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Subtraction-free algorithms

Error analysis in an (imprecise) slogan
TL;DR: when you subtract two close numbers, you lose accuracy.

More precise: instead of a and b, a computer may store a + § and b + ¢; the number
(a+ &) — (b+¢) may be at a large relative distance from a — b (if a and b have the
same sign).

So, let’s stop doing subtractions.

Luckily, for many probabilities computations this is possible.
E.g., computing AB, for A>0,B > 0.

Most subtractions come from M-matrices, but we can avoid them!
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Regular M-matrices

A matrix A with sign pattern (possibly including zeros)
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_+__
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is called regular M-matrix if there are v > 0, w > 0 such that Av = w.
E.g., (—Q)1 = 0 for the rate matrix of a CTMC

Attention! [Guo CH, 2013]

Not all M-matrices are regular! E.g., l—ol 8]
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GTH algorithm

For a regular M-matrix A, one can store its off-diagonal entries, v and w
(triplet representation).

GTH-like algorithm [Grassmann et al '85, O'Cinneide '93, Alfa et al '02...]

Given a triplet representation for A € R"*", one can compute B = A~!
subtraction-free, obtaining perfect componentwise accuracy:

|byj — by| < O(n®) - |by] - eps.

Variants: LU factorization, left and right kernel, Perron vector.
Variant: v A=w'
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GTH algorithm

An example
1

A=121 14-

]: can only compute inverse up to accuracy k(A) ~ e~ 1.

A—-? s schthatA1 = O'fllacc acy possible
=]y o, |su 1_5'” uracy possible.

Works especially well when dealing with different orders of magnitude.

Plan: triplet representation are a great idea — let’s rewrite our matrix
iterations to use them!
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Obtaining triplets

Theorem [Nguyen P. '16 — or earlier?]

Given a regular M-matrix and its triplet representation partitioned as

& o]l

one can obtain explicitly without subtractions triplet representations for its
submatrices and Schur complements (censorings):

DV2 = Wp — CV1,
(A—BD1C)vi = wy — BD 1ws.
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Cyclic reduction

CR solves matrix equations of the form R?A — RB + C = 0, with
A, C >0, and B— A — C a regular M-matrix [Bini et al '01, BLM book]

Cyclic Reduction

A=A By=By=B,G=C
As1 = AcBi T Ax,
Bii1 = Bk — AxB PGk — kB M Ax,
Chs1 = kB ' Ck,
Bii1 = Bk — CB A

At the end of the iteration, R = Coéo_ol, where Boo = lim Bk.
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Cyclic Reduction and triplets

B -C
Cyclic Reduction = Schur complements on -A B -C
—-A B

Two triplet representations follow:

(Akx — Bk + Cx)1 = 0: gives triplet for By, already known and used. [e.g.
Bini et al, SMCTools software]

(Ao — By + Ci)1 = 0: gives triplet for B, new for the final step.

Theorem [Nguyen P. '16]

CR with triplet representations gives I —f| < 0(2" n*)|f|eps for the
computed value f of each entry f of Ag, Bk, Cx, Bk, Ry.

F. Poloni (U Pisa) MAM9 2016 8 /19



Doubling algorithm

An unusual matrix iteration that can be seen as repeated censoring /

Schur complementation:
L[E o], o 6]\ [E o
0 F H 0 0 F

Enew Gnew _ 0 G
Hnew Fnew H 0
Keep track of triplet representations at each step =

componentwise-accurate algorithms for fluid queues / Riccati equations.
[Xue et al '12, Nguyen P. '15, Xue Li '16]
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Markov-modulated Brownian motion [Asmussen '95, Karandikar
Kulkarni '95, Rogers '94]

o ¢(t) continuous-time Markov chain with transition matrix Q € R™*";

o y(t) evolves as Brownian motion with drift dy(;) and variance vyy).

The invariant density follows

P'(x)V —p'(x)D+p(x)Q = 0.
V,D € R™" diagonal matrices containing v;, d;.
Invariant density and many properties can be computed using an invariant
pair, i.e., (X € R 1) e ]RZX”) such that
X2UV — XUD+ UQ =0.

[Rogers '94, lvanovs, '10, Betcke Kressner '11, Gohberg et al '82]
Often, U = [l W}
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Invariant pairs and Cyclic Reduction

How do we compute invariant pairs? Cyclic reduction gives a special one:
R?IA—RIB+1C = 0.
Plan: tinker with the problem to turn it into this form.

Discretizing transformation from eigenvalue properties: [Bini et al '10]
@ we need a “continuous-time stable” pair: eig(X) C left half-plane.

@ CR produces a “discrete-time stable” one: eig(R) C unit circle

So we make a change of variables R = f(X).

R = (I+ X)(I — X)~! won't work: cannot find X = f~1(R)
subtraction-free.

Instead, we use R = I + hX, with h sufficiently small.

F. Poloni (U Pisa) MAM9 2016 1/19



The algorithm

@ Choose h small enough so that
Vi + dih + qih* > 0 (*)

(and the subtraction is ‘tame’).
Q@ Set A:=LV >0, B:=2%5V+iD, C:=%V+iD+Q>0.
@ Use subtraction-free CR on (A, B, C) to compute R.
@ Compute the off-diagonal of X = h=1(R — ).
© Compute the left Perron vector p of Q using the triplet Q1 = 0.
@ Compute the triplet p(—X) = %[LAOOBO_Ol, and obtain diag(X).

Works whenever v; > 0 for all i (positive variances).
Otherwise, we can't enforce (*)
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Zero variances

o In B, = {i:v;=0,d; <0}, we can't obtain v; + d;h + g;;h*> > 0.
o We won't be able to choose U = [, because we only have enough
stable eigenvalues to form an invariant pair of size n — | Ep|.

Solution to both problems: shift infinite eigenvalues [He et al '01].

From:

[+ 0
A‘lo 0|’

B =

+ 0
0

+

’C:+??

move 2" column “one matrix to the left” and change its sign:

+ 0
0 +|’

A=

B=

+
0 M

~

+ 0
+ 0

y =

Shift < differentiating some of the equations.
See “index reduction” in ODE literature. [Kunkel Mehrmann '06]
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Recovering the solution

Still, R is not the final solution.

+ 0 /‘_1
T ool B

Solution to remove them: switch to a different invariant pair:

The shift trick adds spurious zero eigenvalues: R =

(KRK ')2KA+ (KRK Y)KB+ KC =0.

Ry 01°[1 w
Ry 0

0 |/

I v
0 |/

I v
A+ B+0 /C—O.

Rii1 O
Ri2 0

New R is block-triangular = “reduced invariant pair” (R11,[/ V7]).

True but not obvious: all this can be done subtraction-free.
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The (general) algorithm

Choose h small so that h=2v; + h=1d; + g;; > 0 for all i & E>.

Set A:=%V >0, Bi=25V+3iD, C:i=4V+3iD+Q>0.
Shift technique to produce equivalent /2\, B, C.

Use componentwise accurate CR on (A, B, ) to compute B..

Use similarity as in the previous slide to compute (Ry1, [/ ¥]).
Compute the off-diagonal of X = h™1(Ry; — ).

Compute the left Perron vector p of @ using the triplet Q1 = 0.
T (

©00000O0CO

Compute a triplet vT(—X) = w (long formula omitted).

Works even with zero variances.
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Experiments: the competitors

KK [Karandikar Kulkarni '95]: compute eigenvalues explicitly.

AS [Agapie Sohraby '01]: iterative algorithm for span(stable
eigenvalues), then orthogonal transformations.

LN [Latouche Nguyen '15]: (non-subtraction-free) Cyclic Reduction.

QZ QZ algorithm: orthogonal transformations — well-known
linear algebra workhorse.

NP our new algorithm.
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Problem KK AS LN QZ NP
NP15 2.7e-12 25e-07 209e-13 1.8e-12 1.7e-16
NP15s 1.3e-12 2.2e-07 - 6.2e-13  1.8e-16
rand8 2.8e-15 1.5e-15 1.6e-15 2.4e-15 2.7e-16
rand8s 2.9e-15 1.8e-13 - 2.3e-15 3.1e-16
rand20 4.4e-15 9.6e-14 5.6e-15 4.8e-15 3.0e-16
rand20s 3.2e-15 3.0e-12 - 4.1e-14 1.1e-15
rand50 5.9e-15 4.0e-14 4.0e-14 5.6e-14 6.9e-16
rand50s 5.6e-14 1.2e-10 - 3.5e-14 5.2e-16
imb8 9.7e-12  1.9e-09 1.1e+00 7.1e-13 9.0e-13
imb8s 2.6e-14 1.3e-08 - 1.3e-12  1.1e-15
imb20 4.6e-11 2.1e-07 3.2e-04 1.1e-09 9.1e-12
imb20s  4.4e-12  6.9e-06 - 5.9e-12 4.0e-13
imb50 2.0e-10 9.8e-06 7.2e-01 1.0e-08 8.3e-10
imb50s  2.0e-10 3.3e-05 - 1.0e+00 2.6e-13

X=X

Table: Forward error 0

F. Poloni (U Pisa)

MAM9 2016

17 / 19



Error on U = [I l[/]

Problem KK AS LN QZ NP
NP15s 2.3e-15 1.8e-11 - 2.8e-15 1.3e-16
rand8s 1.2e-14 3.7e-13 - 2.4e-15 2.5e-15

rand20s 7.le-15 7.7e-11 - 6.7e-14 2.1e-15

rand50s 3.4e-14 35e-09 - 53e-14 4.7e-16

imb8s 8.3e-15 5.2e-09 - 1.1e-11 5.2e-15
imb20s 1.4e-10 1.9e-08 - 2.8e-11 4.0e-11
imb50s  6.9e-11 9.0e-09 - 1.0e-04 6.1e-08

¥—w
Table: Forward error | ] I
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Conclusions and open points

@ Subtraction-free, componentwise accurate algorithm for MMBM.
[Nguyen P. arXiv:1605.01482]

@ There's also [Nguyen P. '15] for fluid queues.
@ Similar to [Ramaswami '99] QBD construction but for MMBM.
o Future plan: remove the 2% factor in the error for CR.

o Ideas from ODEs (index reduction, stability conditions) and linear
algebra (shift technique, invariant pairs).
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Thanks for your attention!
Questions?
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