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Networks
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Undirected, unweighted in this talk, for simplicity, but most results
generalize.
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Networks and matrices
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A =


0 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

 , P = D−1A =


0 1/3 1/3 1/3

1/2 0 1/2 0
1/2 1/2 0 0
1 0 0 0


D = diagonal matrix with (out)-degrees di .
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Random walks
Model: a random surfer visits a sequence of nodes taking random edges
between them: x0, x1, x2, . . . .

P[xt+1 = j | xt = i ] = Aij
di

= Pij

Even meaningless paths like returning to the state they just came from.

Under mild conditions (e.g., no disconnected parts, dead ends,
periodicity. . . ) P[xt = i ] = πi , for a certain vector π which is the left
eigenvector of P corresponding to 1: πP = π

Interpretation: πi is the average time spent on vertex i .

If A is a symmetric network, π ∼ degrees.

On our running example: π = [3/8, 2/8, 2/8, 1/8].
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Pagerank
The most famous Markov-chain-based centrality measure: Pagerank

Small modification to the previous model: the random surfer follows a link
with probability α, and teleports to another node chosen at random with
probability 1 − α.

This is again a Markov chain model, with

Ppr = αD−1A + (1 − α)1
n11⊤.
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PR =
[
0.3667 0.2459 0.2459 0.1414

]
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Importance
Pagerank works extremely well in identifying well-connected nodes
But importance is in the eye of the beholder.
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Weak ties
Weak ties [Granovetter, ’73]
A weak tie is one of the few, sparse links between well-connected clusters.

Example application: road network: identify bottlenecks.

Pagerank does not work well to identify weak ties: random surfers get
stuck in clusters.
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The Kemeny constant
Probabilistic definition: K the mean time the random walker takes to
reach a state j drawn randomly according the invariant distribution π.

Car-based interpretation: In Random-Walk-Town, each car takes a random
walk on the road network.

After a very long number of time steps, a car breaks down. The node j in
which it breaks down is distributed according to π.

The tow truck sets out for repair starting from the car repair shop. But of
course it travels randomly, too! How long will it take to reach the location
of the broken-down car?

Surprisingly, this time is independent of the location of the car repair shop!
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The Kemeny constant
This quantity can be expressed as a function of the eigenvalues
λ1 = 1, λ2, . . . , λn of P ∈ Rn×n:

Kemeny constant [Kemeny,Snell ’60]

K (P) =
n∑

k=2

1
1 − λk

.

K (P) small ⇐⇒ A well-connected as a network.
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Centralities
We can define a centrality measure for roads (edges) based on the Kemeny
constant: a road is important if its removal causes a large increase in
K (P):

c(e) = K (P̂) − K (P).

Many other centrality measures are available in literature. [Estrada, book ’13]

Main inspirations for us:
[Estrada, D.Higham, Hatano ’09]: communicability betweenness centrality:
variation in communicability centrality caused by the removal of an
edge.
[Crisostomi, Kirkland, Shorten ’11]: Kemeny constant variation in a
Markov chain model of road circulation. Main difference: we do not
want to rely on external traffic data, just on the map.
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Application

Collaboration with our civil engineering department; research question: is
industry location driven by well-connected outskirts?

Large scale maps, e.g., continental Tuscany: 1.56M edges; no traffic data.
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Weak ties
Goal: highlight weak ties [Granovetter, ’73], i.e., crucial edges that separate
(strongly-connected) sections of the map. Example: bridges.

Kemeny-based centrality r=1e-8, filtered
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Challenges
Deal with negative centralities;
Deal with cut-edges;
Make it fast enough for 1.5M road elements.
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Negative centralities

Sometimes, the Kemeny constant decreases when removing an edge!

Example K (left) ≈ 2.54, K (right) = 2.5.
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Not ideal: intuition of “connectedness” says more roads are always better.

This phenomenon is known as Braess paradox [Braess ’68, Kirkland, Zeng ’16].
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Analysis

Kemeny constant

K (P) =
n∑

i=2

1
1 − λi

.

{λ1 = 1, . . . , λn} = eig(D−1A) = eig(D−1/2AD−1/2)︸ ︷︷ ︸
:=W , symmetrized
adjacency matrix

The edge removal changes W in a non-trivial way.
0 1/2 6−1/2 0

1/2 0 6−1/2 1
6−1/2 6−1/2 0 3−1/2

0 0 3−1/2 0

 →


0 0 3−1/2 0
0 0 3−1/2 0

3−1/2 3−1/2 0 3−1/2

0 0 3−1/2 0


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Solution

Idea Replace the removed edge with two loop edges,
[
0 1
1 0

]
→

[
1 0
0 1

]
This changes the model in an easier-to-predict way:

0 1/2 6−1/2 0
1/2 0 6−1/2 1

6−1/2 6−1/2 0 3−1/2

0 0 3−1/2 0

 →


1/2 0 6−1/2 0
0 1/2 6−1/2 1

6−1/2 6−1/2 0 3−1/2

0 0 3−1/2 0


W 7→ Ŵ := W + 1√

di dj
(ei − ej)(ei − ej)T .

Theorem
With this definition, c(e) = k(P̂) − k(P) ≥ 0 after each edge removal.

Proof Standard eigenvalue inequalities for symmetric matrices:
Ŵ ⪰ W =⇒ λ̂i ≥ λi =⇒

∑ 1
1−λ̂i

≥ 1
1−λi

.
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Cut-edges
(Color scheme: blue edge = higher = important.)

Unfiltered
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Problem If the removed edge is a cut-edge, Ĝ is disconnected, λ̂2 = 1, and
K (P̂) = +∞.

On a road network, cut-edges are often unimportant dead ends, but
sometimes they are crucial for connectivity and cannot be ignored.
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Solution
First idea Change the definition to

Kr (P) =
n∑

i=2

1
1 + r − λi

.

for a small regularization factor r > 0, e.g., r = 10−6.

↔ replacing the Laplacian L = D − A with (1 + r)D − A.

↔ adding a small teleport probability à la Pagerank.

Problem Centrality scores cr (e) = Kr (P̂) − Kr (P) of cut-edges are still
≈ r−1, artificially high.

Solution: Filtered Kemeny-based centrality

c̃r (e) =
{1

r − cr (e) e is a cut-edge,
cr (e) otherwise.
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Sign reversal
Why 1

r − cr (e) and not the more natural cr (e) − 1
r ?

Theorem
If e is a cut-edge, 1

r − cr (e) ≥ 0.

Proof Interlacing inequalities: since Ŵ − W ⪰ 0 is rank-1 positive
semidefinite,

1
r = λ̂2 ≥ λ2 ≥ λ̂3 ≥ λ3 ≥ · · · ≥ λ̂n ≥ λn.

Hence

1
r − cr (e) = 1

1+r−λ2
− 1

1+r−λ̂3︸ ︷︷ ︸
≥0

+ 1
1+r−λ3

− 1
1+r−λ̂4︸ ︷︷ ︸

≥0

+ · · · + 1
1+r−λn︸ ︷︷ ︸

≥0

.
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Unfiltered vs. filtered
Unfiltered
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#10 7 Filtered
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Open problem

Filtered Kemeny-based centrality

c̃r (e) =
{1

r − cr (e) e is a cut-edge,
cr (e) otherwise.

Empirical observation
With this definition, centrality scores of cut-edges have centrality scores
comparable with non-cut-edges, and they are sorted correctly in order of
importance.

We still do not have a good explanation for this observation!
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Getting it done
Problem How to reduce the O(n4) cost and make it fast enough for large
graphs?

Theorem [Kemeny ’81, Kirkland ’10, Wang-Dubbeldam-Van Mieghem ’17]

Let w ∈ Rn be any vector such that wT 1 = 1. Then,

K (P) = Trace(S−1) − 1, S = I − P + 1wT .

Since P̂ − P and Ŝ − S is a rank-1 update, we can use the

Sherman–Morrison formula

(S + uvT )−1 − S−1 = −1
1 + vT S−1uS−1uvT S−1

c(e) = K (P̂)−K (P) = Trace
( −1

1 + vT S−1uS−1uvT S−1
)

= −uT S−2v
1 + vT S−1u .
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Final formula
Some more routine manipulations:

Introduce regularization parameter r ;
Use again Sherman–Morrison to invert Sr = (1 + r)I − P + 1wT

Express it in terms of “regularized Laplacian” Lr = (1 + r)D − A;
Choose w to make the problem symmetric

Final formula

c({i , j}) = AijdT (x.2)
1 − Aij(xi − xj)

, y = L−1
r (ei − ej), x = y − dT y

γ
z.

where d = diag(D), z = L−1
r d, γ = dT z + dT 1.
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Practical cost

Final formula

c({i , j}) = AijdT (x.2)
1 − Aij(xi − xj)

, y = L−1
r (ei − ej), x = y − dT y

γ
z.

where d = diag(D), z = L−1
r d, γ = dT z + dT 1.

1 Precompute Cholesky factorization of Lr = (1 + r)D − A, and d, z, γ.
2 To compute c(e) for each edge (possibly in parallel), solve one linear

system with Lr (using the precomputed factorization) and O(n) extra
operations.

On road networks, often n ≈ m ≈ nnz(chol(Lr )) (related to planarity).

Hence all these operations are O(n); but the total cost to compute all
centralities is still O(n2).
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Experiment: a large-scale network
Mainland Tuscany map: n = 1.22M, m = 1.56M, nnz(chol(Lr )) = 3.36M.

1 Precomputation and chol : < 1s.
2 parfor centrality computation: 18 hours.

On a machine with 12 3.4GHz Xeon physical cores.
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Experiment: the bridges of Pisa
Kemeny-based centrality r=1e-8, filtered
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Kemeny-based centrality r=1e-8, filtered
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Road-taking probability in the Pagerank model
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#10 -4 Pagerank on the (unweighted) dual graph
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Conclusions
The Kemeny constant variation works well to highlight bottlenecks
and weak ties.
Connectivity/positivity issues can be solved.
Computationally feasible even in large scale.
Interesting results for our collaborators in civ-eng.

D. Altafini, D. Bini, V. Cutini, B. Meini, F. Poloni. An edge centrality
measure based on the Kemeny constant.
Arxiv:2203.06459. To appear in SIAM J. Matrix Anal. Appl.
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Infectivity
Another application: spreading on networks.

Models certain phenomena such as news, or diseases.

At each time step, the infection may spread from any infected individual to
a non-infected neighbor with probability β (independently on each edge).

1 3

4

No recovering probability, so eventually everyone gets infected (SI model).
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Mean infection time
Idea: a person (node) is important if the infection takes little time to
spread from them to the rest of the network.

MITi = E [time to go from (only i infected) to (everyone infected)]

The spread of the infection is not a random walk: multiple people can be
infected at the same time.
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Different models
More experiments show that it is impossible to reconcile the two models:

1

2

3

4

MRW =


0 3.3333 3.3333 7
2 0 2.6667 9
2 2.6667 0 9
1 4.3333 4.3333 0

 ,

Minf ≈


0 7.7922 7.7766 10.0051

7.7503 0 7.7358 17.7442
7.7383 7.7284 0 17.7707
10.0059 17.7454 17.7628 0

 .

Example: the random walker takes more time to go 2 → 1 than 4 → 1,
but the infection takes less time.
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Problems
Repeat: not a random walk!

A B

Example: clique of k nodes + a lone branch B. The mean infection time
from A to B is 1

β , independently of k, but the mean first passage time of a
random walker from A to B is k2 + k + 1, increasing sharply with k.

In particular, random walk-based centrality measures will not work well
here.

F. Poloni (U Pisa) Centrality measures Aalto 32 / 42



What is the correct model, then?
2n possible states: each individual can be infected or not.

Initial state: one individual i infected, e.g., 0100.

Transition between states according to who gets infected in a time step;
e.g., 0100 → 1110.

This is an absorbing Markov chain: each initial state ̸= 0000 eventually
reaches full infection 1111.

P =
[
T t
0 1

]
T = upper triangular matrix. Interesting layer structure: non-trivial
transitions increase the number of infected individuals.
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The full matrix

∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗
0 0 ∗ ∗ 0 0 ∗ ∗ 0 0 0 0 0 0 0 0
0 0 0 ∗ 0 0 0 ∗ 0 0 0 ∗ 0 0 0 ∗
0 0 0 0 ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0
0 0 0 0 0 ∗ 0 ∗ 0 0 0 0 0 ∗ 0 ∗
0 0 0 0 0 0 ∗ ∗ 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ∗ 0 0 0 0 0 0 0 ∗
0 0 0 0 0 0 0 0 ∗ ∗ 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 ∗ 0 ∗ 0 ∗ 0 ∗
0 0 0 0 0 0 0 0 0 0 ∗ ∗ 0 0 ∗ ∗
0 0 0 0 0 0 0 0 0 0 0 ∗ 0 0 0 ∗
0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ 0 ∗
0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗
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First-hitting time
The Markov chain concept we need here: first-passage time (also:
first-hitting time).

P =
[
P11 P12
P21 P22

]

Lemma
Starting from state j in the first block, the mean time needed to reach the
absorbing state is e⊤

j (I − P11)−11.

To compute the mean infection time MITj for all j , it is enough to solve a
linear system with an upper triangular matrix T = P11. Easy?
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Problem
. . . we need to solve a linear system with an upper triangular matrix T of
size (2n − 2) × (2n − 2).

Even for a relatively small network of n = 100 nodes, this is unfeasible.

Tensor train / DMRG techniques have been used for smaller problems
[Dolgov, Savostyanov ’22]

Idea (explained very shortly): see MIT1001 as the output of a linear
dynamical system under inputs 1, 0, 0, 1. Hopefully the size of the state (a
sort of rank of the tensor) stays small.

Alternative: simulate the system many times, and approximate the
infection time with sample means.

Can we improve on this method?
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Our proposal
Our proposal: simulation via shortest-potential-infection-path.

Observation: if i is infected and j is not, the infection spreads along the
edge i → j with a time that has a geometric distribution.

k 1 2 3 4 . . .
P[spread in time k] β (1 − β)β (1 − β)2β (1 − β)3β . . .

Idea: first draw at random potential infection times along each edge, then
reconstruct the real behavior.

“Folklore in some circles” [Goering, Albin et al, 2015]
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Example

1
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1

Time t Infected set X̂(t)

0 {2} (0,1,0,0)
1 {2} (0,1,0,0)
2 {2} (0,1,0,0)
3 {1,2} (1,1,0,0)
4 {1,2,4} (1,1,0,1)
5 {1,2,4} (1,1,0,1)
6 {1,2,3,4} (1,1,1,1)
7 {1,2,3,4} (1,1,1,1)
8 {1,2,3,4} (1,1,1,1)
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On the algorithm
At the cost of computing one all-to-all shortest-path matrix, we can
sample infections starting from each of the n nodes at the same time.

With sufficiently many samples (possibly in parallel), we can compute
sample mean times.

This strategy is cheaper than direct simulation of infection.

As with all sampling methods, convergence is rather slow: error O(1/k2)
with k samples.

Interesting corollary: the (limit) infection time matrix is symmetric.

Minf ≈


0 7.7922 7.7766 10.0051

7.7503 0 7.7358 17.7442
7.7383 7.7284 0 17.7707
10.0059 17.7454 17.7628 0

 .
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Example
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Example
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Conclusions
This shortest potential-infection path idea can be generalized to many
settings:

directed networks;
edge weights;
recovered individuals (SIR)
. . .

Can we beat it with “exact” tensor methods?

Main message
Do not use walking to model spreading!

Sooyeong Kim, Jane Breen, Ekaterina Dudkina, Federico Poloni, Emanuele
Crisostomi. On the use of Markov chains for epidemic modeling on
networks PLOS One 2023.
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