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The Kemeny constant

A € R™" adjacency matrix of an undirected, connected, weighted
network; P = D™'A € RZS" transition matrix of the random walk on it
(discrete-time Markov chain). eig(P) = {A\1 =1, A2,..., An}.

Kemeny constant [Kemeny,Snell '60]

"1
K(P) =3 ——.
L%

Probabilistic definition: the mean first passage time from a fixed state / to

a state j drawn according the invariant distribution.

Car-based interpretation: Car 1 runs for a long time on a road network and
then breaks down. How many steps does car 2 take (on average) to get to

the same spot as A with a random walk?

K(P) small <= A well-connected as a network.
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Centralities

We study a centrality measure for roads (edges) based on the Kemeny

constant: a road is important if its removal causes a large increase in
K(P):

c(e) = K(P) — K(P). ]

Many other centrality measures are available in literature. [Estrada, book '13]

Main inspirations for us:

@ [Estrada, D.Higham, Hatano '09]: communicability betweenness centrality:

variation in communicability centrality caused by the removal of an
edge.

@ [Crisostomi, Kirkland, Shorten '11]: Kemeny constant variation in a
Markov chain model of road circulation. Main difference: we do not
want to rely on external traffic data, just on the map.
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Application

Collaboration with our civil engineering department; research question: is
industry location driven by well-connected outskirts?

Large scale maps, e.g., continental Tuscany: 1.56M edges; no traffic data.
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Weak ties

Goal: highlight weak ties [Granovetter, '73], i.e., crucial edges that separate
(strongly-connected) sections of the map. Example: bridges.

Kemeny-based centrality r=1e-8, filtered
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Challenges

@ Deal with negative centralities;
@ Deal with cut-edges;

o Make it fast enough for 1.5M road elements.
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Negative centralities

Sometimes, the Kemeny constant decreases when removing an edge!

Example K(left) ~ 2.54, K(right) = 2.5.

.2 .2

3 o4 3 o4

o1 o1

Not ideal: intuition of “connectedness” says more roads are always better.

This phenomenon is known as Braess paradox [Braess '68, Kirkland, Zeng '16].
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Analysis

Kemeny constant
i 1
KPPy =S ——.
(P=3 =,

A1=1,...,)\,} = eig(D'A) = eig(DY?AD~1/?)
N————

=W, symmetrized
adjacency matrix

The edge removal changes W in a non-trivial way.

0 1/2 612 0 0 0 312 o
12 0 612 1 0 0 3712 o
6-1/2 g-1/2 o 3-1/2| 7 |3-1/2 3-1/2 g 3-1/2
0 0 312 o 0 0 32 9
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Solution

Idea Replace the removed edge with two loop edges, [(1) é] - [(1) (1)]

This changes the model in an easier-to-predict way:

0 1/2 612 0 12 0 612 0
12 0 612 1 0 1/2 6742 1
6-1/2 g-1/2 o 32| 7 |12 g1/2 g 312
0 0 312 o 0 0 312 ¢

W W=W+ %idj(e,- —e)(ei—¢)T.

Theorem
With this definition, c(e) = k(P) — k(P) > 0 after each edge removal. J

Proof Standard e|genva|ue inequalities for symmetric matrices:

Wew = N> = T > oy
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Cut-edges

(Color scheme: blue edge = higher = important.)

Unfiltered x10”

— 1
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@

~

Problem If the removed edge is a cut-edge, G is disconnected, A, = 1, and
K(P) = +oc.

On a road network, cut-edges are often unimportant dead ends, but
sometimes they are crucial for connectivity and cannot be

ignored /dismissed.
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Solution
First idea Change the definition to

n 1
.:21+r—)\,-'

1

K. (P) =

for a small regularization factor r > 0, e.g., r = 109,
+> replacing the Laplacian L = D — A with (1+ r)D — A.

Problem Centrality scores ¢.(€) = K,(P) — K,(P) of cut-edges become
~ 1 artificially high.
Solution

Filtered Kemeny-based centrality

Z.(e) = 1_¢(e) eisacutedge,
T e(e) otherwise.
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Unfiltered vs. filtered

Unfiltered
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F. Poloni (U Pisa)

%107

Filtered

©

£

~

£

@

IS

w

~

%107

Filtered

9.99999978

9.99999976

9.99999974

9.99999972

9.9999997 .

9.99999968

9.99999966

9.99999964

9.99999962

Kemeny centrality

38

36

3.4

32

28

26

24

22



Sign reversal

Why 1 — ¢,(e) and not the more natural ¢.(e) — 17
Theorem

If e is a cut-edge, * — c,(e) > 0.

rr

Proof Interlacing inequalities: since W — W = 0is rank-1 positive
semidefinite,

1 " n ~
— =202 X3>2X 32> 2> > A,
r

Hence

1_ _ 1 1 R | 1
r cr(e) = I+r=X2  14r—X3 T I+r=X3  14r-X T T I,

>0 >0 >0
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Open problem

Filtered Kemeny-based centrality

Z (e) = 1_¢(e) eisacutedge,
T e(e) otherwise.

Empirical observation

With this definition, centrality scores of cut-edges have centrality scores
comparable with non-cut-edges, and they are sorted correctly in order of
importance.

We still do not have a good explanation for this observation!
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Getting it done

Problem How to reduce the O(n*) cost and make it fast enough for large
graphs?

Theorem [Kemeny '81, Kirkland '10, Wang-Dubbeldam-Van Mieghem '17]

Let w € R” be any vector such that w1 = 1. Then,

K(P)=Trace(S" 1) -1, S=/-P+1w’.

Since P — P and 5§ — S is a rank-1 update, we can use the

Sherman—Morrison formula
-1

T\—1 -1 _ -1 .. Tc—-1
(5 -+ uv ) - S = ms uv'S
A -1 —u’S 2%y
— K(P)—K(P)=T S . T—1>=—.
C(e) ( ) ( ) race (1+VTS_1US uv'S 1+VTS_1U
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Final formula

Some more routine manipulations:

@ Introduce regularization parameter r;

o Use again Sherman—Morrison to invert S, = (1 +r)/ — P+ 1w’
@ Express it in terms of “regularized Laplacian” L, = (14 r)D — A;
°

Choose w to make the problem symmetric

Final formula

o AidT(x.2 3 d’
) = O e e G

1Ayl — )

where d = diag(D), z=L;'d, y=d"z+d"1.
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Practical cost

Final formula

.. A,-de(x.2) =il
— —_ = Z = L i—€j), = - .
C({Ia./}) ]-_Aij(xi_xj)’ y r (e ej) X y ~ z

where d = diag(D), z=L;'d, y =d"z+d'1.

@ Precompute Cholesky factorization of L, = (1 + r)D — A, and d, z, 7.

@ To compute c(e) for each edge (possibly in parallel), solve one linear
system with L, (using the precomputed factorization) and O(n) extra
operations.

On road networks, often n =~ m =~ nnz(chol(L,)), so all these operations
are somewhat cheap — but the cost is still O(n?) to compute all
centralities.
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Experiment: a large-scale network

Mainland Tuscany map: n = 1.22M, m = 1.56M, nnz(chol(L,)) = 3.36 M.
@ Precomputation and chol : < 1s.
@ parfor centrality computation: 18 hours.

On a machine with 12 3.4GHz Xeon physical cores.
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Experiment: the bridges of Pisa

Kemeny-based centrality r=1e-8, filtered
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Kemeny-based centrality r=1e-8, filtered

Road-taking probability in the Pagerank model et Pagerank on the i dual graph

on the dual graph 0t Edge (from Networkx)

g flow (from Networkx)
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Conclusions

@ The Kemeny constant variation works well to highlight bottlenecks
and weak ties.

e Connectivity/positivity issues can be solved.
@ Computationally feasible even in large scale.
@ Interesting results for our collaborators in civ-eng.

Altafini, Bini, Cutini, Meini, Poloni. An edge centrality measure based on
the Kemeny constant. Arxiv:2203.06459.

Thanks for your attention! J
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