
Chapter 1

Evaluating arithmetic

expressions

In this introductory chapter we explain the idea of formal semantics for a programming
language using as an example a very simple language for arithmetic expressions Exp,
involving numerals and two operations, addition and multiplication. Anybody reading
these notes will know very well how to evaluate these expressions. But our purpose is
to use the language to explain the formalism we will use to give semantics to languages
which are much more complicated than Exp.

1.1 Syntax

The syntax for a very simple language of arithmetic expressions Exp is given in Fig-
ure 1.1. It uses an auxiliary set of numerals, Nums, which are syntactic representa-
tions of the more abstract set of natural numbers N. The natural numbers 0, 1, 2, . . .
are mathematical objects which exist in some abstract world of concepts. They have
concrete representations in di↵erent languages. For example the natural number 5 is
represented by the string of symbols five in English and the string cinq in French; the
Romans represented it by the symbol V. In our language of arithmetic expressions it
will be represented as the corresponding symbol in bold italic font 5.

In addition to the numerals the BNF schema in Figure 1.1 also uses two extra sym-
bols, + and ⇥. Once more most people would know that these symbols are represen-
tations for binary mathematical operations on natural numbers, namely addition and
multiplication. Thus the first line of Figure 1.1 says that there are three ways to con-
struct an arbitrary expression E in the language Exp:

(i) If n is an arbitrary numeral then it is also an arithmetic expression. From this we
therefore already know that there an infinite number of arithmetic expressions,
namely 0, 1, 2, . . .

(ii) If we have already constructed two arithmetic expressions E1 and E2 then E1+E2
is also an arithmetic expression in Exp.

3

Semantics Trinity term 2013

E 2 Exp ::= n | E + E | E ⇥ E

n 2 Nums ::= 0 | 1 | 2 | . . .

Figure 1.1: Syntax: arithmetic expressions

(iii) Similarly if E1, E2 are two expressions in Exp then E1 ⇥ E2 is also an arithmetic
expression in Exp.

Here we take the view that schemas such as that in Figure 1.1 specify the abstract
syntax of a language, rather than its concrete syntax. The latter is concerned with the
precise linear sequences of symbols which are valid terms of the language whereas
the former describes terms purely in terms of their structure. Another way of saying
this is that the schema in Figure 1.1 describes the valid abstract syntax trees of the
language, rather than linear sequences of symbols. Thus the following is a valid tree in
the language Exp:

+

3

⇥

2 7

This is because it is formed by condition (ii) above because:

(a) 3 is a valid tree in Exp; this follows from condition (i)

(b) the object

⇥

2 7 is also in Exp. This in turn follows by condition (iii)
above, because both the objects 2 and 7 are valid trees; these two statements are an
instance of condition (i).

On the other hand a tree such as

+

⇥

3

⇥

4 6

is not in the language Exp; no matter how we try to apply the rules (i) - (iii) above we
will not be able to construct it.

However it would be tedious to have to continually draw these syntax trees and
therefore throughout the notes we use a convention for their linear representation; this
consists of using brackets in order to indicate the structure of expressions. Thus in

Draft: January 9, 2013 4

Semantics Trinity term 2013

linear representation the valid tree above will be rendered as 3 + (2 ⇥ 7). The linear
representation (3 + 2) ⇥ 7 on the other hand represents a di↵erent tree, namely

⇥

+

3 2

7

This linear representation of abstract tress will be rather informal; for example there
are many linear expressions, such as 3+ 2⇥ 7, which represent no abstract syntax tree.
The over-riding principle will be that given an expression we should always know its
structure; how it is constructed using the rules (i) (ii) and (iii) above.

1.2 Big-step semantics

Anybody with the least exposure to mathematics will know how to evaluate expressions
in the language Exp; for example 3+(2⇥7) evaluates to 17while (3+2)⇥7 evaluates to
35. However this might not be the case for more complicated languages, and therefore
we need general methods for specifying how expressions are to be evaluated, or more
abstractly what should be the result of evaluating an expression. We will illustrate these
methods using the simple language Exp.

One approach would simply be to write a computer programme, an evaluator or
interpreter, which inputs an arithmetic expression and outputs the correct result. How-
ever this is unsatisfactory for a number of reasons:

(i) As an explanation it is unnecessarily complicated. Writing the programme would
involve all kinds of superfluous decisions about data-structures, and control flow.

(ii) It would also be overly prescriptive; the program would essentially give a spe-
cific algorithm for evaluating expressions, thereby o↵ering a bias against other
possibilities.

Suppose instead we merely wanted to specify what the result should be, rather than how
the evaluation should proceed. One way to do this would be to publish a table consist-
ing of all the possible expressions together with the numeral to which they should
evaluate. Apart from being incredibly tedious this approach is doomed to failure as
there are an infinite number of possible expressions. But as is made clear in the BNF
description of the language in Figure 1.1, there is a simple structure to all expressions;
this can be exploited to give a simple specification of what the result should be from
any algorithm designed to evaluate an arbitrary expression.

But any such specification can only be understood by somebody who is familiar
with the abstract arithmetic operations of addition and subtraction. Note that this is
also true of evaluators or interpreters; it would be impossible to implement a program
to evaluate expressions if the target language had no way to execute these arithmetic
operations.

Suppose we want to evaluate an arbitrary expression E 2 Exp. According to the
description of Exp in Figure 1.1 there are three possibilities for the structure of E:

Draft: January 9, 2013 5

Semantics Trinity term 2013

(b-num)

n + n

(b-add)

E1 + n1 E2 + n2
E1 + E2 + n3

n3 = add(n1, n2)

Figure 1.2: Big-step semantics

(i) E is some numeral n: In this case the result of evaluation should obviously be the
numeral n itself.

(ii) E has the structure E1 + E2 for some (sub)-expressions E1 and E2. In this case
the result of evaluating E should be the numeral obtained by applying the binary
addition operator to the results obtained from E1 and E2. Spelled out in more
detail, if n1 is the result of evaluating E1 and n2 is the result of evaluating E2 then
the result of evaluating E should be the numeral n

3

where add(n1, n2) = n3.

(iii) E has the structure E1⇥E2 for some (sub)-expressions E1 and E2. In this case we
proceed as in case (ii) but using the multiplication operator mult(�,�) in place of
addition.

Note the use of numbers versus numerals in (ii) and (iii). Both add(�,�) and mult(�,�)
are abstract mathematical operations on natural numbers; so in (ii) they are applied
to the numbers n1, n2, to obtain the number n3, and the result of the valuation is the
corresponding numeral n3.

The specification given in (i)-(iii) above does not necessarily constitute a precise
algorithm for evaluating expressions but it can be used by any reasonably intelligent
person to calculate the prescribed result. For example the result of evaluating (2+ 6)+
(2 ⇥ 7) should be the numeral 22. This follows by an application of (ii) because:

(a) (2 + 6) + (2 ⇥ 7) has the form E1 + E2 where E1 is 2 + 6 and E2 is 2 ⇥ 7

(b) the result of evaluating 2 + 6 should be 8

(c) the result of evaluating 2 ⇥ 7 should be 14

(d) and add(8, 14) is the number 22.

Of course this is not the complete justification of why (2+6)+(2⇥7) should evaluate to
22. In addition we need to justify steps (b) and (c) above; these in turn can be justified
using applications of the principles (ii) and (iii) respectively.

With some thought the reader should be convinced that these principles, (i), (ii),
and (iii), are su�cient to determine the value of any expression from Exp no matter
how complicated. However they are expressed in natural language (English), which is
notoriously prone to mis-interpretation and mis-understanding. For Exp, a very simple
language, this is not the case, but for more complicated languages it is better to avoid
the vagaries of natural language. So instead we propose to replace specifications such

Draft: January 9, 2013 6

Semantics Trinity term 2013

as (i) - (iii) above with formal logical systems which do not su↵er from the defects of
natural language.

The idea is to use logical rules whose general format is given by:

name

hypothesis . . . hypothesis

conclusion
(side-condition) (1.1)

Each rule has

• at least one conclusion, written underneath the line

• a list, possibly empty, of hypotheses, written above the line

• a side-condition, again possibly empty

• a name with which we can refer to the rule.

The intuition is that if all the hypotheses hold, and the side-condition holds, then the
conclusion also holds.

Let us now see how we can recast the informal specification of the semantics above
using this form of logical rules. The predicate in which we are interested is: the ex-
pression E should evaluate to the numeral n. Let us denote this English phrase with a
mathematical predicate or judgement

E + n

Now what we want is a set of rules which determine valid instances of this predicate.
Two such rules are given in Figure 3.2, corresponding to the informal specifications (i)
and (ii) above; the missing third rule can be supplied by the reader to correspond with
clause (iii). The first rule, (b-num), has no hypothesis and no side condition; such rules are
refered to as axioms. Thus it says that n + n for every numeral n; thus it corresponds to
the informal specification (i) above. The second rule, (b-add), corresponds to the informal
specification (ii); it has two hypotheses, namely that E1 + n1 and E2 + n2 and one side-
condition about natural numbers, n3 = add(n1, n2). If these hypotheses are known to
hold and the side-condition is true then the conclusion E1 + E2 + n3 is also true.

These rules can now be used formally to determine when, for a particular expres-
sion E and numeral n, the judgement E + n is valid. Valid judgements are those which
can be derived by any sequence of applications of the defining rules. Here is an exam-
ple of such a derivation, which determines that the judgement 3 + (2 + 1) + 6 is valid,
that is, the evaluation of the expression 3 + (2 + 1) should evaluate to the numeral 6.

(b-num)
3 + 3

(b-num)
2 + 2

(b-num)
1 + 1

(b-add)
(2 + 1) + 3

(b-add)
3 + (2 + 1) + 6

The derivation is presented as an inverted tree, with the required judgement to be ver-
ified, 3 + (2 + 1) + 6, at the root. The tree is generated by applications of the defining

Draft: January 9, 2013 7

Semantics Trinity term 2013

(b-num)
2 + 2

(b-num)
6 + 6

(b-add)
(2 + 6) + 8

(b-num)
2 + 2

(b-num)
7 + 7

(b-mult)
(2 ⇥ 7) + 14

(b-add)
(2 + 6) + (2 ⇥ 7) + 22

Figure 1.3: An example derivation in the big-step semantics

rules, with the terminating leaves being generated by axioms. In this example we have
three applications of the axiom (b-num) and two applications of the rule (b-add).

Another example derivation is given in Figure 1.3; it makes reference to the (ob-
vious) missing rule (b-mult) for dealing with expressions of the form E1 ⇥ E2. This is a
formal justification of the valid judgement (2 + 6) + (2 ⇥ 7) + 22 corresponding to the
informal justification given in natural language in the clauses (a)-(d) on page 6.

We now sum up what has been achieved in this section. To do so let us introduce
the notation

b̀ig E + n (1.2)

to mean that there is some derivation of the judgement E + n using the three rules
(b-num), (b-add) and (b-mult). For example, because Figure 1.3 exhibits a derivation of the
judgement 2 + 6) + (2 ⇥ 7) + 22, we can conclude b̀ig 2 + 6) + (2 ⇥ 7) + 22. Then we
can say that we have given a formal semantics to the language Exp. By this we mean
that if somebody asks the question: To what value should the expression E evaluate?
we can answer: E should evaluate to a numeral n such that b̀ig E + n.

Before moving on we should say a few words about the format of the logical rules
which we use, in (1.1) above. We have not been very specific about the contents of the
various components, hypothesis, conclusion and side-condition. In general the purpose
of a rule is to constrain some predicate, the focus of the semantic definition. In this case
the predicate is +, a binary infix predicate between expressions and numerals. Conse-
quently it is natural that the conclusion, and very often the hypotheses, be particular
instances of this predicate; this is the case in the rules (b-add) and (b-num) in Figure 3.2. On
the other hand side-condition should concern auxiliary predicates and functions which
play a role, but a minor role, in the definition of the main predicate. We have seen that
it is not possible to understand the semantics of Exp without knowing that the symbols
+ and ⇥ refer to the mathematical functions add(�,�) and mult(�,�) on natural num-
bers; and in our rules the side-conditions refer to properties of these auxiliary functions.
Thus although one might consider an alternative rule such as

(b-add.alt)

E1 + n1 n3 = add(n1, n2)

E1 + E2 + n3
E2 + n2

the original rule (b-add) in Figure 3.2 is to be preferred.

Draft: January 9, 2013 8

Semantics Trinity term 2013

(s-left)

E1! E01
(E1 + E2)! (E01 + E2)

(s-n.right)

E2! E02
(n + E2)! (n + E02)

(s-add)

(n
1

+ n
2

)! n
3

n3 = add(n1, n2)

Figure 1.4: Small-step semantics

We should also point out that a rule such as (b-add) is actually a meta-rule, that is
formally represents an infinite number of concrete rules, obtained by instantiating the
meta-variables E1, E2, n1, n2 and n1. Thus among the many instances of (b-add) are

3 ⇥ 7 + 4 8 + 2
(3 ⇥ 7) + 8 + 6

6 = add(4, 2)
4 + 2 + 9 8 + 1 + 3
(3 ⇥ 7) + (8 + 1) + 12

12 = add(9, 3)

However the vast majority of these concrete instances are useless; if the premises can
not be established then they can not be employed in any valid derivation.

1.3 Small-step semantics

The big-step semantics of the previous section is not very constraining; it prescribes
what the answer should be when an expression is evaluated but says nothing about
how the actual evaluation is to proceed. For example, to evaluate (3 + 7) + (8 ⇥ 1)
we know that two additions have to preformed and one multiplication; but the big-
step semantics does not decree in what order these are to be carried out. For some
languages, for example those with side-e↵ects, the order of evaluation is important. In
this section we see an alternative semantics for Exp in which constraints on the order
of the basic operations can be made. In particular it will prescribe, indirectly, that the
order of evaluations should be from left to right.

The idea is to design a predicate on expressions which decrees which operation is
to be performed first, and then describes the result of performing this operation. This
is achieved indirectly by defining judgements of the form

E1! E2

to be read as: after performing one step of evaluation of the expression E1 the expres-
sion E2 remains to be evaluated; thus this judgement prescribes

• the first operation to be performed, transforming E1 into E2

• the remaining operations to be performed, embodied indirectly in the the residual
E1.

Draft: January 9, 2013 9

Semantics Trinity term 2013

The rules defining this small step relation! are given in Figure 1.4, although we leave
it to the reader to design the two rules, similar to (s-left) and (s-n.right), for dealing with
expressions of the form E1 ⇥ E2. Let us write

s̀m E1! E2

to mean that there is a derivation of the judgement E1! E2 using these rules. Thus we
have

s̀m (3 + 7) + (8 + 1) ! 10 + (8 + 1)

because of the following derivation:

(s-add)
3 + 7! 10

(s-left)
(3 + 7) + (8 + 1) ! 10 + (8 + 1)

As another example we have

s̀m 10 + (8 + 1) ! 10 + 9

because the following is a valid derivation:

(s-add)
8 + 1! 9

(s-n.right)
10 + (8 + 1) ! 10 + 9

On the other hand we do not have

s̀m (3 + 7) + (8 + 1) ! (3 + 7) + 9

because no matter how inventive we are with the rules in Figure 1.4 we will not be able
to construct a derivation of the judgement (3 + 7) + (8 + 1) ! (3 + 7) + 9; the reader
is invited to try.

By trying various examples readers should be able to convince themselves that if
s̀m E1 ! E2 then E2 is obtained from E1 by executing the left-most occurrence of an

operator, +,⇥, which has both its operands already evaluated. For example we have

s̀m (3 + 4) + (5 + 6) ! 7 + (5 + 6)

s̀m 3 + (4 + (5 + 6)) ! (3 + (4 + 11)

s̀m (3 + (4 + 5)) + 6 ! (3 + 9) + 6)

How do we use the small-step semantics to evaluate an expression, as in the previous
section? We construct derivations again and again until a numeral is obtained. For
example we have seen that s̀m (3+7)+(8+1)! 10+(8+1) and s̀m 10+(8+1)! 10+9.
In other words in two steps the expression (3 + 7) + (8 + 1) can be reduced to 10 + 9;

Draft: January 9, 2013 10

Semantics Trinity term 2013

this we write as s̀m (3+ 7)+ (8+ 1) !2
10+ 9.More generally for any natural number

k � 0 we write

E0!k Ek

if E0 can be reduced to Ek in k steps; that is, there are intermediate expressions Ei such
that

s̀m Eo! E1 s̀m E1! E2 s̀m Ek�1! Ek

This includes the case when k is 0, when Ek must be the same as E0; that is in 0
steps E0 can only reduce to itself. For example the reader should check the following
judgements, by showing that derivations can be obtained for appropriate intermediate
expressions:

(3 + (4 + 5)) + 6 !2
12 + 6

3 + (4 + (5 + 6)) !2
3 + 15

(3 + 7) + (8 + 1) !3
19

3 + (4 + (5 + 6)) !0
3 + (4 + (5 + 6))

To fully evaluate an expression we need to indefinitely apply the operations + and
⇥ until eventually a final numeral is obtained. Let us write

E!⇤ n

to mean that there is some natural number k � 0 such that E !k
n; in other words E

can be reduced to the numeral n in some number k steps. The reader should verify that
the following judgements are true, by instantiating the required number k:

(3 + 7) + (8 + 1) !⇤ 19
(3 + 4) + (5 + 6) !⇤ 18
3 + (4 + (5 + 6)) !⇤ 18

So just as the big-step semantics associates a value n to an expression E, via the
judgements b̀ig E+n, the small-step semantics provides an alternative method for doing
so, via the slightly more complicated judgements s̀m E!⇤ n.

1.4 Parallel evaluation

As we have seen, the small-step semantics prescribes a particular order in which the
operators in an expression are applied, namely left-to-right. Suppose we wish to relax
this; suppose we just want to dictate that all the operators are applied but wish to leave
the precise sequencing open. One of the roles of a formal semantics is to act as a
reference for compiler writers or implementers. Leaving the order of evaluation open
could then allow, for example, compiler writers to take advantage of technologies such
as multi-core to increase the e�ciency of an implementation.

Draft: January 9, 2013 11

Semantics Trinity term 2013

(s-left)

E1!ch E01
(E1 + E2)!ch (E01 + E2)

(s-right)

E2!ch E02
(E1 + E2)!ch (E1 + E02)

(s-add)

(n
1

+ n
2

)!ch n3

n3 = add(n1, n1)

Figure 1.5: Parallel semantics

In Figure 1.5 we give an alternative small-step semantics, with judgements of the
form E1 !ch E2, with the subscript referring to choice. Two rules are inherited from
Figure 1.4 but the rule (s-n.right) is replaced with the less restrictive (s-right). The net e↵ect
of the presence of the two rules (s-left) and (s-right) is that when evaluating an expression
of the form E1 + E2 the compiler or interpreter may choose to work on either of E1 or
E2. For example we have the derivation:

(s-add)
8 + 1!ch 9

(s-right)
(3 + 7) + (8 + 1) !ch (3 + 7) + 9

Using c̀h E1!ch E2 to denote the fact that the judgement E1!ch E2 can be derived using
the rules from Figure 1.5, we therefore have

c̀h (3 + 7) + (8 + 1) !ch (3 + 7) + 9 (1.3)

in addition to

c̀h (3 + 7) + (8 + 1) !ch 10 + (8 + 1) (1.4)

Recall from the previous section that this reduction (1.4) is not possible in the
standard left-to-right semantics. On the other hand note that every application of the
rule (s-n.right) is also an application of the more general (s-right). This means that any
derivation in the left-to-right semantics is also a derivation in the parallel semantics. It
follows that

s̀m E1! E2 implies c̀h E1!ch E2 (1.5)

In other words the parallel semantics is more general than the left-to-right; it allows
all the derivations of the left-to-right semantics but in addition it allows others such as
(1.4) above.

1.5 Questions questions

We have now seen three di↵erent semantics for the simple language of expressions
Exp, and various questions arise naturally. For example, intuitively we expect every

Draft: January 9, 2013 12

Semantics Trinity term 2013

expression in Exp to have a corresponding value. In terms of the big-step semantics
we expect the following to be true:

(Q1) For every expression E in Exp there exists some numeral n such
that b̀ig E + n.

The advantage of a formal semantics is that statements such as (Q1) can be formally
proved, or indeed disproved. The predicate + between expressions and numerals is
formally defined using a set of logical rules, those in Figure 3.2, and therefore (Q1)
amounts to a mathematical statement about the mathematical object +. As such it is
either mathematically true or false, which can be demonstrated using standard mathe-
matical techniques. These techniques will be seen in the next chapter.

The same property, often refered to as Normalisation, can also be asked of the
other two semantics we have seen. These amount to:

(Q2) For every expression E in Exp there exists some numeral n such
that E!⇤ n.
(Q3) For every expression E in Exp there exists some numeral n such
that E!⇤ch n.

Again because these are formal mathematical statements we will see how they can be
demonstrated formally.

Another property we would naturally expect of a mechanism for evaluating ex-
pressions is a form of internal consistency. It would be unfortunate if there was some
expression with multiple possible values; that is some expression E such that the first
time it is evaluated we would get E + n1 while a subsequent evaluation gives E + n2
where n2 is di↵erent than n1. The property which rules out this phenomenon is refered
to as Determinacy. For each of the three semantics this is defined as follows:

If b̀ig E + n1 and b̀ig E + n2 then n1 = n2. (Q4)

If E!⇤ n1 and E!⇤ n2 then n1 = n2. (Q5)

If E!⇤ch n1 and E!⇤ch n2 then n1 = n2. (Q6)

The combination of Normalisation and Determinacy means that each of the semantics
we have developed for Exp determines one and only one value for every expression.

There are also interesting questions involving the consistency between the di↵erent
semantics. For example it would be unfortunate if, for some some expression E, one
semantics gave 20 as the resulting value, while another gave 25. Ensuring that this can
not arise amounts to proving mutual consistency of the di↵erent semantics. Specifically
it would require proofs for the following mathematical statements:

b̀ig E + n implies E!⇤ n (Q7)

E!⇤ch n implies b̀ig E + n (Q8)

These, together with (1.5) above, will mean that each of the three di↵erent semantics
will associate exactly the same value with a given expression E.

Draft: January 9, 2013 13

