An edge centrality measure based on the Kemeny constant

D. Altafini¹, D. A. Bini², V. Cutini¹, B. Meini², F. Poloni³

¹University of Pisa, Department of Energy Engineering, Systems, Land and Buildings

² University of Pisa, Department of Mathematics

³ University of Pisa, Department of Computer Science

24th II AS Conference Galway, June 20202022

The Kemeny constant

 $A \in \mathbb{R}^{n \times n}$ adjacency matrix of an <u>undirected</u>, <u>connected</u>, <u>weighted</u> network; $P = D^{-1}A \in \mathbb{R}^{n \times n}_{\geq 0}$ transition matrix of the random walk on it (discrete-time Markov chain). $\operatorname{eig}(P) = \{\lambda_1 = 1, \lambda_2, \dots, \lambda_n\}$.

Kemeny constant [Kemeny, Snell '60]

$$K(P) = \sum_{i=2}^{n} \frac{1}{1 - \lambda_i}.$$

Probabilistic definition: the mean first passage time from a fixed state i to a state j drawn according the invariant distribution.

Car-based interpretation: Car 1 runs for a long time on a road network and then breaks down. How many steps does car 2 take (on average) to get to the same spot as A with a random walk?

K(P) small \iff A well-connected as a network.

Centralities

We study a centrality measure for roads (edges) based on the Kemeny constant: a road is important if its removal causes a large increase in K(P):

$$c(e) = K(\hat{P}) - K(P).$$

Many other centrality measures are available in literature. [Estrada, book '13]

Main inspirations for us:

- [Estrada, D.Higham, Hatano '09]: communicability betweenness centrality: variation in communicability centrality caused by the removal of an edge.
- [Crisostomi, Kirkland, Shorten '11]: Kemeny constant variation in a Markov chain model of road circulation. Main difference: we do not want to rely on external traffic data, just on the map.

F. Poloni (U Pisa) Kemeny centrality ILAS 2022 3/21

Application

Collaboration with our civil engineering department; research question: is industry location driven by well-connected outskirts?

Large scale maps, e.g., continental Tuscany: 1.56M edges; no traffic data.

F. Poloni (U Pisa) Kemeny centrality ILAS 2022 4/21

Weak ties

Goal: highlight weak ties [Granovetter, '73], i.e., crucial edges that separate (strongly-connected) sections of the map. Example: bridges.

Challenges

- Deal with negative centralities;
- Deal with cut-edges;
- Make it fast enough for 1.5M road elements.

Negative centralities

Sometimes, the Kemeny constant decreases when removing an edge!

Example
$$K(left) \approx 2.54$$
, $K(right) = 2.5$.

Not ideal: intuition of "connectedness" says more roads are always better.

This phenomenon is known as Braess paradox [Braess '68, Kirkland, Zeng '16].

Analysis

Kemeny constant

$$K(P) = \sum_{i=2}^{n} \frac{1}{1 - \lambda_i}.$$

$$\{\lambda_1=1,\dots,\lambda_n\}=\operatorname{eig}(D^{-1}A)=\operatorname{eig}(\underbrace{D^{-1/2}AD^{-1/2}}_{:=W,\text{ symmetrized adjacency matrix}}$$

The edge removal changes W in a non-trivial way.

$$\begin{bmatrix} 0 & 1/2 & 6^{-1/2} & 0 \\ 1/2 & 0 & 6^{-1/2} & 1 \\ 6^{-1/2} & 6^{-1/2} & 0 & 3^{-1/2} \\ 0 & 0 & 3^{-1/2} & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 & 3^{-1/2} & 0 \\ 0 & 0 & 3^{-1/2} & 0 \\ 3^{-1/2} & 3^{-1/2} & 0 & 3^{-1/2} \\ 0 & 0 & 3^{-1/2} & 0 \end{bmatrix}$$

F. Poloni (U Pisa) Kemeny centrality ILAS 2022 8/21

Solution

Idea Replace the removed edge with two loop edges, $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

This changes the model in an easier-to-predict way:

$$\begin{bmatrix} 0 & 1/2 & 6^{-1/2} & 0 \\ 1/2 & 0 & 6^{-1/2} & 1 \\ 6^{-1/2} & 6^{-1/2} & 0 & 3^{-1/2} \\ 0 & 0 & 3^{-1/2} & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1/2 & 0 & 6^{-1/2} & 0 \\ 0 & 1/2 & 6^{-1/2} & 1 \\ 6^{-1/2} & 6^{-1/2} & 0 & 3^{-1/2} \\ 0 & 0 & 3^{-1/2} & 0 \end{bmatrix}$$

$$W \mapsto \hat{W} := W + \frac{1}{\sqrt{d_i d_j}} (e_i - e_j) (e_i - e_j)^T.$$

Theorem

With this definition, $c(e) = k(\hat{P}) - k(P) \ge 0$ after each edge removal.

Proof Standard eigenvalue inequalities for symmetric matrices:

$$\hat{W} \succeq W \implies \hat{\lambda}_i \ge \lambda_i \implies \sum \frac{1}{1-\hat{\lambda}_i} \ge \frac{1}{1-\lambda_i}$$

F. Poloni (U Pisa) Kemeny centrality ILAS 2022 9 / 21

Cut-edges

(Color scheme: blue edge = higher = important.)

Problem If the removed edge is a cut-edge, \hat{G} is disconnected, $\hat{\lambda}_2=1$, and $K(\hat{P})=+\infty$.

On a road network, cut-edges are often unimportant dead ends, but sometimes they are crucial for connectivity and cannot be ignored/dismissed.

F. Poloni (U Pisa) Kemeny centrality ILAS 2022

10 / 21

Solution

First idea Change the definition to

$$K_r(P) = \sum_{i=2}^n \frac{1}{1+r-\lambda_i}.$$

for a small regularization factor r > 0, e.g., $r = 10^{-6}$.

 \leftrightarrow replacing the Laplacian L = D - A with (1 + r)D - A.

Problem Centrality scores $c_r(e) = K_r(\hat{P}) - K_r(P)$ of cut-edges become $\approx \frac{1}{r}$, artificially high.

Filtered Kemeny-based centrality

$$\widetilde{c}_r(e) = egin{cases} rac{1}{r} - c_r(e) & e ext{ is a cut-edge,} \\ c_r(e) & ext{otherwise.} \end{cases}$$

Unfiltered vs. filtered

Sign reversal

Why $\frac{1}{r} - c_r(e)$ and not the more natural $c_r(e) - \frac{1}{r}$?

Theorem

If e is a cut-edge, $\frac{1}{r} - c_r(e) \ge 0$.

Proof Interlacing inequalities: since $\hat{W} - W \succeq 0$ is rank-1 positive semidefinite,

$$\frac{1}{r} = \hat{\lambda}_2 \ge \lambda_2 \ge \hat{\lambda}_3 \ge \lambda_3 \ge \cdots \ge \hat{\lambda}_n \ge \lambda_n.$$

Hence

$$\frac{1}{r}-c_r(e)=\underbrace{\frac{1}{1+r-\lambda_2}-\frac{1}{1+r-\hat{\lambda}_3}}_{\geq 0}+\underbrace{\frac{1}{1+r-\lambda_3}-\frac{1}{1+r-\hat{\lambda}_4}}_{\geq 0}+\cdots+\underbrace{\frac{1}{1+r-\lambda_n}}_{\geq 0}.$$

13 / 21

Open problem

Filtered Kemeny-based centrality

$$\widetilde{c}_r(e) = egin{cases} rac{1}{r} - c_r(e) & e ext{ is a cut-edge,} \\ c_r(e) & ext{otherwise.} \end{cases}$$

Empirical observation

With this definition, centrality scores of cut-edges have centrality scores comparable with non-cut-edges, and they are sorted correctly in order of importance.

We still do not have a good explanation for this observation!

Getting it done

Problem How to reduce the $\mathcal{O}(n^4)$ cost and make it fast enough for large graphs?

Theorem [Kemeny '81, Kirkland '10, Wang-Dubbeldam-Van Mieghem '17]

Let $\mathbf{w} \in \mathbb{R}^n$ be any vector such that $\mathbf{w}^T \mathbf{1} = 1$. Then,

$$K(P) = \operatorname{Trace}(S^{-1}) - 1, \quad S = I - P + \mathbf{1w}^{T}.$$

Since $\hat{P} - P$ and $\hat{S} - S$ is a rank-1 update, we can use the

Sherman-Morrison formula

$$(S + \mathbf{u}\mathbf{v}^T)^{-1} - S^{-1} = \frac{-1}{1 + \mathbf{v}^T S^{-1} \mathbf{u}} S^{-1} \mathbf{u}\mathbf{v}^T S^{-1}$$

$$c(e) = \mathcal{K}(\hat{P}) - \mathcal{K}(P) = \operatorname{Trace}\left(\frac{-1}{1 + \mathbf{v}^T S^{-1} \mathbf{u}} S^{-1} \mathbf{u} \mathbf{v}^T S^{-1}\right) = \frac{-\mathbf{u}^T S^{-2} \mathbf{v}}{1 + \mathbf{v}^T S^{-1} \mathbf{u}}.$$

Final formula

Some more routine manipulations:

- Introduce regularization parameter r;
- Use again Sherman–Morrison to invert $S_r = (1+r)I P + \mathbf{1}\mathbf{w}^T$
- Express it in terms of "regularized Laplacian" $L_r = (1+r)D A$;
- Choose w to make the problem symmetric

Final formula

$$c(\{i,j\}) = \frac{A_{ij}\mathbf{d}^T(\mathbf{x}.^2)}{1 - A_{ij}(x_i - x_j)}, \quad \mathbf{y} = L_r^{-1}(\mathbf{e}_i - \mathbf{e}_j), \quad \mathbf{x} = \mathbf{y} - \frac{\mathbf{d}^T\mathbf{y}}{\gamma}\mathbf{z}.$$

where $\mathbf{d} = \text{diag}(D)$, $\mathbf{z} = L_r^{-1}\mathbf{d}$, $\gamma = \mathbf{d}^T\mathbf{z} + \mathbf{d}^T\mathbf{1}$.

Practical cost

Final formula

$$c(\{i,j\}) = \frac{A_{ij}\mathbf{d}^T(\mathbf{x}.^2)}{1 - A_{ij}(x_i - x_j)}, \quad \mathbf{y} = L_r^{-1}(\mathbf{e}_i - \mathbf{e}_j), \quad \mathbf{x} = \mathbf{y} - \frac{\mathbf{d}^T\mathbf{y}}{\gamma}\mathbf{z}.$$

where $\mathbf{d} = \text{diag}(D)$, $\mathbf{z} = L_r^{-1}\mathbf{d}$, $\gamma = \mathbf{d}^T\mathbf{z} + \mathbf{d}^T\mathbf{1}$.

- Precompute Cholesky factorization of $L_r = (1+r)D A$, and $\mathbf{d}, \mathbf{z}, \gamma$.
- ② To compute c(e) for each edge (possibly in parallel), solve one linear system with L_r (using the precomputed factorization) and $\mathcal{O}(n)$ extra operations.

On road networks, often $n \approx m \approx \text{nnz}(\text{chol}(L_r))$, so all these operations are somewhat cheap — but the cost is still $\mathcal{O}(n^2)$ to compute all centralities.

Experiment: a large-scale network

Mainland Tuscany map: n = 1.22M, m = 1.56M, $nnz(chol(L_r)) = 3.36M$.

- Precomputation and chol : < 1s.
- 2 parfor centrality computation: 18 hours.

On a machine with 12 3.4GHz Xeon physical cores.

Experiment: the bridges of Pisa

Conclusions

- The Kemeny constant variation works well to highlight bottlenecks and weak ties.
- Connectivity/positivity issues can be solved.
- Computationally feasible even in large scale.
- Interesting results for our collaborators in civ-eng.

Altafini, Bini, Cutini, Meini, Poloni. *An edge centrality measure based on the Kemeny constant*. Arxiv:2203.06459.

Thanks for your attention!