Interval arithmetic methods to verify the stabilizing solution of an algebraic Riccati equation

Tayyebe Haqiri1 Federico Poloni2

1Shahid Bahonar University of Kerman, Iran
2U Pisa, Italy, Dept of Computer Science

20th ILAS conference
Leuven, July 2016
Overview

Goal: compute a set \mathbf{X} which contains (for sure, not “up to small computational errors”) the stabilizing solution X_s of

$$0 = F(X) = A^\top X + XA + Q - XGX.$$

Do not use more than $O(n^3)$ flops.

Plan

- Convince you that interval arithmetic is a good idea.
- Show you what people did to verify Riccati equations.
- Show you the improvements we introduced.
- Competitors, experiments, and other ideas.
Basic idea if $a \in [1, 2]$ and $b \in [3, 4]$, then $a + b \in [4, 6]$ and $ab \in [3, 8]$. Store (min, max) (or (center, radius)) and operate on them. \mathbb{IR}, \mathbb{IC}.

With IEEE arithmetic + rounding in the correct direction, the inclusions work irrespective of machine errors.

Machine numbers can be embedded in \mathbb{IR} as radius-0 intervals.
Wrapping effect

\[
\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \quad v = \begin{bmatrix} [1, 2] \\ [3, 4] \end{bmatrix}
\]

Image of \(v \): blue square. Interval result: red+blue. This happens even though \(\kappa(A) = 1! \)
Verify, don’t solve

The first rule of interval arithmetic

You don’t solve your problem with interval arithmetic.

Things like back-substitution would create huge intervals.
E.g., solving $AX + XB = C$ with Bartels-Stewart: hopeless.

Instead:

$g(x) \subset x$ implies $x = g(x)$ for some $x \in x$

- compute (with usual methods) an approximate solution \tilde{x}.
- reformulate as $x = g(x)$, e.g., $x = x - Rf(x)$.
- choose an interval $x \ni \tilde{x}$, e.g., $\tilde{x} - [0.9, 1.1]f(\tilde{x})$
- check (hopefully) $g(x) \subset x$.
- if not, enlarge x, e.g., $x \leftarrow [0.9, 1.1]g(x)$ and retry.

Details omitted; e.g.: need care with computing $x - Rf(x)$.
The Krawczyk method

Ingredients:

- approximate solution \tilde{x}.
- slope S_x: set such that there is $S \in S_x$ satisfying

 $$f(x) - f(\tilde{x}) = S(x - \tilde{x}) \quad \text{for all } x \in x.$$

 Often related to an interval evaluation of $f'(x)$.
- preconditioner R: approximate inverse of some matrix in S_x.

Theorem [Krawczyk '69, Rump '83]

If, for some interval δ,

$$\text{int}(\delta) \supseteq -Rf(\tilde{x}) + (I - RS_{\tilde{x}+\delta})\delta,$$

then $\tilde{x} + \delta$ contains a solution of $f(x) = 0$.

If (*) holds replacing \tilde{x} with every $y \in x$, then the solution is unique.
Verifying Riccati equations

\[F(X) = A^T X + XA + Q - XGX \]

O(n^3) algorithm: [Hashemi ’12]

- \(\tilde{X} \) from your favorite method.
- **\(S_x: \)** \(F'(X) = (A - GX)^T \otimes I + I \otimes (A - GX)^T \) works.
- **\(R: \)** can’t use Bartels-Stewart. Instead: explicit eigendecomposition \((A - GX) \approx VDV^{-1} \) and

\[
R = (V^{-T} \otimes V^{-T})(D^T \otimes I + I \otimes D^T)^{-1}(V^T \otimes V^T)
\]

Additional manipulations: \((I - RS_x) = (V^{-T} \otimes V^{-T})(\cdots)(V^T \otimes V^T) \)

Again, many details omitted; for instance, dealing properly with \(W \approx V^{-1} \).
Improving Hashemi’s method

Our goal: construct an enclosure \mathbf{X} for the stabilizing solution \mathbf{X}_s.

Plan:
- Compute an enclosure \mathbf{X} starting from $\tilde{\mathbf{X}} \approx \mathbf{X}_s$.
- Verify that each matrix in $\mathbf{A} - \mathbf{G}\mathbf{X}$ is stabilizing.
- Uniqueness follows from classical Riccati theory. [Brockett, ’70]

Letting go of uniqueness allows some improvements:
1. Tighter slope $S_{\mathbf{X}}$.
2. Defer the change of basis as in [Frommer Hashemi ’09].
3. Verify a different equation using tricks from [Mehrmann P. ’12].
Improvements

1. **Tighter slope S_X**
 We can use $S_x = (A - GX)^\top \otimes I + I \otimes (A - G\tilde{X})^\top$.

2. **Defer the change of basis**
 Find Y that encloses a solution of $\hat{F}(Y) = V^\top f(V^{-T} Y V^{-1}) V$:
 Easier, because \hat{F}' is diagonal.

 Then, compute $X = V^{-T} Y V^{-1}$.
 Even if $Y \in Y$ unique solution, other solutions may end up in X due to wrapping effects.

 [Frommer Hashemi '09] introduced this trick for \sqrtm.
Improvements

3 Verify a different equation

\[\text{CARE} \iff \begin{bmatrix} A & -G \\ -Q & -A^T \end{bmatrix} \begin{bmatrix} I \\ X \end{bmatrix} = \begin{bmatrix} I \\ X \end{bmatrix} (A - GX) \]

[Mehrmann P. ’12]: one can find a basis for \(\text{im} \begin{bmatrix} I \\ X \end{bmatrix} \) with an identity in different position (i.e., \(\text{im} \begin{bmatrix} I \\ X \end{bmatrix} = \text{im} \begin{bmatrix} I \\ Y \end{bmatrix} \), \(II \) permutation matrix) so that \(|Y|_{ij} \leq \sqrt{2} \).

As above, we can verify a Riccati equation for \(Y \) rather than one for \(X \).

Smaller / more balanced entries \(\implies \) easier verification.
Verify a different equation

Algorithm

- Compute approximate CARE solution \tilde{X}
- Compute Π so that $\text{im} \left[\frac{I}{\tilde{X}} \right] = \text{im} \Pi \left[\frac{I}{\tilde{Y}} \right]$, with \tilde{Y} bounded.
- Form the CARE associated with $\Pi^{-1} \begin{bmatrix} A & -G \\ -Q & -A^T \end{bmatrix} \Pi$ instead of
 $\begin{bmatrix} A & -G \\ -Q & -A^T \end{bmatrix}$.
- Compute an inclusion $\bar{Y} \supseteq Y_s$ of its stable solution.
- $X = U_2 U_1^{-1}$, where $\Pi \begin{bmatrix} I \\ \bar{Y} \end{bmatrix} = \begin{bmatrix} U_1 \\ U_2 \end{bmatrix}$. Other solutions may enter X.
Summing up

- Start from an approximate stabilizing solution \tilde{X}
- Use the above methods to construct $X \ni \tilde{X}$ containing a solution
- If all the matrices in X are stabilizing, bingo!

Alternative approach (main competitor): [Miyajima '15].
Mix between the above methods and explicit normwise bounds. Idea:
- Newton-like iteration $X = g(X), g(X) = X - (F'_{\tilde{X}})^{-1}(F(X))$.
- Formula for $F'_{\tilde{X}}$ using an eigendecomposition of $A - G\tilde{X}$, as earlier.
- Expand $g(X)$, where $X = (\tilde{X} - \eta R, \tilde{X} + \eta R)$ (for a specific choice of R), as a function of η.
- Using inequalities, determine η such $X \supseteq g(X)$ (if possible).
- Compute η using interval arithmetic and rounding.
- Uniqueness and stabilizing-ness verified \textit{a posteriori}.
Diagonalizability

Verification methods tested on the benchmarks in CAREX [Benner et al '95]

OK on many of them, but we are still not satisfied:

CAREX Example 1 [Benner et al '95]

\[
A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad G = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \quad Q = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \quad X_s = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}
\]

This example can be used for a first verification of any solver for [CAREs] since the solution may be computed by hand.

\[A - GX_s\] is not diagonalizable \(\implies\) all methods fail on this ‘warm-up’ example.
Non-diagonalizable problems

New algorithm: not as effective as the others, but it works in $O(n^3)$ even if $A - GX_s$ is (almost) not diagonalizable.

Idea

- Rewrite as a CARE in Δ, where $X = \tilde{X} + \Delta$:
 \[
 \hat{A}^{\ast} \Delta + \Delta \hat{A} + \hat{Q} - \Delta G \Delta = 0.
 \]
- Mimic ADI: fixed-point eqn $\Delta = (\hat{A} - sl)^{-\top} (\Delta G \Delta - \hat{Q} - \Delta (A + sl))$.
- Are there parameters that we can tune? Choice of s, and then change of basis:
 \[
 \Delta_V = V^{\ast} \Delta V, \quad A_V = V^{-1} \tilde{A} V, \quad Q_V = V^{\ast} \tilde{Q} V, \quad G_V = V^{-1} G V^{-\ast}.
 \]
 No need to diagonalize this time.
In practice, we choose $V = \text{orthogonal Schur factor of } \hat{A}$, $s = -\lambda_{\text{max}}(\hat{A})$.
Performance profile on CAREX suite in [Chu et al '07]

Top left = better.
(Norm-2) width of found interval

![Graph showing the comparison between Miyajima and the new method.](image-url)
CPU time on CAREX 15

Lower = better. New = only method to reach \(n = 1000 \).
Conclusions

- Technical improvements and ideas from Riccati theory take Krawczyk-based method to state-of-the-art level.
- No method always better than the others, so it is useful to have more choice.
- In almost all cases, the first solution guess $\tilde{x} - [0.9, 1.1]f(\tilde{x})$ already works — so there is still room to optimize.
- Up next: transfer some of these improvements to Miyajima’s method.
Conclusions

- Technical improvements and ideas from Riccati theory take Krawczyk-based method to state-of-the-art level.
- No method always better than the others, so it is useful to have more choice.
- In almost all cases, the first solution guess $\tilde{x} = [0.9, 1.1] f(\tilde{x})$ already works — so there is still room to optimize.
- Up next: transfer some of these improvements to Miyajima’s method.

[Thanks for your attention!]