
Network Analysis with matrices
For us a Network is an undirected, unweighted graph G with N
nodes.
Usually represented through a symmetric adjacency matrix
A ∈ RN×N

Many different centrality measures
I deg(i) =

∑N
j=1 aij = (Ae)i is the degree of node i

I eigenvector centrality fi = 1
λ1

∑N
j=1 aij fj =

(
1
λ1

Af
)

i
, where λ1

and f is the Perron-Frobenius eigenpair.



Centrality measures

For any positive integer k, Ak(i , j) counts the number of walks of
length k in G that connect node i to node j .

A walk is an ordered list of nodes such that successive nodes in the
list are connected. The nodes need not to be distinct.

The length of a walk is the number of edges that form the walk.



Centrality measures
Katz measure

ki =
N∑

j=1

∞∑
k=1

αk(A)k
ij = ((I − αA)−1 − I)e)i

We can introduce another centrality measure

c(i) = (exp(A))ii

where the matrix function exp(A) is defined as

exp(A) = I + A + 1
2A2 + 1

3!A3 + 1
4!A4 + · · ·

c(i) accounts for the number of walks of any length from i to i ,
penalizing long walks respect to shorter ones.



Communicability and Betweenness
Communicability :The idea of counting walks can be extended to
the case of a pair of distinct nodes, i and j .

C(i , j) = (exp(A))ij

Betweenness : How does the overall communicability change when
a node is removed?
Let A− E (r) the adjacency matrix of the network with node r
removed

B(r) = 1
(N − 1)2 − (N − 1)

∑
i 6=j,i 6=r ,j 6=r

exp(A)ij − exp(A− E (r))ij
(exp(A))ij



f -centrality
We can extend the concept of centrality/communucability to
c(i) =

∑∞
k=1 ck(Ak)ii . Adding the coefficient c0 if the series is

convergent for any adjacency matrix A, taking

f (x) =
∞∑

k=0
ckxk , ck ≥ 0

we can define
I f -centrality as c(i) = f (A)ii
I f -communicability as C(i , j) = f (A)ij



f -centrality
We can express A in terms of its spectrum (λ1 ≥ λ2 ≤ · · · ≥ λN
A =

∑N
k=1 λkxkxT

k so we have
I f -centrality

c(i) =
N∑

k=1
f (λk)(xk(i))2,

I f -communicability

C(i , j) =
N∑

k=1
f (λk)xk(i)xk(j).

We can for example take the function

r(x) =
(
1− x

N − 1

)−1

In the case of large and sparse networks, λk ∈ [−(N + 2),N − 2],
and

c(i) =
N∑

k=1

N − 1
N − 1− λk

xk(i)2,



Graph Laplacian and Spectral clustering
Problem : partition nodes into two groups so that we have high
intra-connection and low inter-connections

Let x ∈ RN be an indicator vector xi = 1/2 if i belongs to the first
cluster, xi = −1/2 if i otherwise.

N∑
i=1

N∑
j=1

(xi − xj)2aij

counts the number of edges through the cut.
Relax the problem

min
x∈RN :‖x‖2=1

∑
i xi =0

N∑
j=1

(xi − xj)2aij



Let D = diag(deg(i)), we have

min
x∈RN :‖x‖2=1

∑
i xi =0

xT (D − A)x .

The matrix D − A is colled the Graph Laplacian
I (D − A)e = 0 so 0 is eigenvalue and the corresponding

eigenvector is e
I D − A has nonegative eigenvalues, and the algebric

multiplitity of µ1 = 0 is the number of connected components
of the graph

I if the graph is connected 0 = µ1 < µ2 ≤ · · · ≤ µN with
eigenvectors e = v1, v2, . . . vN , the v2 solves the optimization
problem

v2 = argmin
x∈RN :‖x‖2=1

∑
i xi =0

xT (D − A)x .

v2 is called the Fiedler vector of the graph.



Fiedler vector
The Fiedler vector can be the used to

I cluster nodes into two sets, v2(i)v2(j) > 0, i , j belongs to the
same cluster.

I reordering nodes in such a way i ≤ j =⇒ v2(i) ≤ v2(j)
I µ2 is big iff G has not good clusters
I µ2 is smal iff G has good clusters

Graph drawing: use spectral coordinates (v2(i), v3(i)) to draw the
graph

Spectral Graph Drawing 
Plot vertex     at 
draw edges as straight lines  

[Hall ‘70] 
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Web Graph
The Web is seen as a directed graph:

I Each page is a node
I Each hyperlink is an edge

G =


0 0 1 0 0
0 0 0 0 0
0 1 0 0 1
1 0 1 0 0
1 1 0 1 0





Google’s PageRank

I Is a static ranking schema
I At query time relevant pages are retrieved
I The ranking of pages is based on the PageRank of pages

which is precomputed
I A page is important if is voted by important pages
I The vote is expressed by a link



PageRank

I A page distribute its importance equally to its neighbours
I The importance of a page is the sum of the importances of

pages which points to it

πj =
∑

i∈I(j)

πi
outdeg(i)

G =

 0 0 1 0 0
0 0 0 0 0
0 1 0 0 1
1 0 1 0 0
1 1 0 1 0

P =

 0 0 1 0 0
0 0 0 0 0
0 1/2 0 0 1/2

1/2 0 1/2 0 0
1/3 1/3 0 1/3 0


P is row stochastic,

∑N
j=1 pij = 1.



It is called Random surfer model

The web surfer jumps from page to page following hyperlinks. The
probability of jumping to a page depends of the number of links in
that page.

Starting with a vector π(0), compute

π
(k)
j =

∑
i∈I(j)

π
(k−1)
i pij , pij = 1

outdeg(i)

Equivalent to compute the stationary distribution of the Markov
chain with transition matrix P.
Equivalent to compute the left eigenvector of P corresponding to
eigenvalue 1.
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PageRank
Two problems:

I Presence of dangling nodes
I P cannot be stochastic
I P might not have the eigenvalue 1

I Presence of cycles
I The random surfer get trapped
I more than an eigenvalue equal to the spectral radius



Perron-Frobenius Theorem
Let A ≥ 0 be an irreducible matrix

I there exists an eigenvector equal to the spectral radius of A,
with algebraic multiplicity 1

I there exists an eigenvector x > 0 such that Ax = ρ(A)x.
I if A > 0 , then ρ(A) is the unique eigenvalue with maximum

modulo.
The same as the ergoodic theorem for Markov chians



PageRank
Presence of dangling nodes

P̄ = P + dvT

di =
{

1 if page i is dangling
0 otherwise vi = 1/n;

P =


0 0 1 0 0
0 0 0 0 0
0 1/2 0 0 1/2

1/2 0 1/2 0 0
1/3 1/3 0 1/3 0

 P̄ =


0 0 1 0 0
1/5 1/5 1/5 1/5 1/5
0 1/2 0 0 1/2
1/2 0 1/2 0 0
1/3 1/3 0 1/3 0





PageRank
Presence of cycles
Force irreducibility by adding artificial arcs chosen by the random
surfer with “small probability” α.

P̂ = (1− α)P̄ + αevT ,

P̂ = (1− α)

 0 0 1 0 0
1/5 1/5 1/5 1/5 1/5

0 1/2 0 0 1/2
1/2 0 1/2 0 0
1/3 1/3 0 1/3 0

+ α

 1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5

 .
Typical values of α is 0.15.



A toy eample

P̂ =


0.05 0.05 0.8 0.05 0.05
0.2 0.2 0.2 0.2 0.2
0.05 0.425 0.05 0.05 0.425
0.425 0.05 0.425 0.05 0.05
0.3 0.3 0.05 0.3 0.05


Computing the largest left eigenvector of P̂ we get

πT ≈ [0.39, 0.51, 0.59, 0.29, 0.40],

which corresponds to the following order of importance of pages

[3, 2, 5, 1, 4].



PageRank

I P is sparse, P̂ is full.
I The vector yT = xT P̂, for x ≥ 0, such that ‖x‖1 = 1 can be

computed as follows

yT = (1− α)xT P
γ = ‖x‖1 − ‖y‖1 = 1− ‖y‖1,
y = y + γv .

I The eigenvalues of P̄ and P̂ are related:

λ1(P̄) = λ1(P̂) = 1, λj(P̂) = (1− α)λj(P̄), j > 1.
I For the web graph |λ2(P̂)| ≤ (1− α), λ2(P̂) = (1− α) if the

graph has at least two strongly connected components

Generally solved by the power method: rate of convergence
|λ2|/|λ1|.


