Lecture: Image deblurring and denoising

Gianna M. Del Corso

PhD-course Dipartimento di Informatica, Universita di Pisa, Italy

January 16-25th 2019



» Digital images are matrices (tensors) where each entry
contains the intensity of the corresponding pixel (or a pointer
to a RGB map of colors)

» Blur occurs in the process of recording

Image deblurring is the process of recover the original image using
a mathematical model of the blurring process

Informations about lost details is hidden but can be recovered
knowing the blurring function

Because of the noise no hope to fully recover the exact image




Blur in images

Blurring always arise: it is unavoidable that scene information
contaminates neighboring pixels.
Blur within the camera

» Camera lens out of focus

> Lens not perfectly crafted (aberrations)

Blur outside the camera

» Motion of camera/object during exposure

» Outside events such as atmospheric turbolence for
astronomical images




Errors in Digital Images

Digital images always are affected by errors (noise)
» false light, defects in the recoding process, analog-to-digital
conversion

» truncation errors (quantization): integer approximation of a
continuous quantity

> Noise generated during the conversion of the light to an
electrical signal

» Short noise: a type of electronic noise due to the discrete
nature of electric charges




Errors in Digital Images

Digital images always are affected by errors (noise)
» false light, defects in the recoding process, analog-to-digital
conversion (salt-and-pepper)

» truncation errors (quantization): integer approximation of a
continuous quantity (uniform noise)

> Noise generated during the conversion of the light to an
electrical signal (Gaussian noise)

» Short noise: a type of electronic noise due to the discrete
nature of electric charges (Poisson noise)

We have only statistical information about the noise




Modelling the blurring process

We need a mathematical model relating the blurred image to the
true image

[P.C.Hansen-Nagy-O'Leary]
X € R™*" original true image
B € R™*" blurred image




A simple model

A simple case is when the blurring of the columns in the image is
independent of the blurring of the rows.

AC c Rmxm7Ar c Ran
AXAT =B

> When left multiply by A we are applying the same vertical
blurring to the columns of X

» When right multiply by A, we are applying the same
horizontal blurring to the rows of X

» No matter if we apply first the blurring of columns or rows

(ACX)A;,— = AC(XArT)




Deblurring
If

AXAl =B
then

_ A-lpa-T
Xnaive = Ac " BA;
Solving linear systems instead

AY
XAT

B
Y

This is what we get

The noise completely destroies the image



Why does the naive approach fail?

» X exact image (unknown)

> Beayact = AcXA] also unknown!

What we have is
B = Bexact + E

where E represent the noise in the recorded image.

Here we assumed that the noise is additive and statistically
uncorrelated with the image.

E is unknown as well, only statistical properties are known.




Why does the naive approach fail?
We have

X

naive = Ac 'BA; T = AN (Bexact + E)A; T = X+ AZTEATT

The quantity AZLEA-T is called inverted noise, if it has larger
elements than X it will dominate the solution.

That is indeed the typical situation

Since B = A.XAT + E we have

Xnaive = X
[ Xnaive = X< < cond(Ac)cond(A,)
X1l

IEllF
IAXAT |’

cond(A) = o1/,




Linear model of blurring

We assume that the model of the blurring process is linear
sharp

Usually this is a good approximation of the reality, and makes our
life easier!

Our model B = A XA/ far too simple
If vectorize the image B, we have

bexact = Vec(Bexact) = VeC(ACXArT) =(Ar® Ac)x
A

bexact = Ax, e = Vec(E)
we have
b = bexact +€




Why does the naive approach fail?

From the linear model
Ax=b

we have
we expect failure in reconstructing the true image because of the

inverse noise
As we observed

Xnaive = A l(bexact +€) =x+Ale




SVD analysis
Consider the SVD of Ac N x N

N
A=UzV' = ZO'iUiViT
i=1

then =
A=y lyT = ; U—iv,-u,-T
Then NoT
Xnaive = A7lb = z; u{;’_bVi

and the inverted noise contribution is




Why does the error term dominate?

Noule
A_le:Z —V;
i=1

Oij

> vectors u; are such that \u}')| <1

> quantities |u/ e| are small for all i

. . 1 1 1
> 0120222 0p, implies = < ... < - < 20

> the coefficient # will greately magnifying the component of

the error uﬁe

» the computed solution will have a large contribution in the
direction of vy.




Looking at singular vectors

» Typically we have that singular vectors associated to small
singular values represent higher frequency information.

> u; and v; will have more and more sign changes




Why does the error term dominate?

N T
u' b

Alb=> ——v;
2
i=1

u’b . . . . .
» When —/— is small, the solution has a little contribution from
Vi

» When o; is small hight contribution from highly oscillating
vectors, the error is amplified and the reconstructed image are
dominated by high frequencies




A first improvement

We can obtain a better reconstruction of the true image leaving
out high frequencies

We can truncate the SVD to the k—th term

for some choice of k < N




For the properties of Kronecker products, in our simple example
A=Ar®@Ac= (U, @ U)(Z, @ L)V, @ V)T

less expensive

>> k=50;

>> [Uc, Sc, Vc]=svds(Ac, k);
>> [Ur, Sr, Vrl=svds(Ar, k);
>> Arkinv=Vr*inv(Sr)*Ur’;

>> Ackinv=Vc*inv(Sc)*Uc’;

>> Xk = Ackinv*Bx(Arkinv)’;




The model

In the general case we have to solve
Ax=Db

problem of this kind are called “inverse problems”.

Several difficulties
> Ais large
» A usually ill conditioned

» A may be an imprecise model of the blurring




The Point spread function (PSF)

How do we get the blurring matrix A?

We can perform the following experiment

Point source Point spread function
A single white pixel Image of point source




The Point spread function (PSF)

» Mathematically the point source is described by the vector
X = €.

» The columns of A can be obtained as follows
Ae,- = aj

» We can assemble A moving the point source from the top left
corner to the bottom right, obtaining experimentally all the
columns of A.

Typically PSF is local = the nonzero entries of the PSF are a
few — A has a sparse structure
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