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I Digital images are matrices (tensors) where each entry
contains the intensity of the corresponding pixel (or a pointer
to a RGB map of colors)

I Blur occurs in the process of recording

Image deblurring is the process of recover the original image using
a mathematical model of the blurring process

Informations about lost details is hidden but can be recovered
knowing the blurring function

Because of the noise no hope to fully recover the exact image



Blur in images
Blurring always arise: it is unavoidable that scene information
contaminates neighboring pixels.

Blur within the camera
I Camera lens out of focus
I Lens not perfectly crafted (aberrations)

Blur outside the camera
I Motion of camera/object during exposure
I Outside events such as atmospheric turbolence for

astronomical images



Errors in Digital Images
Digital images always are affected by errors (noise)

I false light, defects in the recoding process, analog-to-digital
conversion

(salt-and-pepper)

I truncation errors (quantization): integer approximation of a
continuous quantity

(uniform noise)

I Noise generated during the conversion of the light to an
electrical signal

(Gaussian noise)

I Short noise: a type of electronic noise due to the discrete
nature of electric charges

(Poisson noise)

We have only statistical information about the noise
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Modelling the blurring process
We need a mathematical model relating the blurred image to the
true image

[P.C.Hansen-Nagy-O’Leary]
X ∈ Rm×n original true image
B ∈ Rm×n blurred image



A simple model
A simple case is when the blurring of the columns in the image is
independent of the blurring of the rows.

Ac ∈ Rm×m,Ar ∈ Rn×n

AcXAT
r = B

I When left multiply by Ac we are applying the same vertical
blurring to the columns of X

I When right multiply by Ar we are applying the same
horizontal blurring to the rows of X

I No matter if we apply first the blurring of columns or rows

(AcX )AT
r = Ac(XAT

r )



Deblurring
If

AcXAT
r = B

then
Xnaive = A−1

c BA−T
r

Solving linear systems instead{
AcY = B
XAT

r = Y

This is what we get

1.3. A First Attempt at Deblurring 5

POINTER. Image deblurring is much more than just a useful tool for our vacation
pictures. For example, analysis of astronomical images gives clues to the behavior of
the universe. At a more mundane level, barcode readers used in supermarkets and by
shipping companies must be able to compensate for imperfections in the scanner optics;
see Wittman [63 ] for more information.

not matter in which order we perform the two blurring operations. The reason for our use
of the transpose of the matrix Ar will be clear later, when we return to this blurring model
and matrix formulations.

1.3  A First Attempt a t Deblurring
If the image blurring model is of the simple form Ac X A^ = B, then one might think that
the naive solution

will yield the desired reconstruction, where Ar ' = (Ar') ' = (Ar ')
r. Figure 1.3  illustrates

that this is probably not such a good idea; the reconstructed image does not appear to have
any features of the true image!

Figure 1.3 . The naive reconstruction of the pumpkin image in Figure 1.2 , obtained
by computing Hnai've — A~'B A~r via Gaussian elimination on both Ac and Ar. Both ma-
trices are ill-conditioned, and the image Xnaive is dominated by the influence from rounding
errors as well as errors in the blurred image B.

To understand why this naive approach fails, we must realize that the blurring model
in (1.1) is not quite correct, because we have ignored several types of errors.

Let us take a closer look at what is represented by the image B. First, let Bexai;t =
Ac X A^ represent the ideal blurred image, ignoring all kinds of errors. Because the blurred
image is collected by a mechanical device, it is inevitable that small random errors (noise)
will be present in the recorded data. Moreover, when the image is digitized, it is represented
by a finite (and typically small) number of digits. Thus the recorded blurred image B is
really given by

(1.2)

The noise completely destroies the image



Why does the naive approach fail?

I X exact image (unknown)
I Bexact = AcXAT

r also unknown!

What we have is
B = Bexact + E

where E represent the noise in the recorded image.

Here we assumed that the noise is additive and statistically
uncorrelated with the image.

E is unknown as well, only statistical properties are known.



Why does the naive approach fail?
We have

Xnaive = A−1
c BA−T

r = A−1
c (Bexact + E )A−T

r = X + A−1
c EA−T

r

The quantity A−1
c EA−T

r is called inverted noise, if it has larger
elements than X it will dominate the solution.

That is indeed the typical situation

Since B = AcXAT
r + E we have

‖Xnaive − X‖F
‖X‖F

≤ cond(Ac)cond(Ar ) ‖E‖F
‖AcXAT

r ‖F
,

cond(A) = σ1/σn



Linear model of blurring
We assume that the model of the blurring process is linear

How do We Model More General Blurring?

We assume throughout this course that the blurring, i.e., the operation of
going from the sharp image to the blurred image, is linear.

1 This assumption is (usually) a good approximation to reality.

2 The assumption makes our life much easier!

3 It is almost always made in the literature and in practice.

This one assumption opens a wide choice of methods!

But our first linear model Ac XAT
r = B is too limited.
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Usually this is a good approximation of the reality, and makes our
life easier!

Our model B = AcXAT
r far too simple

If vectorize the image B, we have
bexact = Vec(Bexact) = Vec(AcXAT

r ) = (Ar ⊗ Ac)︸ ︷︷ ︸
A

x

bexact = Ax, e = Vec(E )
we have

b = bexact + e



Why does the naive approach fail?
From the linear model

Ax = b

we have
xnaive = A−1b

we expect failure in reconstructing the true image because of the
inverse noise
As we observed

xnaive = A−1(bexact + e) = x + A−1e



SVD analysis
Consider the SVD of A ∈ N× N

A = UΣV T =
N∑

i=1
σiuivT

i

then

A−1 = V Σ−1UT =
N∑

i=1

1
σi

viuT
i

Then

xnaive = A−1b =
N∑

i=1

uT
i b
σi

vi

and the inverted noise contribution is

A−1e =
N∑

i=1

uT
i e
σi

vi



Why does the error term dominate?

A−1e =
N∑

i=1

uT
i e
σi

vi

I vectors ui are such that |u(i)
j | ≤ 1

I quantities |uT
i e| are small for all i

I σ1 ≥ σ2 ≥ · · · ≥ σN , implies 1
σ1
≤ · · · ≤ 1

σN−1
≤ 1

σN

I the coefficient 1
σN

will greately magnifying the component of
the error uT

N e
I the computed solution will have a large contribution in the

direction of vN .



Looking at singular vectors

I Typically we have that singular vectors associated to small
singular values represent higher frequency information.

I ui and vi will have more and more sign changes
Reshaped Singular Vectors

A few of the singular vectors for the blur of the pumpkin image. The
“images” shown in this figure were obtained by reshaping the m n ⇥ 1
singular vectors vi into m ⇥ n arrays.
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Why does the error term dominate?

A−1b =
N∑

i=1

uT
i b
σi

vi

I When uT
i b
σi

is small, the solution has a little contribution from
vi

I When σi is small hight contribution from highly oscillating
vectors, the error is amplified and the reconstructed image are
dominated by high frequencies



A first improvement
We can obtain a better reconstruction of the true image leaving
out high frequencies

We can truncate the SVD to the k−th term

xk =
k∑

i=1

uT
i b
σi

vi

for some choice of k < N
Truncation

The reconstruction obtained for the blur of pumpkins by using k = 800
(instead of the full k = N = 412 · 412 = 169 744).

Notice that the computed reconstruction is noticeably better than the
naive solution shown before.
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Better than the computed reconstruction before but far from good



For the properties of Kronecker products, in our simple example

A = Ar ⊗ Ac = (Ur ⊗ Uc)(Σr ⊗ Σc)(Vr ⊗ Vc)T

less expensive

>> k=50;
>> [Uc, Sc, Vc]=svds(Ac, k);
>> [Ur, Sr, Vr]=svds(Ar, k);
>> Arkinv=Vr*inv(Sr)*Ur’;
>> Ackinv=Vc*inv(Sc)*Uc’;
>> Xk = Ackinv*B*(Arkinv)’;



The model
In the general case we have to solve

Ax = b

problem of this kind are called “inverse problems”.

Several difficulties
I A is large
I A usually ill conditioned
I A may be an imprecise model of the blurring



The Point spread function (PSF)
How do we get the blurring matrix A?

We can perform the following experiment
The Point Spread Function (PSF)

We need a precise description of the blurring matrix A.

Point source Point spread function
A single white pixel Image of point source
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The Point spread function (PSF)

I Mathematically the point source is described by the vector
x = ei .

I The columns of A can be obtained as follows

Aei = ai

I We can assemble A moving the point source from the top left
corner to the bottom right, obtaining experimentally all the
columns of A.

Typically PSF is local =⇒ the nonzero entries of the PSF are a
few =⇒ A has a sparse structure
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