Componentwise accurate numerical methods for Markov-modulated Brownian motion

Giang T. Nguyen¹ Federico Poloni²

¹U of Adelaide, School of Mathematical Sciences ²U Pisa, Italy, Dept of Computer Science

9th Matrix Analytic Methods Conference Budapest, June 2016

Subtraction-free algorithms

Error analysis in an (imprecise) slogan

TL;DR: when you subtract two close numbers, you lose accuracy.

More precise: instead of a and b, a computer may store $a+\delta$ and $b+\varepsilon$; the number $(a+\delta)-(b+\varepsilon)$ may be at a large relative distance from a-b (if a and b have the same sign).

So, let's stop doing subtractions.

Luckily, for many probabilities computations this is possible.

E.g., computing AB, for $A \ge 0$, $B \ge 0$.

Most subtractions come from M-matrices, but we can avoid them!

Regular M-matrices

A matrix A with sign pattern (possibly including zeros)

$$A = \begin{bmatrix} + & - & - & - \\ - & + & - & - \\ - & - & + & - \\ - & - & - & + \end{bmatrix}$$

is called regular *M*-matrix if there are $\mathbf{v} > \mathbf{0}$, $\mathbf{w} \ge \mathbf{0}$ such that $A\mathbf{v} = \mathbf{w}$. E.g., $(-Q)\mathbf{1} = \mathbf{0}$ for the rate matrix of a CTMC

Attention! [Guo CH, 2013]

Not all M-matrices are regular! E.g., $\begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix}$

GTH algorithm

For a regular M-matrix A, one can store its off-diagonal entries, \mathbf{v} and \mathbf{w} (triplet representation).

$$A = \begin{bmatrix} ? & - & - & - \\ - & ? & - & - \\ - & - & ? & - \\ - & - & - & ? \end{bmatrix} \qquad A\mathbf{v} = \mathbf{w}$$

GTH-like algorithm [Grassmann et al '85, O'Cinneide '93, Alfa et al '02..."

Given a triplet representation for $A \in \mathbb{R}^{n \times n}$, one can compute $B = A^{-1}$ subtraction-free, obtaining perfect componentwise accuracy:

$$|\tilde{b}_{ij} - b_{ij}| \leq \mathit{O}(\mathit{n}^3) \cdot |b_{ij}| \cdot \mathtt{eps}.$$

Variants: LU factorization, left and right kernel, Perron vector.

Variant: $\mathbf{v}^{\top} A = \mathbf{w}^{\top}$

GTH algorithm

An example

$$A = \begin{bmatrix} 1 & -1 \\ -1 & 1+\varepsilon \end{bmatrix}$$
: can only compute inverse up to accuracy $\kappa(A) \approx \varepsilon^{-1}$.

$$A = \begin{bmatrix} ? & -1 \\ -1 & ? \end{bmatrix}$$
 such that $A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ \varepsilon \end{bmatrix}$: full accuracy possible.

Works especially well when dealing with different orders of magnitude.

Plan: triplet representation are a great idea — let's rewrite our matrix iterations to use them!

F. Poloni (U Pisa)

Obtaining triplets

Theorem [Nguyen P. '16 — or earlier?]

Given a regular M-matrix and its triplet representation partitioned as

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix},$$

one can obtain explicitly without subtractions triplet representations for its submatrices and Schur complements (censorings):

$$Dv_2 = w_2 - Cv_1,$$

 $(A - BD^{-1}C)v_1 = w_1 - BD^{-1}w_2.$

Cyclic reduction

CR solves matrix equations of the form $R^2A - RB + C = 0$, with $A, C \ge 0$, and B - A - C a regular M-matrix [Bini et al '01, BLM book]

Cyclic Reduction

$$A_{0} = A, B_{0} = \hat{B}_{0} = B, C_{0} = C$$

$$A_{k+1} = A_{k}B_{k}^{-1}A_{k},$$

$$B_{k+1} = B_{k} - A_{k}B_{k}^{-1}C_{k} - C_{k}B_{k}^{-1}A_{k},$$

$$C_{k+1} = C_{k}B_{k}^{-1}C_{k},$$

$$\hat{B}_{k+1} = \hat{B}_{k} - C_{k}B_{k}^{-1}A_{k}.$$

At the end of the iteration, $R = C_0 \hat{B}_{\infty}^{-1}$, where $\hat{B}_{\infty} = \lim \hat{B}_k$.

Cyclic Reduction and triplets

$${\sf Cyclic} \,\, {\sf Reduction} = {\sf Schur} \,\, {\sf complements} \,\, {\sf on}$$

Cyclic Reduction and triplets
$$\begin{bmatrix} \ddots & \ddots & & & \\ \ddots & B & -C & & \\ -A & B & -C & \\ & -A & B & \ddots & \\ & & \ddots & \ddots & \end{bmatrix}$$

Two triplet representations follow:

 $(A_k - B_k + C_k)\mathbf{1} = \mathbf{0}$: gives triplet for B_k , already known and used. [e.g.

Bini et al, SMCTools software]

 $(A_0 - \hat{B}_k + C_k)\mathbf{1} = \mathbf{0}$: gives triplet for \hat{B}_{∞} , new for the final step.

Theorem [Nguyen P. '16]

CR with triplet representations gives $|\tilde{f} - f| \leq O(2^k n^4) |f|$ eps for the computed value \tilde{f} of each entry f of A_k , B_k , C_k , \hat{B}_k , R_k .

Doubling algorithm

An unusual matrix iteration that can be seen as repeated censoring / Schur complementation:

$$\begin{bmatrix} E_{new} & G_{new} \\ H_{new} & F_{new} \end{bmatrix} = \begin{bmatrix} 0 & G \\ H & 0 \end{bmatrix} + \begin{bmatrix} E & 0 \\ 0 & F \end{bmatrix} \left(I - \begin{bmatrix} 0 & G \\ H & 0 \end{bmatrix} \right)^{-1} \begin{bmatrix} E & 0 \\ 0 & F \end{bmatrix}$$

Keep track of triplet representations at each step ⇒ componentwise-accurate algorithms for fluid queues / Riccati equations. [Xue et al '12, Nguyen P. '15, Xue Li '16]

Markov-modulated Brownian motion [Asmussen '95, Karandikar

Kulkarni '95, Rogers '94]

- ullet $\phi(t)$ continuous-time Markov chain with transition matrix $Q\in\mathbb{R}^{n imes n}$;
- y(t) evolves as Brownian motion with drift $d_{\phi(t)}$ and variance $v_{\phi(t)}$.

The invariant density follows

$$\boldsymbol{p}''(x)V-\boldsymbol{p}'(x)D+\boldsymbol{p}(x)Q=\mathbf{0}.$$

 $V,D\in\mathbb{R}^{n\times n}$ diagonal matrices containing v_i,d_i . Invariant density and many properties can be computed using an invariant pair, i.e., $(X\in\mathbb{R}^{\ell\times\ell},U\in\mathbb{R}^{\ell\times n})$ such that

$$X^2UV - XUD + UQ = 0.$$

[Rogers '94, Ivanovs, '10, Betcke Kressner '11, Gohberg et al '82] Often, $U=\begin{bmatrix}I&\Psi\end{bmatrix}$.

Invariant pairs and Cyclic Reduction

How do we compute invariant pairs? Cyclic reduction gives a special one:

$$R^2IA - RIB + IC = 0.$$

Plan: tinker with the problem to turn it into this form.

Discretizing transformation from eigenvalue properties: [Bini et al '10]

- we need a "continuous-time stable" pair: $eig(X) \subseteq left$ half-plane.
- CR produces a "discrete-time stable" one: $eig(R) \subseteq unit circle$

So we make a change of variables R = f(X).

$$R = (I + X)(I - X)^{-1}$$
 won't work: cannot find $X = f^{-1}(R)$ subtraction-free.

Instead, we use R = I + hX, with h sufficiently small.

The algorithm

Choose h small enough so that

$$v_i + d_i h + q_{ii} h^2 > 0 \tag{*}$$

(and the subtraction is 'tame').

- ② Set $A := \frac{1}{h^2} V \ge 0$, $B := 2\frac{1}{h^2} V + \frac{1}{h} D$, $C := \frac{1}{h^2} V + \frac{1}{h} D + Q \ge 0$.
- **1** Use subtraction-free CR on (A, B, C) to compute R.
- Compute the off-diagonal of $X = h^{-1}(R I)$.
- **o** Compute the left Perron vector μ of Q using the triplet $Q\mathbf{1}=\mathbf{0}$.
- **o** Compute the triplet $\mu(-X) = \frac{1}{h} \mu A_{\infty} \hat{B}_{\infty}^{-1}$, and obtain diag(X).

Works whenever $v_i > 0$ for all i (positive variances). Otherwise, we can't enforce (*)

Zero variances

- In $E_2 = \{i : v_i = 0, d_i \le 0\}$, we can't obtain $v_i + d_i h + q_{ii} h^2 > 0$.
- We won't be able to choose U = I, because we only have enough stable eigenvalues to form an invariant pair of size $n |E_2|$.

Solution to both problems: shift infinite eigenvalues [He et al '01].

From:

$$A = \begin{bmatrix} + & 0 \\ 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} + & 0 \\ 0 & - \end{bmatrix}, \quad C = \begin{bmatrix} + & + \\ + & ?? \end{bmatrix}$$

move 2nd column "one matrix to the left" and change its sign:

$$\hat{A} = \begin{bmatrix} + & 0 \\ 0 & + \end{bmatrix}, \quad \hat{B} = \begin{bmatrix} + & - \\ 0 & M \end{bmatrix}, \quad \hat{C} = \begin{bmatrix} + & 0 \\ + & 0 \end{bmatrix}.$$

Shift \iff differentiating some of the equations.

See "index reduction" in ODE literature. [Kunkel Mehrmann '06]

Recovering the solution

Still, R is not the final solution.

The shift trick adds spurious zero eigenvalues: $R = \begin{bmatrix} + & 0 \\ + & 0 \end{bmatrix} \hat{B}_{\infty}^{-1}$. Solution to remove them: switch to a different invariant pair:

$$(KRK^{-1})^2KA + (KRK^{-1})KB + KC = 0.$$

$$\begin{bmatrix} R_{11} & 0 \\ R_{12} & 0 \end{bmatrix}^2 \begin{bmatrix} I & \Psi \\ 0 & I \end{bmatrix} A + \begin{bmatrix} R_{11} & 0 \\ R_{12} & 0 \end{bmatrix} \begin{bmatrix} I & \Psi \\ 0 & I \end{bmatrix} B + \begin{bmatrix} I & \Psi \\ 0 & I \end{bmatrix} C = 0.$$

New R is block-triangular \implies "reduced invariant pair" $(R_{11}, [I \quad \Psi])$.

True but not obvious: all this can be done subtraction-free.

The (general) algorithm

- ① Choose h small so that $h^{-2}v_i + h^{-1}d_i + q_{ii} > 0$ for all $i \notin E_2$.
- ② Set $A := \frac{1}{h^2}V \ge 0$, $B := 2\frac{1}{h^2}V + \frac{1}{h}D$, $C := \frac{1}{h^2}V + \frac{1}{h}D + Q \ge 0$.
- Shift technique to produce equivalent $\hat{A}, \hat{B}, \hat{C}$.
- ullet Use componentwise accurate CR on $(\hat{A},\hat{B},\hat{C})$ to compute \hat{B}_{∞} .
- Use similarity as in the previous slide to compute $(R_{11}, [I \ \Psi])$.
- Compute the off-diagonal of $X = h^{-1}(R_{11} I)$.
- **②** Compute the left Perron vector μ of Q using the triplet $Q\mathbf{1}=\mathbf{0}$.
- **Outputs** The compute a triplet $\mathbf{v}^{\top}(-X) = \mathbf{w}^{\top}$ (long formula omitted).

Works even with zero variances.

Experiments: the competitors

- KK [Karandikar Kulkarni '95]: compute eigenvalues explicitly.
- AS [Agapie Sohraby '01]: iterative algorithm for span(stable eigenvalues), then orthogonal transformations.
- LN [Latouche Nguyen '15]: (non-subtraction-free) Cyclic Reduction.
- QZ QZ algorithm: orthogonal transformations well-known linear algebra workhorse.
- NP our new algorithm.

Problem	KK	AS	LN	QZ	NP
NP15	2.7e-12	2.5e-07	2.9e-13	1.8e-12	1.7e-16
NP15s	1.3e-12	2.2e-07	-	6.2e-13	1.8e-16
rand8	2.8e-15	1.5e-15	1.6e-15	2.4e-15	2.7e-16
rand8s	2.9e-15	1.8e-13	-	2.3e-15	3.1e-16
rand20	4.4e-15	9.6e-14	5.6e-15	4.8e-15	3.0e-16
rand20s	3.2e-15	3.0e-12	-	4.1e-14	1.1e-15
rand50	5.9e-15	4.0e-14	4.0e-14	5.6e-14	6.9e-16
rand50s	5.6e-14	1.2e-10	-	3.5e-14	5.2e-16
imb8	9.7e-12	1.9e-09	1.1e + 00	7.1e-13	9.0e-13
imb8s	2.6e-14	1.3e-08	-	1.3e-12	1.1e-15
imb20	4.6e-11	2.1e-07	3.2e-04	1.1e-09	9.1e-12
imb20s	4.4e-12	6.9e-06	-	5.9e-12	4.0e-13
imb50	2.0e-10	9.8e-06	7.2e-01	1.0e-08	8.3e-10
imb50s	2.0e-10	3.3e-05	-	1.0e + 00	2.6e-13

Table: Forward error $\frac{\|\tilde{X}-X\|}{\|X\|}$

Error on $U = \begin{bmatrix} I & \Psi \end{bmatrix}$

Problem	KK	AS	LN	QZ	NP
NP15s	2.3e-15	1.8e-11	-	2.8e-15	1.3e-16
rand8s	1.2e-14	3.7e-13	-	2.4e-15	2.5e-15
rand20s	7.1e-15	7.7e-11	-	6.7e-14	2.1e-15
rand50s	3.4e-14	3.5e-09	-	5.3e-14	4.7e-16
imb8s	8.3e-15	5.2e-09	-	1.1e-11	5.2e-15
imb20s	1.4e-10	1.9e-08	-	2.8e-11	4.0e-11
imb50s	6.9e-11	9.0e-09	-	1.0e-04	6.1e-08

Table: Forward error $\frac{\|\tilde{\Psi}-\Psi\|}{\|\Psi\|}$

Conclusions and open points

- Subtraction-free, componentwise accurate algorithm for MMBM.
 [Nguyen P. arXiv:1605.01482]
- There's also [Nguyen P. '15] for fluid queues.
- Similar to [Ramaswami '99] QBD construction but for MMBM.
- Future plan: remove the 2^k factor in the error for CR.
- Ideas from ODEs (index reduction, stability conditions) and linear algebra (shift technique, invariant pairs).

Conclusions and open points

- Subtraction-free, componentwise accurate algorithm for MMBM.
 [Nguyen P. arXiv:1605.01482]
- There's also [Nguyen P. '15] for fluid queues.
- Similar to [Ramaswami '99] QBD construction but for MMBM.
- Future plan: remove the 2^k factor in the error for CR.
- Ideas from ODEs (index reduction, stability conditions) and linear algebra (shift technique, invariant pairs).

Thanks for your attention! Questions?