the potation ofx*.

Moreover, in the following we shall focus on the case in which> 0. It is shown in [4] how
to detect reliably the cases when this property does not, laold reduce them to problems of lower
dimension with strictly positive minimal solution.

Several iterative methods have been proposed and analgzedrhputing the vectar*. In [2] the
authors propose two fixed point iterations with linear cageace, calledlepthandorder algorithms.
Another linearly convergent algorithm, callduicknesseslgorithm, is proposed in [3]. In_[5] and in
[6] two variants of Newton’s method are proposed. A différalgorithm, based on a Perron vector
iteration, is proposed in [1]. This algorithm, unlike cless iterative methods, tends to converge faster
when applied to close to critical problems.

In this paper we provide theoretical and computational adea concerning the QVEI(1). We first
show that the matrix of (@) can be assumed to be irreducible, since if it were rigdielcwe may
reduce the problem of solvin](1) to the problem of solving E3Vof smaller dimension, whose
associated matri® is irreducible. Assuming thak is irreducible, we provide a new characterization
of the minimal nonnegative solutian®, in terms of the properties of the Jacobian of the function
F(z) = 2 — a — b(z,z), evaluated at = z*. This property, which complements the results’ih [4],
allows us to give a condition which ensures that the limithaf Perron vector-based iteration provides
the sought solution* of the quadratic vector equation.

Moreover, we introduce a variant of the Perron vector-bésedtion, which consists in applying
the Newton method instead of a fixed-point iteration. Thighuod is quadratically convergent, and
has the same convergence behaviour as the Perron iteradidriends to converge faster for close-to-
critical problems. The number of iterations needed by thisant is usually lower than the number of
iterations needed by the original Perron iteration. Howedee to the larger complexity of the single
iteration step, the Newton-based method is generally sitivean the Perron iteration, in terms of total
computational time.

Finally, we show that it is possible to alter the bilinééz, y) form definining the QVE in several
ways without changing the solution. This modification hasmapact on convergence speed: in most
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ON THE SOLUTION OF AN EQUATION ARISING IN MBTS 3

examples, making the wrong choice can double the numbegmations needed. We show that, at least
on the experiments reported, the best results are given gyansetrization of the original bilinear
form.

The paper is organized as follows. In Sec{idn 2 we recalktasalgorithms based on fixed point
iterations, while in Sectioh]3 we recall the Perron-baserhtton. In Sectiofi]4 we discuss the case
where the matrixz of (@) is reducible, and we reduce the QVE to smaller size QWEsse associated
matrix R is irreducible. In Sectionl5 the minimality of the solutioh of the QVE is expressed in terms
of properties of the Jacobian of the functibiiz) atz = x*. This result is used in Sectidh 6 to ensure
that the limit of the Perron-based iteration provides thegém solutionz*. The Newton version of the
Perron-based iteration is proposed in Sediion 7. In Se@itwe choice of the bilinear fori(z, y) is
discussed. The results of the numerical experiments asepied and discussed in Secfidon 9. We draw
conclusions in Sectidn 10.

2. Classical iterations

Several iterative methods have been proposed and analgzedrhputing the vector*. In [2] the
authors propose two iterations with linear convergendieddepthandorder algorithms. The former
consists in the simple functional iteration

ZTrpt1 = a+ b(xk, 2p),

the latter in

(I = b(-, k) zrs1 = a, 3)
or in the alternative version

(I = bz, ) Tes1 = a, (4)

obtained by swapping the “left” and “right” branches of thiedry tree. The two versions have in
general different convergence speed. Ttieknessealgorithm, still linearly convergent, is proposed
in [3] and consists in alternating iterations [of (3) alhd (4).

In [5] the authors apply the Newton method to the map

F(z):=x—a—b(z,x), (5)
obtaining the iteration defined by
(I = b(zk,") = b(, zk)) 41 = a — b(zk, Tk), (6)

which converges quadratically. Its convergence speediialiyanuch higher than that of the previous,
linearly-convergent iterations. A modification of the Newtmethod, which increases slightly its
convergence speed, has been proposed in [6].

All these methods have probabilistic interpretationshit theirk-th iteratex; can be interpreted
as the probability of extinction of the process restricted special subtre®,. Each of them provides
a sequencéxzy },. of nonnegative vectors, withy = (0, ...,0)%, which converges monotonically to
the minimal nonnegative solutiari. A common feature of all these methods is that their converge
speed slows down when the problem, while being superdriessclose to critical i.e., the vector*
approaches the vector of all ones. This happens becausectine @mtinction time increases, and thus
sampling larger and larger trees is needed to capture threvlmelof the iteration.
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4 D.A. BINI, B. MEINI, F. POLONI

3. A Perron-vector-based iteration

In [1], the authors propose an iterative scheme based oraatit interpretation. Let us suppose for
now that the nonnegative matri, as defined in[{2), is irreducible — we discuss this assumptio
Sectior#. Then, since irreducibility depends only on the pattern of the matrix(u, -) + b(-, v) is
irreducible for each, v € Rf with strictly positive entries.

If we sety = e — x, equation[(ll) becomes

y = "b(y,e) +ble,y) — by, y). @)
A special solution off{l7) ig/* = ¢ — z*, wherez* is the minimal nonnegative solution ¢fi (1). Notice
that0 < y* < e. In the probability interpretation of Markovian Binary B® sincec* represents the
extinction probability, thery* = e — «* can be interpreted as survival probability. In particulgr,
is the probability that a colony starting from a single irdival in state; does not become extinct in
a finite time. The three summands in the right-hand sid&lo&kt) admit an interesting probabilistic
interpretation([1].

If we setH,, :=b(-,e) + b(e — y, -), equation[(IV) becomes

y = Hyy. (8)
If H, is nonnegative and irreducible (which happens for sure e, in view of the irreducibility
of R), then the Perron-Frobenius theorem implies @&, -) = 1 andy* is the Perron vector of the
matrix Hy .

This interpretation allows to design new algorithms for putngy* andx*. Applying a functional
iteration directly to[(B), or the Newton method, gives nothnew, since we just made a change of
variable. However, if we defin®V (M) as the map that associates with a nonnegative irreducible
matrix M its Perron vector, we may rewritel (8) as

y =PV(Hy). (9)

We may apply a fixed-point iteration to sol\é (9), thus getiegea sequencéyy, . of positive vectors
such that the vectay,+ is the Perron vector of the matrif,, , i.e.,

yr+1 = PV(Hy,). (20)
A suitable normalization of the Perron vector, consisteith\the solution, is needed to obtain a

well-posed iteration. An optimal normalization choice iggested in[1]. If we takes as the Perron
vector of the nonnegative irreducible mati¢', then we may normalizg,., ; so that

W (Yer1 — D(Wrt1,€) — ble, Y1) + b(Yr+1, Y1) =0, (11)
i.e., we impose that the residual bf (8) fipe= v is orthogonal tav. With this choice, one can prove
[1] that the convergence speed of the sequéngé;. defined in[[ZD), with the normalization condition
(@), is linear with a small convergence factor for closestitical problems, and tends to superlinear as
the considered problems approach criticality. Thus, altiithe convergence of this method is linear,
surprisingly its speethcreasesas the problem gets close to critical, unlike the classteaations.

4. Dealing with reducible?

The following result shows that whef is reducible we can reduce a QVE to two lower-dimensional
problems to be solved successively with a kind of back-suitisin. Therefore, for the solution of a
generic QVE, we only need to apply the Perron iteration tactse in whichR is irreducible.
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ON THE SOLUTION OF AN EQUATION ARISING IN MBTS 5

Theorem 1. Suppose that, for a QV@) with z* > 0, we have

_|Ri1 Rao
| el

whereRy; is M x M andRag is (N — M) x (N — M). Let

M - o)
xr = R = i, a =

x9 To a2
be partitioned accordingly. Let

Pi= [IM OMX(N*M)} ) Q= [O(N—M)xM IN—M} )

be the restrictions to the firs/ and lastNV — M components respectively. Let us define the bilinear
form onRY ~

bo(u,v) == Qb(QTu, QTv).
Moreover, for eacty € RY ™", let us define
T, :=DIa = Po(.Q"y)P" = PbQ"y,)P",  a, =T, (s + PH(Q"y,Q"y)),
and the bilinear form o’/
by (u,v) := T, ' Pb(PTu, PTv).
Then,

. x solves(d) if and only if T}, is nonsingular, and its block componentsand z; solve respectively
the two quadratic vector equations
T2 = a2 + bQ(IQ, IQ) (12)
and
X1 = Gy + ey (1, 271). (13)
. If z* is the minimal solution tfI)), thenz} and z3 are the minimal solution tq13) and (12)
respectively.

Proof First notice that sincé” andQ are restrictions to complementary sets of entrigs, (1)sifld
and only if it holds on both sets, i.e.,

x1 =a1 + Pb(z, x), (14a)
X9 =as + Qb(x, x). (14b)

SinceR;; = fo:l(bijk + bix;), it follows from the block structure oR (and fromb;;;, > 0) that
bi;z = 0 whenever; > M and eitherj < M or k < M. This implies that the second block
row of b(u,v) depends only on the second block rowswandv. We can write this formally as
Qb(u,v) = Qb(QTQu, QT Qu). Then, [14b) is equivalent to (112).

By exploiting bilinearity and the fact tha@” P + Q7 Q = Iy, we can rewrite[(14a) as

x1 = a1 + Pb(PTx1, PTay) + Po(P 21, Q" xs) + Pb(QT 22, PTa1) + Pb(Q" 22, QT 2),
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6 D.A. BINI, B. MEINI, F. POLONI

or
TI2ZC1 =a + Pb(QTIQ, QTIQ) + Pb(PTIh PT.CCl). (15)

Since the right-hand side is nonnegative ands positive, the Z-matri¥,, is an M-matrix. Notice that
T,, cannot be singular, otherwise= a; = Pb(Q”z2, QT22) = Pb(P 21, PTz;) and[07 :czT}T
would be a solution of{1), contradicting the fact that thaimial solution is strictly positive. Therefore,
we may multiply [I5) by its inverse to géf (13). The steps imdhove proof can be reversed provided
T.., is nonsingular, thus the converse implication holds as.well

Let us now prove the second part of the theorem. Equdiidngdgjits a minimal solution due to
the general existence theorem (since it admits at leastuti@o); suppose it iy # x35; then, by
minimality, zo < x3. The matrixT,, > T, is an M-matrix, thus‘;l;;l > T;;. Thereforeq,, < a.;
andb,., < b,;. We have

T = gy + boy (21, 27) 2 day + bay (27, 27),

thus the equatioh (13) has a supersolution, and this imghiast has a solution by [4, Lemma 5]. Let
x1 be its minimal solution; theny is a solution to[{lL) by the first part of this theorem, but tlsisni
contradiction with the minimality of*, sincez, < 3. Thereforers is the minimal solution td (12).
If (L3) admitted a solutiom; < =7, then by the first part of the theorem

H

would be a solution td{1), and this again contradicts themmity of z*.

Let F! := I — b(z,-) — b(-, ) be the Jacobian of the mdp(z) defined in[(b) (se€ [5.]4]). Notice
that if > 0, thenF, has the same positivity pattern & and thus is irreducible whenevér is.
Moreover, whenr = e is a solution to[{]L), then the all-ones vectors of suitabieatision solve[(12)
and [I3), thus the Perron vector-based iteration can béealtpl the reduced problems as well.

5. An alternative characterization of minimality

The following theorem provides a practical criterion to ckéhe minimality of a solution.

Theorem 2. Letx > 0 be a solution of(I]) and assume thak is irreducible. ThenF, is an M-matrix
if and only ifz is minimal.

Proof The implication ¢* minimal) = (F.. is an M-matrix) has been proved inl [4]. We prove the
converse here. The proof is split in two different argumeatsording to whetheF is a singular or
nonsingular M-matrix.

Let F be a nonsingular M-matrix, and I&tbe another nonnegative solution; we need to prove that
T — x > 0. From the Taylor expansion @& (x) (and the fact that”’ < 0) we have

0=F(z)=F(z)+F.(z—z)+ %F;’(;E —x,%—1x) < F.(T— ),
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ON THE SOLUTION OF AN EQUATION ARISING IN MBTS 7

thatis,F!(z — x) > 0. It suffices to multiply by(F)~! > 0 to getz — = > 0, as needed.

Let now F, be a singular M-matrix. Suppose thatis not minimal, andc* < « is the minimal
solution to [(1). ThenF,. = F. is a (singular or nonsingular) M-matrix, by the converselinggion
of this theorem. Thus, by the properties of M-matricBS must be a nonsingular M-matrix, which is
a contradiction.

d

Notice that this characterization of minimality allows tediice easily the fact, claimed above, that
the solutiore is minimal only in the subcritical and critical cases.

6. On the limit of the Perron iteration

The following result shows that, under reasonable asswmgtithe limit of the Perron vector-based
iteration is the minimal solution of11).

Theorem 3. Suppose thak is irreducible, and thatr* > 0. Suppose that the Perron iteratiqiQ),
with normalizing conditior{11), converges to a vectar* such thaty* < e. Then,z = e — y* is the
minimal solution of(T]).

Proof Let us first prove that the spectral radiusff- is 1. The iterates of the Perron iteration satisfy

Mot 1Yet1 = Hy, Yy, (16a)
W' (Yrr1 — Hy,p k1) = 0. (16b)

Taking the limit ask — oo in (@6), we get
Ay* = Hyy", (17a)
w’ (y* — Hy-y*) = 0. (17b)

Notice that\* is well-defined, as it may be defined as the common ratio betweecomponents of
H,-y* and those of*. We left-multiply (I7&) byw? to getw” (\*y* — H,-y*) = 0, which, compared
to (I7D), tells us thax* = 1. In particular, this implies that = e — y* is a solution of[(Il), as we may
verify directly by back-substitution.

Moreoverp(H,-) =1, and thusl — H,« = I — b(e — y*,-) — b(-, e) is a singular M-matrix. Thus
the Z-matrixF, = I — b(e —y*,-) = b(-,e —y*) > I — b(e — y*,-) — b(-, e) is an M-matrix, too. By
Theoreni 2, this implies that = e — y* is minimal.

O
7. The Perron—Newton method

We may also apply Newton’s method for the solution[df (9).

Copyright(© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra AppR000;00:1-6
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8 D.A. BINI, B. MEINI, F. POLONI

We first recall the following result from [1], which provides explicit form for the Jacobian of the
iteration mapG(y) defining the iteratior (10) with the normalizatidn{11), .e

G(y) = the Perron vector off,,, normalized s.tw” (G(y) — Hg(,)G(y)) = 0.

Theorem 4. Lety be such thaid, is nonnegative and irreducible. Let= G(y), and letv be such
thatv” H, = AT, whereX = p(H,). Then the Jacobian of the mapat y is

T T
uoy Uv
where
aip = wT(I —ble—u,-) —b(-,e —u))

and the symbol denotes the Moore—Penrose pseudo-inverse.

With the aid of this formula, we may define the Perron—Newtathud for the solution of (1) as in
Algorithm[d.

input: the bilinear formb (note thatz is not necessary — in fact it can be deduced from
e=a+b(ee))
input: the normalization vectar > 0 (a good choice is taking the Perron vectodf, seel[1])
Y6
while a suitable stopping criterion is not satisfield
u+ G(y);
J + JG, (computed usind (18));
yey— (I —=J) y—u);
end
if 0 <y <ethen
T < €e— 1/,
else
(error: no convergence);

end

Algorithm 1: The Perron—Newton algorithm

A step of Newton’s method basically requires a step of thedPerector-based fixed-point iteration
associated witH {9), followed by the computation of a Mo&errose pseudoinverse and the solution
of a linear system. Thus its cost is larger than, but still parable to, the cost of a step of the Perron
vector-based functional iteration. This is compensatetthibyact that the Newton method has quadratic
convergence, and thus requires less iterations.

The convergence properties of the Perron—Newton metharldee-to-critical problems are similar
to those of the Perron vector-based functional iteration.diose-to-critical problems one ha$ = e,
thereforep(JG,-) ~ 0. Hence, by the Newton—Kantorovich theorem [7] there is eogence for
sufficiently close-to-critical problems. The proof of Tmem[3 can be easily adapted to show that
the limit point must correspond to the minimal solution @ (L0 < y* < e. Moreover, since
p(JGy+) = 0, the matrix to invert is well-conditioned and— G(y) has a simple zero.

Copyright(© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra AppR000;00:1-6
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ON THE SOLUTION OF AN EQUATION ARISING IN MBTS 9

8. On the choice of the bilinear forin

Equation[(1), and thus its solution, depend only on the catadformb(¢,¢) := B(t ® t); however,
there are different ways to extend it to a (nonnecessaritynsgtric) bilinear formb(s,¢). Namely,
for eachi and eachj # k, we may alter simultaneously;, andb;s;, as long as their sum remains
invariant, and they both remain positive. For example, wg awétch the two terms in every such pair,
obtaining the bilinear form” (s, t) := b(t, s).

Some of the solution algorithms depend essentially on tluécehof the bilinear extension: for
instance, the two versions of tlweder algorithm. It is easy to see thdil (3) appliedid coincides
with (@) applied tob, and vice versa. Instead, in the classical Newton's metBhdtife bilinear form
appears only in the expressidisy, -) + b(-, xx) andb(xy, 21 ), which are unaffected by this change.
Thus the classical Newton method stays the same no mattehwHhinear extension we choose.

On the other hand, one can see that the Perron-vector bassitbhal iteration and its Newton based
version do depend on the bilinear extension, and their cgevee speed is affected by this choice.
The expression of the bilinear form ultimately reflects a siod) aspect of the problem. While in the
original definition of a branching process an individualtsphto two new ones in two different states,
it is often convenient to identify one as the “mother” and asdhe “child”, even if this distinction is
artificial. In fact, we can safely redefine who is the mothet eumo is the child, as long as we do not
change the total probability that an individual in statgenerates two offsprings in stateandk. This
corresponds exactly to changing the bilinear fdérin the described way.

Among the possibilities for the modificationsigfwe list the following.

Transposition b7 (s,t) := b(t, s)
Symmetrization b%(s,t) := 3 (b(s,t) + b7 (s,t))
Desymmetrization 1
bij + by ifj<k
(bDl)ijk = bijk If j = /{
0 if j >k
Desymmetrization 2
bijr + by if 5>k
(bDQ)ijk = (bT)Dl = bijk If ] = ]{
0 if j <k
In the following section, we report numerical experimerggprmed with the above bilinear extensions
and compare the computational times. We do not have a defimiéisult on which choice gives the

best convergence: as is the case withdhder algorithm, the optimal bilinear extension may vary in
different instances of the problem.

9. Numerical experiments
We performed numerical experiments to assess the spee@ @irdposed methods. The tests were
performed on a laptop (Intel Pentium M 735 1.70Ghz) with MlaiR2010a and considered two sample

parameter-dependent problems.
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Figure 1. CPU time vs. paramet&for P1 — lower=better

P1 a small-size Markovian binary tree with branches of vanjergth, described ir_[5, Example 1].
Itis an MBT of sizeN = 9 depending on a paramet&r which is critical forA ~ 0.85 and

supercritical for larger values of

P2 arandom-generated MBT of larger sizZ€ & 100). It is created by generating a random bilinear
form b, choosing a suitable so thata + b(e, €) = Ke for somel, and then scaling bothandb
in order to eliminatds. We report the Matlab code used for its generation in Algon@. Larger

input: the sizeN of the MBT and a parameter lambda&
e=ones(N,1);

rand(’ state ’,0);

b=rand(N,N:N);

K=max(bxkron(e,e))+lambda;

a=Kxe—b«kron(e,e);

a=al/K;

b=b/K;

Algorithm 2: Generating a random MBT

choices of the parametarincrease the values of i.e., the probability of immediate death, and
thus enlarge the extinction probability making the proa#sser to critical. WithV = 100, the

process is critical foA ~ 4920.

Figure[1 shows a plot of the computational times for classieavton and the two Perron vector-
based methods for different values of the paramet&epth, order and thicknesses are not reported in
the graph as they are much slower than these methods, adaiso by the experiments inl[5]. While
in close-to-critical cases the time for CN has a spike, tresdar PN and Pl seems to decrease. While

Copyright(© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra AppR000;00:1-6
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ON THE SOLUTION OF AN EQUATION ARISING IN MBTS 11
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Figure 3. Number of steps needed for the Perron iteratioR fowith several variants of the bilinear form

having in theory worse convergence properties, the Peteoation is faster than the Perron Newton
method: the additional overhead of the pseudoinverse atideofomputation of both left and right
dominant eigenvector more than offsets the increased cgpenee rate.

Figure[2 shows the corresponding plot for the larger probdRgmWe point out that two different
methods were used to compute the Perron vectors in the tvisbgmns. For P2, we use eigs, which is
based on an Arnoldi method[8]. On the other hand, for P1, dtied really small size of the problem,
it is faster to compute a full eigenvector basis with eig drehtselect the Perron vector.

With this choice, both the Perron iteration and Perron—Newmethod are faster than the classical
Newton method on this larger-size problem, in the closeritical region.
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Figure 4. Number of steps needed for the Perron iteratioR 26mith several variants of the bilinear form

Figure[3 reports the number of iteration (which essentigityws as the CPU time) for the Perron
iteration on P1 with several alternative bilinear forms igglent tob. We see that among the two
possible “branch switches”, in this example the iteratigthw converges faster than the one with.
Clearly this cannot be a general result: due to the invojubature of this transposition operation, if
we started withh := 57, then the faster choice would have bé&n= (»”)” = b. Thus we cannot infer
a rule for telling which of the two is preferable. Similarlyjs impossible to do a proper comparison
amongb”! andBP2. On the other hand, an interesting result is that the pedioga of the iteration
with b° seems to be on par with the better of the two.

Figure[4 reports the same comparison for the problem P2. @hdts are less pronounced than on
the previous example: since the entries of the bilinear forane generated randomly, the difference
between the “left” and “right” branches of the binary tre@shl be less marked than in P1, where the
two directions are intentionally unbalanced. Nevertheldse symmetrized bilinear form consistently
yields slightly lower iteration counts.

Therefore, based on these results, we suggest to apply trtenReration and Newton methods on
the symmetrized bilinear form instead of the original one.

10. Conclusions

In this paper we presented several possible implementadidants of the Perron vector-based iteration
introduced in[[1]. A Newton method based on the same forraradf the problem is slightly less
effective than the original iteration, although it maimtgithe same good convergence properties
for close-to-critical problems. Moreover, we highlightettiact that there is a family of possible
modifications to the bilinear form that alter the form of solution algorithms, but not the anaji
equation[(ll) and its solution. One of these modificatiors symmetrization, seems to achieve better
results than the original formulation of the numerical aitjons.

Moreover, we present a couple of theoretical results on i@ti@dvector equations that show how
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to ensure that the obtained solution is the desired one, awdddeal with the problems in which an
irreducibility assumption is not satisfied.
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