
Recap on complex numbers
Complex numbers: objects of the form a + bi , where a, b ∈ R and
i stands for an ‘imaginary’ number such that i2 = −1.

Modulus of a complex number: |a + bi | =
√

a2 + b2.

Complex numbers of modulus 1 can be written as cos θ + i sin θ for
a certain angle θ ∈ [0, 2π] (measured in radians!).

Alternative notation: cos θ + i sin θ = eiθ. Just a convenient
notation, but it hides some nontrivial facts, for instance
ei(θ1+θ2) = eiθ1eiθ2 (follows from high-school trigonometry).

Geometric idea: Multiplication = rotation on the unit circle.

For instance, ei0 = ei2π = 1, and eiπ = −1.

Recap on interpolation
Evaluating a polynomial a(x) = a0 + a1x + · · ·+ an−1xn−1 on n
given points t0, t1, . . . , tn−1: linear map (matrix) Cn → Cn.

1 t0 t2
0 . . . tn−1

0
1 t1 t2

1 . . . tn−1
1

...
...

...
1 tn−1 t2

n−1 . . . tn−1
n−1


︸ ︷︷ ︸

:=V , Vandermonde matrix


a0
a1
...

an−1


︸ ︷︷ ︸

a

=


p(a0)
p(a1)
...

p(an−1)

 =:


b0
b1
...

bn−1


︸ ︷︷ ︸

b

Evaluation: map coefficients 7→ values, b = V a.
Interpolation: map values 7→ coefficients, a = V−1b.

Warning when n is large, often V is ill-conditioned.

Discrete Fourier transform
Let z = e−i 2π

n = cos 2π
n − i sin 2π

n .

Discrete Fourier transform (DFT): evaluation on the n points
1 = z0, z , z2, . . . , zn−1.
Inverse DFT: interpolation on the same points.

Geometrically, these are n equispaced points on the unit circle;
note that zn = 1.
Fourier matrix:

V = F =


1 1 1 . . . 1
1 z1 z2 . . . zn−1

1 z2 z4 . . . z2n−2

...
...

...
1 zn−1 z2n−2 . . . z(n−1)2



Why is DFT interesting?

I It is perfectly well conditioned:

F T F = FF T = nI

(follows from zn = 1 + geometric progression formula).

hence 1√
nF is unitary (complex analogue of orthogonal,

conjugate+transpose instead of transpose) and κ(F) = 1.
I There is a specialized algorithm to compute Fa and

F−1b = 1
nF T b in O(n log n), instead of O(n2) for a ‘standard’

matvec product.
I Applications: polynomial multiplication, structured matrix

multiplication, time series analysis. . .

Fast Fourier Transform
We focus on evaluation, b = Fa (DFT). Interpolation (IDFT) is
analogous, thanks to F−1 = 1

nF T .

Divide-and-conquer: we will reduce one IDFT(2n) to two IDFT(n).

Setup given a vector a = [a0, a1, . . . a2n−1], we wish to evaluate

a(x) = a0 + a1x + · · ·+ a2n−1x2n−1

in z = ei 2π
2n and its powers; we already know how to evaluate a

polynomial of degree < n in ei 2π
n = z2 and its powers.

Fast Fourier Transform: the recursion

a(x) = a0 + a1x + · · ·+ a2n−1x2n−1

= (a0 + a2x2 + · · ·+ a2n−2x2(n−1))
+ x(a1 + a3x2 + · · ·+ a2n−1x2(n−1))

= aev (x2) + xaodd(x2).

where aev , aodd are the polynomials with coefficients taken from
the vectors

aev = [a0, a2, . . . , a2n−2],
aodd = [a1, a3, . . . , a2n−1].

Fast Fourier transform: wrap-up
Input: vector a of length 2n.
1. Using two DFTs of half the size n, compute

c = DFT(aev) =
[
aev (1), aev (z2), aev ((z2)2), . . . , aev ((z2)n−1)

]
,

d =DFT(aodd)=
[
aodd(1), aodd(z2), aodd((z2)2), . . . , aodd((z2)n−1)

]
,

2. For each k = 1, 2, . . . , 2n − 1, compute
a(zk) = aeven(z2k) + zkaodd(z2k), i.e.,

b = [c + z� d, c− z� d],

where z = [1, z , z2, . . . , zn−1], and � is entry-by-entry
product.

Remarks

I This gives rise naturally to an algorithm for n = 2k nodes.
Algorithms for non-powers-of-two are possible, but more
cumbersome. Usually in applications one can get away by
padding the vectors with zeros.

I Variants that use real arithmetic only are possible, but more
cumbersome.

I Usually, roots of unity zk are precomputed.
I Complexity: DFT(2n) = 2DFT(n) + 4n. Standard application

of the ‘master theorem’ gives O(n log n).

Applications of FFT
Application #1: fast product of polynomials (O(n log n)):
Input vectors a and c that contain the coefficients of

a(x) = a0 + a1x + · · ·+ anxn,

c(x) = c0 + c1x + · · ·+ amxm,

Output the vector of coefficients of a(x)c(x), i.e.,

e = [a0c0, a1c0+a0c1, a2c0+a1c1+a0c2, . . . , ancm−1+an−1cm, ancm].
1. Choose a number of nodes N ≥ n + m for DFT (why?).
2. Evaluate b = DFT (a) = [a(z0), a(z1), a(z2), . . . , a(zN−1)]

and d = DFT (c).
3. Compute b� d =

[a(z0)c(z0), a(z1)c(z1), a(z2)c(z2), . . . , a(zN−1)c(zN−1)].
4. Compute e = IDFT (b� d).

Applications of DFT
Application #1b: fast convolution / moving averages: it’s basically
the same thing, i.e.,

[a0c0, a1c0 + a0c1, a2c0 + a1c1 + a0c2, . . . , ancm−1 + an−1cm, ancm].

Application #1c: product with a triangular Toeplitz matrix:
a0 a1 . . . an−1

.
a0 a1

a0




cn−1
...

c1
c0

 =


a0cn−1 + · · ·+ an−1c0

...
a0c1 + a1c0

a0c0


(Non-triangular Toeplitz matrices can be seen as the sum of a
lower + an upper triangular one.)

Signal processing
Quick derivation to connect our presentation with the usage of
FFT in signal processing.

Problem: signal processing
Given n equispaced samples of a certain ‘signal’ (for instance: a
sound wave)

b = [b0, b1, b2, . . . , bn−1],

decompose this signal into a sum of sines/cosines.

Put these numbers along the points z0, z1, . . . , zn−1, where
z = e−i 2π

n = cos 2π
n − i sin 2π

n , and perform IDFT: this returns a
polynomial a(x) such that bk = a(zk), i.e., the bk are obtained by
‘sampling’ this polynomial on n equispaced points on the unit
circle.

Signal processing
Actually, instead of a polynomial

a(x) = a0 + a1x + a1x2 + · · ·+ a n
2
x

n
2 + a n

2 +1x
n
2 +1 + · · ·+ an−1xn−1,

it’s better to think about a rational function

f (x) = a0 +a1x +a1x2 + · · ·+a n
2
x

n
2 +a n

2 +1x−(n
2−1) + · · ·+an−1x−1.

a(x) and f (x) take the same values on x = zk because xn = 1 on
these values of x .

Signal processing
Now, make a change of variable: x = e−iθ. As θ ranges over
[0, 2π], x ranges over the unit circle. So the elements of b are
obtained by sampling at equispaced points on [0, 2π] the function

f (eiθ) = a0 + a1(cos θ − i sin θ) + a2(cos 2θ − i sin 2θ) + . . .

+ a2n−2(cos(−2θ)− i sin(−2θ)) + a2n−1(cos(−θ)− i sin(−θ))

We can simplify this expression using cos(−θ) = cos(θ),
sin(−θ) = − sin(θ); so the coefficient of cos(θ) is a1 + a2n−1, that
of sin(θ) is i(a2n−1 − a1), . . .

