Vectorization

Goal represent images, and 'linear functions of their pixels', in a linear algebra framework.

Image \iff rectangular array (matrix) of intensity values of pixels, e.g. in [0,1].

In this context, a $m \times n$ image = a vector of data in \mathbb{R}^{mn} .

Vectorization gives an explicit way to map it to a vector.

Vectorization: definition

						x ₁₁
						<i>x</i> ₂₁
						<i>X</i> ₁₁ <i>X</i> ₂₁ :
						_ <i>x</i> _{m1} _
						<i>x</i> ₁₂
vec X = vec	x ₁₁	<i>x</i> ₁₂		<i>X</i> 1 <i>n</i>	:=	X ₂₂
	<i>x</i> ₂₁	X22		X _{2n}		:
	:	:	٠	:		_ <i>X</i> _{m2} _
	X_{m1}	x _{m2}		X _{mn}		:
						<i>X</i> 1 <i>n</i>
						<i>X</i> 2 <i>n</i>
						<i>X</i> 2 <i>n</i> :
						Xmn

Vectorization: comments

Column-major order: leftmost index 'changes more often'. Matches Fortran, Matlab standard (C/C++ prefer row-major instead). Converting indices in the matrix into indices in the vector:

$$(X)_{ij} = (\text{vec } X)_{i+mj}$$
 0-based,
 $(X)_{ij} = (\text{vec } X)_{i+m(j-1)}$ 1-based.

vec(AXB)

First, we will work out the representation of a simple linear map, $X \mapsto AXB$ (for fixed matrices A, B of compatible dimensions).

If $X \in \mathbb{R}^{m \times n}$, $AXB \in \mathbb{R}^{p \times q}$, we need the $pq \times mn$ matrix that maps vec X to vec(AXB).

$$(AXB)_{hl} = \sum_{j} (AX)_{hj} (B)_{jl} = \sum_{j} \sum_{i} A_{hi} X_{ij} B_{jl}$$

$$= \begin{bmatrix} A_{h1}B_{1l} & A_{h2}B_{1l} & \dots & A_{hm}B_{1l} \mid A_{h1}B_{2l} & A_{h2}B_{2l} & \dots & A_{hm}B_{2l} \mid \dots \\ \mid A_{h1}B_{nl} & A_{h2}B_{nl} & A_{hm}B_{nl} \end{bmatrix} \text{vec } X$$

Kronecker product: definition

$$vec(AXB) = \begin{bmatrix} b_{11}A & b_{21}A & \dots & b_{n1}A \\ b_{12}A & b_{22}A & \dots & b_{n2}A \\ \vdots & \vdots & \ddots & \vdots \\ b_{1q}A & b_{2q}A & \dots & b_{nq}A \end{bmatrix} vec X$$

Each block is a multiple of A, with coefficient given by the corresponding entry of B^T .

Definition

$$X \otimes Y := \begin{bmatrix} x_{11}Y & x_{12}Y & \dots & x_{1n}Y \\ x_{21}Y & x_{22}Y & \dots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ x_{m1}Y & x_{m2}Y & \dots & x_{mn}Y \end{bmatrix}.$$

so the matrix above is $B^T \otimes A$.

Properties of Kronecker products

$$X \otimes Y = \begin{bmatrix} x_{11}Y & x_{12}Y & \dots & x_{1n}Y \\ x_{21}Y & x_{22}Y & \dots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ x_{m1}Y & x_{m2}Y & \dots & x_{mn}Y \end{bmatrix}.$$

- ▶ vec $AXB = (B^T \otimes A)$ vec X. (Warning: not B^* , if complex).
- ▶ $(A \otimes B)(C \otimes D) = (AC \otimes BD)$, when dimensions are compatible. Proof: $B(DXC^T)A^T = (BD)X(AC)^T$.
- $(A \otimes B)^T = A^T \otimes B^T.$
- ightharpoonup orthogonal \otimes orthogonal = orthogonal.
- ▶ upper triangular ⊗ upper triangular = upper triangular.
- One can "factor out" several decompositions, e.g.,

$$A \otimes B = (U_1 S_1 V_1^T) \otimes (U_2 S_2 V_2^T) = (U_1 \otimes U_2) (S_1 \otimes S_2) (V_1 \otimes V_2)^T.$$

Examples