Recap on complex numbers

Complex numbers: objects of the form a + bi, where a, b € R and
i stands for an ‘imaginary’ number such that i = —1.

Modulus of a complex number: |a+ bi| = Va2 + b2.

Complex numbers of modulus 1 can be written as cos 8 + isin 8 for
a certain angle 6 € [0, 27] (measured in radians!).

Alternative notation: cosf + isinf = e’®. Just a convenient
notation, but it hides some nontrivial facts, for instance
el(01+02) — @it 6i% (follows from high-school trigonometry).

Geometric idea: Multiplication = rotation on the unit circle.

For instance, 0 = ¢/2™ = 1, and ™ = —1.

Recap on interpolation

Evaluating a polynomial a(x) = agp + aix + -+ + ap—1x
,tp—1: linear map (matrix) C" — C".

"1 onn

given points ty, t1,. ..

1 to tg tg _1 ao p(ao) bo
1 t t12 tf_ ai B p(al) B b1
i : 2. o : ,
th—1 th_q .. t,_1 dpn—1 p(anfl) n—1
b
a

:=V/, Vandermonde matrix

Evaluation: map coefficients — values, b = Va.
Interpolation: map values — coefficients, a = V" 1b.

Warning when n is large, often V is ill-conditioned.

Discrete Fourier transform

2r
T

i 2r

Let z=¢€e""" = cos =& — isin

Discrete Fourier transform (DFT): evaluation on the n points
1=2022% ..., 21
Inverse DFT: interpolation on the same points.

Geometrically, these are n equispaced points on the unit circle;
note that z" = 1.
Fourier matrix:

1 1 1 1
1 A 22 Zn—1
1 22 4 2n—2

i n;l 2;172 (,1;1)2

Why is DFT interesting?

» It is perfectly well conditioned:

FTF=FFT =nl
(follows from z" =1 4 geometric progression formula).

hence %F is unitary (complex analogue of orthogonal,
conjugate—+transpose instead of transpose) and x(F) = 1.

» There is a specialized algorithm to compute Fa and
F~lb= %fTb in O(nlog n), instead of O(n?) for a ‘standard’
matvec product.

» Applications: polynomial multiplication, structured matrix
multiplication, time series analysis. . .

Fast Fourier Transform

We focus on evaluation, b = Fa (DFT). Interpolation (IDFT) is
analogous, thanks to F~1 = %fT.

Divide-and-conquer: we will reduce one IDFT(2n) to two IDFT(n).
Setup given a vector a = [ag, a1, . . . a2p—1], we wish to evaluate

a(x) =ap+aix+---+ a1 x> 1

. j2m .
in z = ¢e'2n and its powers; we already know how to evaluate a
polynomial of degree < nin e’ = z? and its powers.

Fast Fourier Transform: the recursion

a(x) = ag + arx + - + agp_1x>" 7

= (a0 + axx® + -+ + agp_ox?7)
+ x(ag + a3x® + - + apy_ 1217 Y)
= aey(X?) + Xaodd (X?).

where ae,, aodq are the polynomials with coefficients taken from
the vectors

aev = [a0, 32, ..., 32n-2],

Aodd = [a1,a3,...,an-1]

Fast Fourier transform: wrap-up

Input: vector a of length 2n.
1. Using two DFTs of half the size n, compute

¢ = DFT(ae) = |aa(1), 3e(72), 3 ((2)2), -, 3 ((2)" 1)
d =DFT(0da) =| a0ad(1): 20da(72), 20da((2%)2), - - 20aa((22)"1)]

2. Foreach k=1,2,...,2n— 1, compute
a(zk) = aeven(22k) + Zkaodd(zzk), i.e.,

b=[c+zod,c—z0od],

where z = [1,z,22,...,2"1], and © is entry-by-entry
product.

Remarks

» This gives rise naturally to an algorithm for n = 2 nodes.
Algorithms for non-powers-of-two are possible, but more
cumbersome. Usually in applications one can get away by
padding the vectors with zeros.

P Variants that use real arithmetic only are possible, but more
cumbersome.

» Usually, roots of unity z¥ are precomputed.

» Complexity: DFT(2n) = 2DFT(n) 4 4n. Standard application
of the ‘master theorem’ gives O(nlog n).

Applications of FFT

Application #1: fast product of polynomials (O(nlog n)):
Input vectors a and c that contain the coefficients of

a(x) =ap+ arx + -+ apx",

c(x)=c+ax+- -+ amx™,
Output the vector of coefficients of a(x)c(x), i.e.,

e = [apcp, a1co+aoci, a2co+aic1+apCa, - - -, anCm—1+3an—1Cm, AnCm|-
1. Choose a number of nodes N > n+ m for DFT (why?).
2. Evaluate b = DFT(a) = [a(2°), a(z}), a(2?), ..., a(zV~1)]
and d = DFT (c).
3. Computeb® d =
[a(2°)c(20), a(zY)c(2Y), a(2®)c(2?), ..., a(zN ") c(2N D).
4. Compute e = IDFT (b ® d).

Applications of DFT

Application #1b: fast convolution / moving averages: it's basically
the same thing, i.e.,

[a0co, a1co + aoc1, a2co + a1¢1 + A0 C2, - - -y AnCm—1 + An—1Cm, AnCm]-

Application #1c: product with a triangular Toeplitz matrix:

a a1 ... an-1| [Cr—1 aoCp—1 + -+ an—1¢0
agp ai c1 apC1 + a1
ao Co apCo

(Non-triangular Toeplitz matrices can be seen as the sum of a
lower + an upper triangular one.)

Signal processing

Quick derivation to connect our presentation with the usage of
FFT in signal processing.

Problem: signal processing

Given n equispaced samples of a certain ‘signal’ (for instance: a
sound wave)

b= [b07 bla b27 ey bn—l]a
decompose this signal into a sum of sines/cosines.

Put these numbers along the points 20, z1, ... z" 1,

z=e T = cos2—7r isin 2X, and perform IDFT this returns a
polynomial a(x) such that bk = a(z¥), i.e., the by are obtained by
‘sampling’ this polynomial on n equispaced points on the unit

circle.

where

Signal processing

Actually, instead of a polynomial

9

a(x) = ap +arx+ ax? 4+ anx? + ag+1><5+1 4t a, g x™ !
it's better to think about a rational function

,1)

F(x) = a0+ ax+ax®+-+anxi+anx G4, xh

a(x) and f(x) take the same values on x = z¥ because x” = 1 on
these values of x.

Signal processing

Now, make a change of variable: x = e=". As 6 ranges over
[0,27], x ranges over the unit circle. So the elements of b are
obtained by sampling at equispaced points on [0, 27| the function

f(e%) = ap + a1(cos @ — isin @) + ap(cos 26 — isin26) + ...
+ azp—2(cos(—20) — isin(—260)) + azp—1(cos(—0) — isin(—0))
We can simplify this expression using cos(—6) = cos(#),

sin(—60) = —sin(0); so the coefficient of cos(#) is a; + az,—1, that
of sin(0) is i(azp—1 — a1), - ..

