Network Analysis with matrices

For us a Network is an undirected, unweighted graph G with N
nodes.

Usually represented through a symmetric adjacency matrix
Ac RNXN

Many different centrality measures
> deg(i) = Zszl ajj = (Ae); is the degree of node i

> eigenvector centrality f; = /\% J-N:1 ajf; = (/\%Af) , where \;
1
and f is the Perron-Frobenius eigenpair.




Centrality measures

For any positive integer k, A*(i, ) counts the number of walks of
length k in G that connect node / to node j.

A walk is an ordered list of nodes such that successive nodes in the
list are connected. The nodes need not to be distinct.

The length of a walk is the number of edges that form the walk.




Centrality measures
Katz measure
N oo
ki=Y_> oA =((I—aA)™" = De);
j=1k=1

We can introduce another centrality measure

c(i) = (exp(A))ii

where the matrix function exp(A) is defined as

1 1 1
exp(A):I+A+§A2+§A3+EA4+...

c(f) accounts for the number of walks of any length from i to i,
penalizing long walks respect to shorter ones.




Communicability and Betweenness

Communicability :The idea of counting walks can be extended to
the case of a pair of distinct nodes, i and j.

C(iJ) = (exp(A))jj
Betweenness : How does the overall communicability change when
a node is removed?
Let A — E(r) the adjacency matrix of the network with node r
removed

1 exp(A)ij — exp(A— E(r));
3 P(A) p( (r))

B(r) = (N-1)2—(N-1) i£j itrjtr (eXp(A))ij




f-centrality

We can extend the concept of centrality/communucability to
c(i) = %21 ck(AX);i. Adding the coefficient ¢ if the series is
convergent for any adjacency matrix A, taking

fF(x) = > ax,a >0
k=0
we can define
» f-centrality as c(i) = f(A);i
» f-communicability as C(i,j) = f(A)j




f-centrality

We can express A in terms of its spectrum (A1 > A2 < --+ > Ay
A= ZLV:1 )\kaXkT so we have
> f-centrality
= > F) (1)),
k=1
» f-communicability

C(i,j) = Zf M)k (1) %1 ()

We can for example take the functlon

r(x) = (1— Ni 1)_1

In the case of large and sparse networks, A\ € [—(N +2), N — 2],
and




Graph Laplacian and Spectral clustering

Problem : partition nodes into two groups so that we have high
intra-connection and low inter-connections

Let x € RN be an indicator vector x; = 1/2 if i belongs to the first
cluster, x; = —1/2 if i otherwise.

counts the number of edges through the cut.
Relax the problem

min Z(x, — xj)%a;;

XERN:[x][2=1 3", xi=




Let D = diag(deg(i)), we have

min xT(D - A)x.
x€RN:||x][2=1 Zix,-:O
The matrix D — A is colled the Graph Laplacian

» (D — A)e =0 so 0 is eigenvalue and the corresponding
eigenvector is e

» D — A has nonegative eigenvalues, and the algebric
multiplitity of ;3 = 0 is the number of connected components
of the graph

> if the graph is connected 0 = 1 < pp < -+ <y with
eigenvectors e = vi, o, ... vy, the v, solves the optimization
problem

Vo = argmin xT(D — A)x.
xERN:[|x]|2=1 Zix,-:O

v» is called the Fiedler vector of the graph.




Fiedler vector

The Fiedler vector can be the used to
» cluster nodes into two sets, va(i)va(j) > 0, i,/ belongs to the
same cluster.
» reordering nodes in such a way i <j = wa(i) < va())
> o is big iff G has not good clusters
> up is smal iff G has good clusters
Graph drawing: use spectral coordinates (v»(i), v3(i)) to draw the

graph
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Web Graph
The Web is seen as a directed graph:

» Each page is a node

» Each hyperlink is an edge
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Google's PageRank

> Is a static ranking schema
> At query time relevant pages are retrieved

The ranking of pages is based on the PageRank of pages
which is precomputed

v

v

A page is important if is voted by important pages

The vote is expressed by a link

v




PageRank

» A page distribute its importance equally to its neighbours

» The importance of a page is the sum of the importances of
pages which points to it

i
= Z outdeg(/)

2

P is row stochastic, ZJ'N:1 pij = 1.

000 1 0 0 0 0 1 0 0
00 0 0 O 0 0 0 0 0
o1 0 0o 1| P = o 1/2 o 0o 1/2
1 0 1 0 0 /2 0 1/2 0 0
11 0 1 0 /3 1/3 0 1/3 0




It is called Random surfer model

The web surfer jumps from page to page following hyperlinks. The
probability of jumping to a page depends of the number of links in
that page.

Starting with a vector 70, compute

m = 3wy, py=
i€Z(j)

-
outdeg(/)




It is called Random surfer model

The web surfer jumps from page to page following hyperlinks. The
probability of jumping to a page depends of the number of links in
that page.

Starting with a vector 70, compute

m = 3wy, py=
i€Z(j)

_
outdeg(/)

Equivalent to compute the stationary distribution of the Markov
chain with transition matrix P.




It is called Random surfer model

The web surfer jumps from page to page following hyperlinks. The
probability of jumping to a page depends of the number of links in
that page.

Starting with a vector 70, compute

m = 3wy, py=
i€Z(j)

-
outdeg(/)

Equivalent to compute the stationary distribution of the Markov
chain with transition matrix P.

Equivalent to compute the left eigenvector of P corresponding to
eigenvalue 1.




PageRank

Two problems:
» Presence of dangling nodes
» P cannot be stochastic
» P might not have the eigenvalue 1
» Presence of cycles

» The random surfer get trapped
» more than an eigenvalue equal to the spectral radius




Perron-Frobenius Theorem

Let A > 0 be an irreducible matrix

> there exists an eigenvector equal to the spectral radius of A,
with algebraic multiplicity 1

> there exists an eigenvector x > 0 such that Ax = p(A)x.

» if A> 0, then p(A) is the unique eigenvalue with maximum
modulo.

The same as the ergoodic theorem for Markov chians




PageRank

Presence of dangling nodes

P=P+dv’

) 1 if page i is dangling o _
di = { 0 otherwise vi=1/m

0O 0 1 0 0 0o 0 1 0 0
o 0 0 0 0 |_ 1/5 1/5 1/5 1/5 1/5
P=| 0 12 0 0 1/2|P=| 0 1/2 0 0 12
12 0 1/2 0 0 12 0 1/2 0 0
1/3 1/3 0 1/3 0 1/3 1/3 0 1/3 0




PageRank

Presence of cycles
Force irreducibility by adding artificial arcs chosen by the random
surfer with “small probability” «.

P=(1-a)P+aev,

o o 1 0 o 1/5 1/5 1/5 1/5 1/5
" /5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5
P = (1 — a) 0 12 0 0 12 | +a| 15 15 15 1/5 1/5
12 0 1/2 0 0 15 1/5 1/5 1/5 1/5
/3 1/3 0 1/3 0 15 1/5 1/5 1/5 1/5

Typical values of « is 0.15.




A toy eample

0.05 0.05 0.8 0.05 0.05
02 02 02 02 02
P=1| 005 0425 0.05 0.05 0.425
0.425 0.05 0.425 0.05 0.05
03 03 0.05 03 0.05

Computing the largest left eigenvector of P we get
7T ~[0.39,0.51,0.59,0.29, 0.40],
which corresponds to the following order of importance of pages

[3,2,5,1,4].




PageRank

» P is sparse, P is full.

» The vector yT = xT P, for x > 0, such that ||x||; = 1 can be
computed as follows

yT = Q-a)x'P
7= Xl =iyl =1 =iyl
y = y+ov.

» The eigenvalues of P and P are related:

M(P)=M(P)=1, N(P)=(1—-a))\(P),j>1.

> For the web graph [A2(P)| < (1 — a), A2(P) = (1 — a) if the
graph has at least two strongly connected components

Generally solved by the power method: rate of convergence
|A2|/[Adl-




