Permuted graph bases for structured subspaces and pencils

Volker Mehrmann1 Federico Poloni2

1Technische U Berlin, Inst of Mathematics
2U Pisa, Italy, Dept of Computer Science

4th IMA Conference on Numerical Linear Algebra and Optimisation
September 2014
Subspaces, bases and graph bases

Definition

U, V tall thin matrices with full column rank.

$U \sim V$ if $U = VB$ for a square invertible $B \iff$ same column space.

Each V with $U \sim V$ can be used to work with the subspace $\text{im} U$.

- If $U = QR$ (tall skinny QR), $U \sim Q$.
- If $U = \begin{bmatrix} B \\ N \end{bmatrix}$, with B square invertible, $U \sim \begin{bmatrix} I \\ NB^{-1} \end{bmatrix}$ graph basis.

$B^{-1} \rightarrow$ danger: can be ill-conditioned.
Permuted graph bases

- If B is any square invertible submatrix of U, we can post-multiply by B^{-1} to enforce an identity in a subset of rows.

Example

\[
U = \begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
1 & 1 & 2 \\
3 & 5 & 8 \\
\end{bmatrix} \sim \begin{bmatrix}
1 & 0 & 0 \\
0.5 & 0.5 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
2 & 0 & 1 \\
\end{bmatrix}
\]

We can write this as $U \sim P \left[\begin{array}{l} I \\ X \end{array} \right]$, P permutation matrix.

Ill-conditioning — how bad can it be?

Theorem [Knuth, ’84 or earlier]

Each full-column-rank U has a permuted graph basis $P \left[\begin{array}{l} I \\ X \end{array} \right]$ with $|x_{ij}| \leq 1$
How to compute them?

The theory Choose submatrix B with maximal $|\det B|$. Cramer’s rule on

$$\begin{bmatrix} \text{row of } X \end{bmatrix} = \begin{bmatrix} \text{row of } U \end{bmatrix} B^{-1} \text{ gives } x_{ij} = \frac{\det (\text{other submatrix})}{\det B}.$$

Related to rank-revealing factorizations, algebraic geometry but NP-hard!

The practice Find $|x_{ij}| > 1$, update basis simplex-algorithm–style

$$\begin{bmatrix} 1 & 0 & 0 \\ 0.5 & 0.5 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & 0 & 1 \end{bmatrix}$$

this row out

this row in

Relax to $|x_{ij}| \leq \tau$ with $\tau > 1$ for better convergence.
Gains and losses

Condition number $\kappa(V) = \frac{\sigma_{\text{max}}(V)}{\sigma_{\text{min}}(V)}$ determines column space sensitivity.

Theorem

If $|x_{ij}| \leq \tau$, then $\kappa(P \begin{bmatrix} I & X \end{bmatrix}) \leq \sqrt{mn\tau^2 + 1}$

With respect to an orthogonal basis, we lose conditioning (but not too much!), but we gain an identity submatrix. What use is it?

Several applications in optimization:

- Approximate $\text{max}(f)$ on a large grid, cross-tensor approximation.
 [Oseledets, Savostyanov, Tyrtishnikov et al, '10]

- Minimize function of a subspace (Grassmann manifold) $f(U)$.
 [Markovsky, Usevich '14]

- Precondition large-scale least-squares via “basis variables”.
 [Arioli, Duff '14]
A structured version

Image of $U \in \mathbb{C}^{2n \times n}$ Lagrangian if $U^H J_{2n} U = 0$, with $J_{2n} = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$.

Graph matrix $U = \begin{bmatrix} I \\ X \end{bmatrix}$ Lagrangian \iff X Hermitian.

Not true for $P \begin{bmatrix} I \\ X \end{bmatrix}$ though: we must change the concept of permutation.

Symplectic swaps

Vector transformations generated by J_2 on (x_k, x_{n+k}) for each k:

$\begin{bmatrix} x_1 & \cdots & -x_{n+k} & \cdots & x_n & x_{n+1} & \cdots & x_k & \cdots & x_{2n} \end{bmatrix}$.
Lagrangian permuted graph bases

Theorem [Mehrmann, P. ’12]

If \(\text{im } U \) Lagrangian, then there exists Lagrangian permuted graph basis \(U \sim S \left[\begin{array}{c} I \end{array} \right] \) with \(S \) symplectic swap, \(X = X^H \) and \(|x_{ij}| \leq \sqrt{2} \).

Similar but not trivial, structure and allowed transformations must match.

Example

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{bmatrix}
\sim
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1/2 & -5/6 & 1/6 \\
-1/2 & -1/2 & 1/2 \\
-1/2 & -1/6 & 5/6 \\
0 & 0 & 1
\end{bmatrix}.
\]

Allows us to store and operate on exactly Lagrangian subspace stably.
Results for pencils

Definitions: matrix pencil: degree-1 matrix polynomial \(L(x) = L_1 x + L_0 \).
Assume here regular, i.e., \(\det L(x) \neq 0 \).

Eigenvalue, eigenvector of a pencil: \(L(\lambda)v = 0 \). Unchanged if I premultiply:

Definition

\[
L(x) \sim M(x) \quad \text{if} \quad L_1 = BM_1, L_0 = BM_0 \quad \text{for} \quad B \quad \text{square invertible.}
\]

Note that

\[
L(x) \sim M(x) \iff \begin{bmatrix} L_1 & L_0 \end{bmatrix}^H \sim \begin{bmatrix} M_1 & M_0 \end{bmatrix}^H.
\]

So one can use results on subspaces to normalize pencils

Example

\[
L(x) \sim \begin{bmatrix} 1 & * & 0 \\ 0 & * & 1 \\ 0 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} * & * & 0 \\ * & * & 0 \\ * & * & 1 \end{bmatrix}, \quad |*| \leq 1.
\]
Results for structured pencils

Symplectic pencils: \(L(x) \in \mathbb{C}[x]^{2n \times 2n} \) such that \(L_1 J_{2n} L_1^H = L_0 J_{2n} L_0^H \).

\[
\begin{bmatrix}
L_1 & L_0
\end{bmatrix}^H
\] essentially Lagrangian (after some row/sign changes)

- Among each two same-color columns, one is a column of \(I_{2n} \)
- The other entries satisfy \(|*| \leq \sqrt{2}\), and can be pieced together (modulo signs) into a Hermitian matrix

Hamiltonian pencils: \(L(x) \in \mathbb{C}[x]^{2n \times 2n} \) such that \(L_1 J_{2n} L_0^H = -L_0 J_{2n} L_1^H \).

\[
\begin{bmatrix}
1 & 0 & * & * \\
0 & 1 & * & * \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
0 & 0 & * & * \\
* & 0 & 0 & * \\
* & 0 & 0 & 1 \\
* & * & * & *
\end{bmatrix}
\]
Linear-quadratic optimal control

Common control-theory problem: compute stable (eigenvalues with \(\text{Re} \lambda < 0 \)) invariant subspace of

\[
\begin{bmatrix}
0 & I_n & 0 \\
-I_n & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
0 & A & B \\
A^T & Q & S \\
B^T & S^T & R
\end{bmatrix}
\]

Traditional solution (recast in our language): first enforce identity

\[
\begin{bmatrix}
I_n & 0 & 0 \\
0 & I_n & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\ast & \ast & 0 \\
\ast & \ast & 0 \\
\ast & \ast & I_m
\end{bmatrix}
\]

Now it’s block triangular; **deflate** and work on block-2 \(\times \) 2 pencil in *orange*.

The *orange* pencil is Hamiltonian, better to **preserve structure**.
A different deflation

Why must the identity go there?

\[
\begin{bmatrix}
* & * & 0 \\
* & * & 0 \\
* & * & 0
\end{bmatrix}
\times -
\begin{bmatrix}
* & * & 0 \\
* & * & 0 \\
* & * & I_m
\end{bmatrix}
\]

Put columns of \(I \) in half of the green and blue columns. The deflated top block-2 \(\times \) 2 pencil is Hamiltonian (in the format of our previous slide).

Example

\[
\begin{bmatrix}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\times -
\begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & \varepsilon
\end{bmatrix}
\sim
\begin{bmatrix}
1 & 0 & 0 \\
0 & \varepsilon & 0 \\
0 & -1 & 0
\end{bmatrix}
\times +
\begin{bmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

The deflation process is well-conditioned no matter how small \(\varepsilon \) is. (unlike many other algorithms.)
Invariant subspaces of Hamiltonians

Problem: compute stable \((\text{Re} \lambda < 0)\) inv. subspace of a Hamiltonian pencil
\((\iff\text{solve a Riccati equation, if subspace } U \text{ in graph basis})\)

Algorithm: a “pencil variant” of the matrix sign function iteration
\(A \mapsto \frac{1}{2}(A + A^{-1})\)

Two things needed at each step:

- Compute left kernel of \(\begin{bmatrix} L_1 \\ L_0 \end{bmatrix}\): use permuted graph bases:
 \[
 \begin{bmatrix} -X & I \end{bmatrix} P^{-1} P \begin{bmatrix} I \\ X \end{bmatrix} = 0.
 \]

- Normalize Hamiltonian pencil \(L_1 x + L_0\) keeping structure: use Lagrangian permuted graph bases (i.e., of \(\begin{bmatrix} L_1 \\ L_0 \end{bmatrix}^H\)).
Inverse-free sign method (with permuted graph bases)

Algorithm [Mehrmann, P. ’12 and ’13]

Input: \(L_1x + L_0 \) Hamiltonian;

1. compute \([-M_0 \ M_1] \) left kernel of \(\begin{bmatrix} L_1 \\ L_0 \end{bmatrix} \);
2. replace \(L(x) \) with \(M_0L_1x + \frac{1}{2}(M_1L_1 + M_0L_0) \);
3. compute Lagrangian permuted representation of \(L(x) \);
4. repeat 1–3 until convergence;
5. find kernel of \(L_1 + L_0 \);

How well does it go in practice? On a known set of benchmark problems (CAREX, [Benner et al, ’95, Chu et al ’07]), first algorithm to get perfect results on both:

- subspace residual down to machine precision;
- Lagrangian Structure preserved (exactly or up to machine precision).
Figure: Relative subspace residual for the 33 CAREX problems in \[\text{Chu et al., '07}\]
Figure: Lagrangianity residual for the 33 CAREX problems in [Chu et al., '07]

[Graph showing Lagrangianity residual for CAREX problems with different markers for PDA, inverse-free sign care (QZ), and [Chu et al., '07] (partial).]

- PDA
- inverse-free sign care (QZ)
- [Chu et al., '07] (partial)
Large scale AREs

This was for small-case dense problems; what about large, sparse control?

- Often, the invariant subspace can be represented cheaply as
 \[U \sim \begin{bmatrix} I \\ ZZ^T \end{bmatrix}, \] with \(Z \) tall skinny.

- Orthogonal basis not pursued, difficult to use this low-rank property.

A first attempt to use these ideas:

1. Run a standard solution algorithm (ADI) keeping not \(Z \) but
 \[\begin{bmatrix} B \\ N \end{bmatrix} \]
 (up to \(\sim \)) such that \(Z = NB^{-1} \);

2. using the kernel trick \([-XX^T]P^{-1}P \frac{I}{X} = 0 \), build stable low-rank
 representation \(U \sim \begin{bmatrix} I - V_1V_2^T \\ V_3V_4^T \end{bmatrix} \), all the \(V_i \) tall skinny.

How does it work? Beneficial in some ill-conditioned cases, large \(\|Z\| \).
An experiment

Figure: Comparison of ADI and PG-ADI, random matrix and RHS
Large scale AREs

Theorem [Mehrmann, P. preprint]

Given orthogonal $[\frac{B}{N}]$ such that $Z = NB^{-1} \in \mathbb{C}^{n \times m}$, we can build (quickly and stably) tall skinny V_i such that

\[
\begin{bmatrix}
I \\
ZZ^T
\end{bmatrix} \sim V = \begin{bmatrix}
I - V_1 V_2^T \\
V_3 V_4^T
\end{bmatrix}, \quad \kappa(V) \leq \frac{\sqrt{3}}{\sqrt{2}}(mn\tau^2 + n\tau).
\]
Conclusions

Small dense case

- Works great!

Large-scale case still preliminary work; interesting messages:

- We can use permuted graph bases also in sparse problems.
- The kernel trick $\begin{bmatrix} -X & I \end{bmatrix} P^{-1} P \begin{bmatrix} I \\ X \end{bmatrix} = 0$ seems even more useful in the tall skinny case.
- Another reflection: for each Hamiltonian H, there is S such that for $S^{-1}HS$ the invariant subspace problem “in Riccati form” $U = \begin{bmatrix} I \\ X \end{bmatrix}$ is well-conditioned.
 How to exploit this? Can we run permuted graph Newton?

And, finally:

- Bases with identities are underrated. They work well if you keep flexible on the position of the I submatrix. Try them!
Conclusions

Small dense case
- Works great!

Large-scale case still preliminary work; interesting messages:
- We can use permuted graph bases also in sparse problems.
- The kernel trick \([-X \ I] P^{-1} P \begin{bmatrix} I \\ X \end{bmatrix} = 0\) seems even more useful in the tall skinny case.
- Another reflection: for each Hamiltonian H, there is S such that for $S^{-1}HS$ the invariant subspace problem “in Riccati form” $U = \begin{bmatrix} I \\ X \end{bmatrix}$ is well-conditioned.

How to exploit this? Can we run permuted graph Newton?

And, finally:
- Bases with identities are underrated. They work well if you keep flexible on the position of the I submatrix. Try them!

Thanks for your attention!

F. Poloni (U Pisa)
Permuted Graph bases
Birmingham ’14 19 / 19