A projection method for the solution of large-scale Lur’e equations

Federico Poloni1 Timo Reis2

1Technische Universität Berlin
Supported by the A. von Humboldt Foundation
(Presentation AvH: tomorrow 16:30)

2Universität Hamburg

83rd Gamm Conference
Darmstadt, 26–30 March 2012
Control problems and even matrix pencils

Several problems in control theory (model reduction, positive real lemma) naturally expressed as deflating subspace problems for

Even matrix pencils

\[
\begin{bmatrix}
0 & A & B \\
A^* & Q & S \\
B^* & S^* & R
\end{bmatrix}
- s
\begin{bmatrix}
0 & I & 0 \\
-I & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

\(A - sE\) is even, i.e., \(A = A^*, E = -E^*\)

\(n \gg m\), \(A\) large and sparse, \(Q\) low rank

We are looking for the maximal semi-stable \(E\)-neutral deflating subspace, i.e.,

\[
AU = V \hat{A} \quad E U = V \hat{E} \quad U, V \in \mathbb{C}^{2n+m,k} \quad U^* E U = 0
\]
What if R is singular?

The singular R case has been treated stepmotherly \text{(T. Reis)}

- the Riccati equation cannot be formed
- numerical problems: nontrivial Jordan blocks at infinity and/or singular pencil
- in engineering practice, often solved by perturbing+inverting R

ARE must be replaced by a system

Lur’e equations

\[
A^T X + XA + Q = Y^T Y
\]
\[
XB + S = Y^T Z
\]
\[
R = Z^T Z
\]

(only X needed in practice)
Lur’e equations and deflating subspaces

Deflating subspace formulation

\[
\begin{bmatrix}
0 & -sl + A & B \\
sl + A^* & Q & S \\
B^* & S^* & R
\end{bmatrix}
\begin{bmatrix}
X & 0 \\
I_n & 0 \\
0 & I_m
\end{bmatrix}
=
\begin{bmatrix}
I_n & 0 \\
-X & Y^* \\
0 & Z^*
\end{bmatrix}
\begin{bmatrix}
-sl + A & B \\
Y & Z
\end{bmatrix}
\]

\(\ker \mathcal{E} = \begin{bmatrix}
0 \\
0 \\
l_m
\end{bmatrix} \) “obvious” deflating subspace \((\lambda = \infty)\).

Partial subspace

\[
\begin{bmatrix}
V_1 & 0 \\
V_2 & 0 \\
0 & I
\end{bmatrix}
\subseteq U_X \iff \text{Partial solution: } XV_2 = V_1, \quad X = V_1 V_2^+ + \cdots
Even Kronecker canonical form

[Thompson, ’76 & ’91], a powerful tool to analyze Lur’e equations theoretically [Reis, ’11]

Canonical form under transformations of the kind M^TAM, M^TEM
(for any M nonsingular)

Plays well with
- deflating subspaces $(A - sE)U = V(\hat{A} - s\hat{E})$
- E-neutrality $U^TEU = 0$ (and similar relations)

Even Kronecker canonical form [Thompson, ’76 & ’91]

Every even matrix pencil (i.e., $A = A^*$, $E = -E^*$) can be reduced to a
direct sum of the following block types...
Even Kronecker canonical form

\[
\begin{bmatrix}
\lambda - s & 1 \\
\lambda - s & 1 \\
\bar{\lambda} + s & \lambda + s \\
1 & 1 \\
1 & 1 \\
\end{bmatrix}
\]

paired eigenvalues \((\lambda, -\bar{\lambda})\)

\[
\begin{bmatrix}
i\mu - s & 1 \\
\end{bmatrix}
\]

imaginary eigenvalues \(i\mu\)

\[
\begin{bmatrix}
s & 1 \\
\end{bmatrix}
\]

eigenvalues at \(\infty\)

\[
\begin{bmatrix}
s & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
\end{bmatrix}
\]

singular blocks
The bad guys

$$\begin{bmatrix}
 s & 1 \\
 s & 1 \\
 s & 1 \\
 1 & 1 \\
\end{bmatrix}$$

$$\begin{bmatrix}
 s & 1 \\
 s & 1 \\
 s & 1 \\
 s & 1 \\
\end{bmatrix}$$

eigenvalues at ∞
singular blocks

Singular $R \Leftrightarrow$ nontrivial blocks of one of these two kinds.

Theorem

For all solutions X, U_X contains the first $\frac{\ell-1}{2}$ vectors of each of these Kronecker chains ($\ell=\text{length}$)
Wong sequences

Pencil generalization of the procedure used to compute Jordan chains/bases [Wong KT, '74] [Berger, Ilchmann, Trenn, '10]

Wong sequence (for \(\lambda = \infty \))

\[
\mathcal{W}_0 = \{0\}, \quad \mathcal{W}_{k+1} = \mathcal{E}^{-1}(A\mathcal{W}_k)
\]

(The \(\mathcal{W}_i \) are subspaces, and \(\mathcal{E}^{-1} = \text{preimage} \))

Switch to even Kronecker form, everything here transforms well
Wong sequences of Kronecker blocks

\[\mathcal{W}_3 \mathcal{W}_2 \mathcal{W}_1 \]

\[\begin{bmatrix}
 s & 1 \\
 s & 1 \\
 s & 1 \\
 1 & 1
\end{bmatrix} \]

\[\mathcal{W}_1 = \text{span}\{e_n\} \]
\[\mathcal{W}_2 = \text{span}\{e_{n-1}, e_n\} \]

\(\vdots \)

Problem: how to force them to stop at half the size of each block?

Idea: that’s exactly where they stop being \(\mathcal{E} \)-neutral!
\(\mathcal{E}\)-neutral Wong sequences

Wong sequence (for \(\lambda = \infty\))

\[
\begin{align*}
\mathcal{V}_0 &= \{0\}, \\
\mathcal{Z}_k &= \mathcal{E}^{-1}(A\mathcal{V}_k), \\
\mathcal{V}_{k+1} &= \mathcal{V}_k + \mathcal{Z}_k \cap \mathcal{Z}_k^{\mathcal{E}\perp}
\end{align*}
\]

Theorem

\(\mathcal{E}\)-neutral Wong sequences are increasing (\(\mathcal{V}_0 \subseteq \mathcal{V}_1 \subseteq \cdots\)) and stabilize to the space spanned by the first \(\frac{\ell+1}{2}\) vectors of each infinite (and singular) chain.

\(\mathcal{V}_\infty\) gives a partial solution: \(X\mathcal{V}_2 = \mathcal{V}_1\), \(X = \mathcal{V}_1\mathcal{V}_2^+ + \cdots\) for some \(\mathcal{V}_1, \mathcal{V}_2\).

Question How to compute the remaining part?
Projected Lur’e equations

We multiply everything in the Lur’e equations by $\Pi = I - V_2 V_2^+$, and get

Theorem

$\tilde{X} = \Pi^* X \Pi$ satisfies projected Lur’e equations with

\[
\begin{align*}
\tilde{A} &= \Pi A \Pi, \\
\tilde{Q} &= \Pi^* Q \Pi, \\
\tilde{B} &= [\Pi AV_2 \quad \Pi B], \\
\tilde{S} &= \begin{bmatrix} \Pi^* A^* V_1 + \Pi^* QV_2 & \Pi^* S \end{bmatrix}, \\
\tilde{R} &= \begin{bmatrix} V_2^* A^* V_1 + V_1^* AV_2 + V_2^* QV_2 & V_1^* B + V_2^* S \\
B^* V_1 + S^* V_2 & R \end{bmatrix}
\end{align*}
\]
Projected Lur'e equations

“Projection” \(\iff\) zeroing out the critical subspace at infinity

In the right basis,

\[
P \begin{bmatrix}
0 & \tilde{A} - sl & \tilde{B} \\
\tilde{A}^* + sl & \tilde{Q} & \tilde{S} \\
\tilde{B}^* & \tilde{S}^* & \tilde{R}
\end{bmatrix} P^T \cong \begin{bmatrix}
0 & A_1 - sl & B_1 & 0 \\
A_1^* + sl & Q_1 & S_1 & 0 \\
B_1^* & S_1^* & R_1 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

\(R_1\) nonsingular, so we can turn this into a projected Riccati equation

\[
\begin{bmatrix}
A_{11}^* & 0 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
X_{11} & 0 \\
0 & 0
\end{bmatrix}
+ \begin{bmatrix}
X_{11} & 0 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
A_{11} & 0 \\
0 & 0
\end{bmatrix}
+ \begin{bmatrix}
Q_{11} & 0 \\
0 & 0
\end{bmatrix}
= \begin{bmatrix}
X_{11} & 0 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
G_{11} & 0 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
X_{11} & 0 \\
0 & 0
\end{bmatrix}
\]

We solve this ARE with Newton-ADI (Lyapack, [Benner, Li, Penzl, '08]).

Problem \(A_{11}\) is dense: we must use \(\tilde{A} = \Pi A \Pi = (I - V_2 V_2^+) A (I - V_2 V_2^+)\)
to preserve sparsity
What happens in ADI

ADI: lots of singular equations with $\Pi A \Pi$:

$$
\begin{bmatrix}
A_R - zI & 0 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
x \\
0
\end{bmatrix} =
\begin{bmatrix}
b \\
0
\end{bmatrix}
$$

In fact, if we work with $\Pi A \Pi - zI$ we regularize them for free:

$$
\begin{bmatrix}
A_R - zI & 0 \\
0 & -zI
\end{bmatrix}
\begin{bmatrix}
x \\
0
\end{bmatrix} =
\begin{bmatrix}
b \\
0
\end{bmatrix}
$$

Further trick: rewrite $(I - V_2 V_2^+) A (I - V_2 V_2^+) x = b$ as extended system

$$
\begin{bmatrix}
A & V_2 & \Pi A V_2 \\
V_2^+ A & I & 0 \\
V_2^+ & 0 & I
\end{bmatrix}
\begin{bmatrix}
x \\
0 \\
0
\end{bmatrix} =
\begin{bmatrix}
b \\
0 \\
0
\end{bmatrix}
$$

Preserves sparsity, now we can use sparse LU
To sum up

Algorithm

1. Compute \mathcal{V}_∞ “critical subspace” using \mathcal{E}-neutral Wong sequences
2. Compute coefficients $\tilde{B}, \tilde{R}, \tilde{S}$ of the projected equation, and sparse representations of $\tilde{A} = \Pi A \Pi$, $\tilde{Q} = \Pi^* Q \Pi$
3. Use Newton-ADI to solve the projected Riccati equation for \tilde{X}. Use extended matrix approach for solvers.
4. Assemble solution $X = V_1 V_2^+ + \tilde{X}$

F. Poloni, T. Reis

On combining deflation and iteration to low-rank approximate solution of Lur’e equations

Example I

Lur’ë equations from positive real lemma
Demo system demo-r1 in Lyapack (heat equation on the square)

<table>
<thead>
<tr>
<th></th>
<th>demo-r1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>2500</td>
</tr>
<tr>
<td>m</td>
<td>1</td>
</tr>
<tr>
<td>rank decisions accuracy</td>
<td>1.6×10^{-16}</td>
</tr>
<tr>
<td>infinite chains</td>
<td>$1 \times$ length 3</td>
</tr>
<tr>
<td>singular chains</td>
<td>0</td>
</tr>
<tr>
<td>rank of $X^{(1)}$</td>
<td>24</td>
</tr>
<tr>
<td>rank of $X - X^{(1)}$</td>
<td>23</td>
</tr>
<tr>
<td>no. of Newton steps needed</td>
<td>4</td>
</tr>
<tr>
<td>avg. ADI itns per Newton step</td>
<td>37.25</td>
</tr>
<tr>
<td>relative residual</td>
<td>2.6×10^{-15}</td>
</tr>
<tr>
<td>deviation from stability</td>
<td>-1.8×10^{-15}</td>
</tr>
<tr>
<td>CPU time</td>
<td>17 s</td>
</tr>
</tbody>
</table>
Example II

Lur’e equations from positive real lemma
Demo system demo-r3 in Lyapack (rail profile)

<table>
<thead>
<tr>
<th></th>
<th>demo-r3</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>821</td>
</tr>
<tr>
<td>m</td>
<td>6</td>
</tr>
<tr>
<td>rank decisions</td>
<td>6.5×10^{-16}</td>
</tr>
<tr>
<td>infinite chains</td>
<td>$6 \times$ length 3</td>
</tr>
<tr>
<td>singular chains</td>
<td>0</td>
</tr>
<tr>
<td>rank of $X^{(1)}$</td>
<td>138</td>
</tr>
<tr>
<td>rank of $X - X^{(1)}$</td>
<td>130</td>
</tr>
<tr>
<td>no. of Newton steps</td>
<td>7</td>
</tr>
<tr>
<td>avg. ADI itns per Newton step</td>
<td>36.857</td>
</tr>
<tr>
<td>relative residual</td>
<td>5.5×10^{-15}</td>
</tr>
<tr>
<td>deviation from stability</td>
<td>-1.3×10^{-08}</td>
</tr>
<tr>
<td>CPU time</td>
<td>65 s</td>
</tr>
</tbody>
</table>
Example II
Lur’e equations from positive real lemma
Demo system demo-r3 in Lyapack (rail profile)

\begin{align*}
\text{rank of } X - X^{(1)} &= 130 \\
\text{no. of Newton steps needed} &= 7 \\
\text{avg. ADI itns per Newton step} &= 36.857 \\
\text{relative residual} &= 5.5 \times 10^{-15} \\
\text{deviation from stability} &= -1.3 \times 10^{-08} \\
\text{CPU time} &= 65 \text{s}
\end{align*}

Thanks for your attention! Questions?