
Space
Understanding the space complexity of functional programs

– At least two interesting components:
• the amount of live space at any instant in time
• the rate of allocation

– a function call may not change the amount of live space by
much but may allocate at a substantial rate

– because functional programs act by generating new data
structures and discarding old ones, they often allocate a lot
» OCaml garbage collector is optimized with this in mind
» interesting fact: at the assembly level, the number of

writes by a functional program is roughly the same as the
number of writes by an imperative program

Space
Understanding the space complexity of functional programs

– At least two interesting components:
• the amount of live space at any instant in time
• the rate of allocation

– a function call may not change the amount of live space by
much but may allocate at a substantial rate

– because functional programs act by generating new data
structures and discarding old ones, they often allocate a lot
» OCaml garbage collector is optimized with this in mind
» interesting fact: at the assembly level, the number of

writes by a function program is roughly the same as the
number of writes by an imperative program

– What takes up space?
• conventional first-order data: tuples, lists, strings, datatypes
• function representations (closures)
• the call stack

CONVENTIONAL DATA

Blackboard!

Numbers

Tuples

Data types

Lists

Space Model
Data type representations:

Node

0

3 left right

Leaf: Node(i, left, right):

type tree = Leaf | Node of int * tree * tree

Allocating space
In C, you allocate when you call “malloc”

In Java, you allocate when you call “new”

What about ML?

Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
 match t with
 Leaf -> Node (i, Leaf, Leaf)
 | Node (j, left, right) ->
 if i <= j then
 Node (j, insert left i, right)
 else
 Node (j, left, insert right i)

Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
 match t with
 Leaf -> Node (i, Leaf, Leaf)
 | Node (j, left, right) ->
 if i <= j then
 Node (j, insert left i, right)
 else
 Node (j, left, insert right i)

3

9

15

t

Consider:

insert t 21

Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
 match t with
 Leaf -> Node (i, Leaf, Leaf)
 | Node (j, left, right) ->
 if i <= j then
 Node (j, insert left i, right)
 else
 Node (j, left, insert right i)

3

9

15

t

Consider:

insert t 21

Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
 match t with
 Leaf -> Node (i, Leaf, Leaf)
 | Node (j, left, right) ->
 if i <= j then
 Node (j, insert left i, right)
 else
 Node (j, left, insert right i)

3

9

15

21

Consider:

insert t 21

t

Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
 match t with
 Leaf -> Node (i, Leaf, Leaf)
 | Node (j, left, right) ->
 if i <= j then
 Node (j, insert left i, right)
 else
 Node (j, left, insert right i)

3

9

15

15

21

Consider:

insert t 21

t

Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
 match t with
 Leaf -> Node (i, Leaf, Leaf)
 | Node (j, left, right) ->
 if i <= j then
 Node (j, insert left i, right)
 else
 Node (j, left, insert right i)

3

9

15

9

15

21

Consider:

insert t 21

t

Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
 match t with
 Leaf -> Node (i, Leaf, Leaf)
 | Node (j, left, right) ->
 if i <= j then
 Node (j, insert left i, right)
 else
 Node (j, left, insert right i)

3

9

15

3

9

15

21

Consider:

insert t 21

t

Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
 match t with
 Leaf -> Node (i, Leaf, Leaf)
 | Node (j, left, right) ->
 if i <= j then
 Node (j, insert left i, right)
 else
 Node (j, left, insert right i)

3

9

15

3

9

15

21

Total space allocated is
proportional to the
height of the tree.

~ log n, if tree with n
nodes is balanced

t

Net space allocated
The garbage collector reclaims
unreachable data structures on the heap.

John McCarthy
 invented g.c.

 1960

let fiddle (t: tree) =
 insert t 21

3

9

15

3

9

15

21

t

Net space allocated
The garbage collector reclaims
unreachable data structures on the heap.

let fiddle (t: tree) =
 insert t 21

3

9

15

3

9

15

21

t

If t is dead
(unreachable),

Net space allocated
The garbage collector reclaims
unreachable data structures on the heap.

let fiddle (t: tree) =
 insert t 21

3

9

15

3

9

15

21

t

If t is dead (unreachable),

Then all these nodes
will be reclaimed!

Net space allocated
The garbage collector reclaims
unreachable data structures on the heap.

let fiddle (t: tree) =
 insert t 21

3

9

15

3

9

15

21

t

Net new space allocated:
1 node

(just like “imperative” version

 of binary search trees)

Net space allocated
But what if you want to keep the old tree?

let faddle (t: tree) =
 (t, insert t 21)

3

9

15

3

9

15

21

t

faddle(t)

Net space allocated
But what if you want to keep the old tree?

let faddle (t: tree) =
 (t, insert t 21)

3

9

15

3

9

15

21

t

faddle(t)

Net new space allocated:
log(N) nodes

but note: “imperative” version

would have to copy the old tree,
space cost N new nodes!

Compare

let check_option (o:int option) : int option =
 match o with
 Some _ -> o
 | None -> failwith “found none”
;;

let check_option (o:int option) : int option =
 match o with
 Some j -> Some j
 | None -> failwith “found none”
;;

Compare

let check_option (o:int option) : int option =
 match o with
 Some _ -> o
 | None -> failwith “found none”
;;

let check_option (o:int option) : int option =
 match o with
 Some j -> Some j
 | None -> failwith “found none”
;;

allocates nothing
when arg is Some i

allocates an option
when arg is Some i

Compare

let double (c1:int*int) : int*int =
 let c2 = c1 in
 cadd c1 c2
;;

let cadd (c1:int*int) (c2:int*int) : int*int =
 let (x1,y1) = c1 in
 let (x2,y2) = c2 in
 (x1+x2, y1+y2)
;;

let double (c1:int*int) : int*int =
 cadd c1 c1
;;

let double (c1:int*int) : int*int =
 let (x1,y1) = c1 in
 cadd (x1,y1) (x1,y1)
;;

Compare

let double (c1:int*int) : int*int =
 let c2 = c1 in
 cadd c1 c2
;;

let cadd (c1:int*int) (c2:int*int) : int*int =
 let (x1,y1) = c1 in
 let (x2,y2) = c2 in
 (x1+x2, y1+y2)
;;

let double (c1:int*int) : int*int =
 cadd c1 c1
;;

let double (c1:int*int) : int*int =
 let (x1,y1) = c1 in
 cadd (x1,y1) (x1,y1)
;;

1 2

c1 c2

Compare

let double (c1:int*int) : int*int =
 let c2 = c1 in
 cadd c1 c2
;;

let cadd (c1:int*int) (c2:int*int) : int*int =
 let (x1,y1) = c1 in
 let (x2,y2) = c2 in
 (x1+x2, y1+y2)
;;

let double (c1:int*int) : int*int =
 cadd c1 c1
;;

let double (c1:int*int) : int*int =
 let (x1,y1) = c1 in
 cadd (x1,y1) (x1,y1)
;;

1 2

c1

Compare

let double (c1:int*int) : int*int =
 let c2 = c1 in
 cadd c1 c2
;;

let cadd (c1:int*int) (c2:int*int) : int*int =
 let (x1,y1) = c1 in
 let (x2,y2) = c2 in
 (x1+x2, y1+y2)
;;

let double (c1:int*int) : int*int =
 cadd c1 c1
;;

let double (c1:int*int) : int*int =
 let (x1,y1) = c1 in
 cadd (x1,y1) (x1,y1)
;;

1 2

c1

1 2

arg1

1 2

arg2

Compare

let double (c1:int*int) : int*int =
 let c2 = c1 in
 cadd c1 c2
;;

no allocation

let cadd (c1:int*int) (c2:int*int) : int*int =
 let (x1,y1) = c1 in
 let (x2,y2) = c2 in
 (x1+x2, y1+y2)
;;

let double (c1:int*int) : int*int =
 cadd c1 c1
;;

let double (c1:int*int) : int*int =
 let (x1,y1) = c1 in
 cadd (x1,y1) (x1,y1)
;;

no allocation

allocates 2 pairs
 (unless the compiler
happens to optimize…)

Compare

let double (c1:int*int) : int*int =
 let (x1,y1) = c1 in
 cadd c1 c1
;;

double does not
allocate

let cadd (c1:int*int) (c2:int*int) : int*int =
 let (x1,y1) = c1 in
 let (x2,y2) = c2 in
 (x1+x2, y1+y2)
;;

extracts components: it is a read

FUNCTION CLOSURES

Closures
Consider the following program:

let choose (arg:bool * int * int) : int -> int =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x)
 else
 (fun n -> n + y)
;;

choose (true, 1, 2);;

Closures
Consider the following program:

Its execution behavior according to the substitution model:

let choose (arg:bool * int * int) : int -> int =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x)
 else
 (fun n -> n + y)
;;

choose (true, 1, 2);;

 choose (true, 1, 2)

Closures
Consider the following program:

Its execution behavior according to the substitution model:

let choose (arg:bool * int * int) : int -> int =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x)
 else
 (fun n -> n + y)
;;

choose (true, 1, 2);;

 choose (true, 1, 2)
-->
 let (b, x, y) = (true, 1, 2) in
 if b then (fun n -> n + x)
 else (fun n -> n + y)

Closures
Consider the following program:

Its execution behavior according to the substitution model:

let choose (arg:bool * int * int) : int -> int =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x)
 else
 (fun n -> n + y)
;;

choose (true, 1, 2);;

 choose (true, 1, 2)
-->
 let (b, x, y) = (true, 1, 2) in
 if b then (fun n -> n + x)
 else (fun n -> n + y)
-->
 if true then (fun n -> n + 1)
 else (fun n -> n + 2)

Closures
Consider the following program:

Its execution behavior according to the substitution model:

let choose (arg:bool * int * int) : int -> int =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x)
 else
 (fun n -> n + y)
;;

choose (true, 1, 2);;

 choose (true, 1, 2)
-->
 let (b, x, y) = (true, 1, 2) in
 if b then (fun n -> n + x)
 else (fun n -> n + y)
-->
 if true then (fun n -> n + 1)
 else (fun n -> n + 2)
-->
 (fun n -> n + 1)

Substitution and Compiled Code
let choose arg =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x)
 else
 (fun n -> n + y)
;;

choose (true, 1, 2);;

Substitution and Compiled Code
choose:
 mov rb r_arg[0]
 mov rx r_arg[4]
 mov ry r_arg[8]
 compare rb 0
 ...
 jmp ret

main:
 ...
 jmp choose

let choose arg =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x)
 else
 (fun n -> n + y)
;;

choose (true, 1, 2);;

compile

Substitution and Compiled Code

let (b, x, y) = (true, 1, 2) in
if b then
 (fun n -> n + x)
else
 (fun n -> n + y)

choose:
 mov rb r_arg[0]
 mov rx r_arg[4]
 mov ry r_arg[8]
 compare rb 0
 ...
 jmp ret

main:
 ...
 jmp choose

let choose arg =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x)
 else
 (fun n -> n + y)
;;

choose (true, 1, 2);;

compile

execute with
substitution

Substitution and Compiled Code

let (b, x, y) = (true, 1, 2) in
if b then
 (fun n -> n + x)
else
 (fun n -> n + y)

choose:
 mov rb r_arg[0]
 mov rx r_arg[4]
 mov ry r_arg[8]
 compare rb 0
 ...
 jmp ret

main:
 ...
 jmp choose

let choose arg =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x)
 else
 (fun n -> n + y)
;;

choose (true, 1, 2);;

compile

execute with
substitution

execute with substitution
==
generate new code block with
parameters replaced by arguments

choose:
 mov rb r_arg[0]
 mov rx r_arg[4]
 mov ry r_arg[8]
 ...
 jmp ret

main:
 ...
 jmp choose

Substitution and Compiled Code

let (b, x, y) = (true, 1, 2) in
if b then
 (fun n -> n + x)
else
 (fun n -> n + y)

choose:
 mov rb r_arg[0]
 mov rx r_arg[4]
 mov ry r_arg[8]
 compare rb 0
 ...
 jmp ret

main:
 ...
 jmp choose

let choose arg =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x)
 else
 (fun n -> n + y)
;;

choose (true, 1, 2);;

compile

execute with
substitution

execute with substitution
==
generate new code block with
parameters replaced by arguments

choose_subst:
 mov rb 0xF8[0]
 mov rx 0xF8[4]
 mov ry 0xF8[8]
 compare rb 0
 ...
 jmp ret

0xF8: 0
 1
 2

choose:
 mov rb r_arg[0]
 mov rx r_arg[4]
 mov ry r_arg[8]
 ...
 jmp ret

main:
 ...
 jmp choose

Substitution and Compiled Code

let (b, x, y) = (true, 1, 2) in
if b then
 (fun n -> n + x)
else
 (fun n -> n + y)

choose:
 mov rb r_arg[0]
 mov rx r_arg[4]
 mov ry r_arg[8]
 compare rb 0
 ...
 jmp ret

main:
 ...
 jmp choose

let choose arg =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x)
 else
 (fun n -> n + y)
;;

choose (true, 1, 2);;

compile

execute with
substitution

execute with substitution
==
generate new code block with
parameters replaced by arguments

choose_subst:
 mov rb 0xF8[0]
 mov rx 0xFF44]
 mov ry 0xFF84[8]
 compare rb 0
 ...
 jmp ret

if true then
 (fun n -> n + 1)
else
 (fun n -> n + 2)

execute with
substitution

0xF8: 0
 1
 2 choose_subst2:

 compare 1 0
 ...
 jmp ret

What we aren’t going to do
The substitution model of evaluation is just a model. It says that
we generate new code at each step of a computation. We don’t
do that in reality. Too expensive!

The substitution model is a faithful model for reasoning about
the relationship between inputs and outputs of a function but it
doesn’t tell us much about the resources that are used along the
way.

I’m going to tell you a little bit about how ML programs are
compiled so you can understand how much space your programs
will use. Understanding the space consumption of your
programs is an important component in making these programs
more efficient.

Compiling functions

let add (x:int*int) : int =
 let (y,z) = x in
 y + z
;;

argument in r1
return address in r0

add:
 ld r2, r1[0] # y in r2
 ld r3, r1[4] # z in r3
 add r4, r2, r3 # sum in r4
 jmp r0

General tactic: Reduce the problem of compiling ML-like functions to the
problem of compiling C-like functions.

Some functions are already C-like:

But what about nested, higher-order functions?

let choose arg =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x)
 else
 (fun n -> n + y)
;;

let choose arg =
 let (b, x, y) = arg in
 if b then
 f1
 else
 f2
;;

let f1 n = n + x;;

let f2 n = n + y;;

?

?

?

But what about nested, higher-order functions?

let choose arg =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x)
 else
 (fun n -> n + y)
;;

let choose arg =
 let (b, x, y) = arg in
 if b then
 f1
 else
 f2
;;

let f1 n = n + x;;

let f2 n = n + y;;

?

?

?

Darn! Doesn’t work naively. Nested functions contain free variables.
Simple unnesting leaves them undefined.

But what about nested, higher-order functions?
We can’t execute a function like the following:

But we can execute a closure which is a pair of some code and an
environment:

let f2 n = n + y;;

let f2 (n,env) =
 n + env.y
;;

{y = 1}

environment code

closure

Closure Conversion
Closure conversion converts open, nested functions into closed,
top-level functions.
let choose arg =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x + y)
 else
 (fun n -> n + y)
;;

Closure Conversion
Closure conversion (also called lambda lifting) converts open,
nested functions in to closed, top-level functions.
let choose arg =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x + y)
 else
 (fun n -> n + y)
;;

let choose (arg,env) =
 let (b, x, y) = arg in
 if b then
 (f1, {xe=x; ye=y})
 else
 (f2, {ye=y})
;;

let f1 (n,env) =
 n + env.xe + env.ye
;;

let f2 (n,env) =
 n + env.ye
;;

create
closures

use
environment
variables
instead of
free variables

add environment
parameter

Closure Conversion
Closure conversion converts open, nested functions in to closed,
top-level functions.
let choose arg =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x + y)
 else
 (fun n -> n + y)
;;

let choose (arg,env) =
 let (b, x, y) = arg in
 if b then
 (f1, {xe=x; ye=y})
 else
 (f2, {ye=y})
;;

let f1 (n,env) =
 n + env.xe + env.ye
;;

let f2 (n,env) =
 n + env.ye
;;

(choose (true,1,2)) 3

create
closures

use
environment
variables
instead of
free variables

add environment
parameter

let c_closure = (choose, ()) in (* create closure *)
let (c_code, c_cenv) = c_closure in (* extract code, env *)
let f_closure = c_code ((true,1,2), c_env) in (* call choose code, extract f code, env *)
let (f_code, f_env) = f_closure in (* extract code, env *)
f_code (3, f_env) (* call f code *)
;;

Closure Conversion
Closure conversion converts open, nested functions in to closed,
top-level functions.
let choose arg =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x + y)
 else
 (fun n -> n + y)
;;

let choose (arg,env) =
 let (b, x, y) = arg in
 if b then
 (f1, {xe=x; ye=y})
 else
 (f2, {ye=y})
;;

let f1 (n,env) =
 n + env.xe + env.ye
;;

let f2 (n,env) =
 n + env.ye
;;

(choose (true,1,2)) 3

create
closures

use
environment
variables
instead of
free variables

add environment
parameter

let c_closure = (choose, ()) in (* create closure *)
let (c_code, c_cenv) = c_closure in (* extract code, env *)
let f_closure = c_code ((true,1,2), c_env) in (* call choose code, extract f code, env *)
let (f_code, f_env) = f_closure in (* extract code, env *)
f_code (3, f_env) (* call f code *)

Closure Conversion
Closure conversion converts open, nested functions in to closed,
top-level functions.
let choose arg =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x + y)
 else
 (fun n -> n + y)
;;

let choose (arg,env) =
 let (b, x, y) = arg in
 if b then
 (f1, {xe=x; ye=y})
 else
 (f2, {ye=y})
;;

let f1 (n,env) =
 n + env.xe + env.ye
;;

let f2 (n,env) =
 n + env.ye
;;

(choose (true,1,2)) 3

create
closures

use
environment
variables
instead of
free variables

add environment
parameter

let c_closure = (choose, ()) in (* create closure *)
let (c_code, c_cenv) = c_closure in (* extract code, env *)
let f_closure = c_code ((true,1,2), c_env) in (* call choose code, extract f code, env *)
let (f_code, f_env) = f_closure in (* extract code, env *)
f_code (3, f_env) (* call f code *)

Closure Conversion
Closure conversion converts open, nested functions in to closed,
top-level functions.
let choose arg =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x + y)
 else
 (fun n -> n + y)
;;

let choose (arg,env) =
 let (b, x, y) = arg in
 if b then
 (f1, {xe=x; ye=y})
 else
 (f2, {ye=y})
;;

let f1 (n,env) =
 n + env.xe + env.ye
;;

let f2 (n,env) =
 n + env.ye
;;

(choose (true,1,2)) 3

create
closures

use
environment
variables
instead of
free variables

add environment
parameter

let c_closure = (choose, ()) in (* create closure *)
let (c_code, c_cenv) = c_closure in (* extract code, env *)
let f_closure = c_code ((true,1,2), c_env) in (* call choose code, extract f code, env *)
let (f_code, f_env) = f_closure in (* extract code, env *)
f_code (3, f_env) (* call f code *)

One Extra Note: Typing
Even though the original, non-closure-converted code was well-
typed, the closure-converted code isn’t—because the
environments are different

let choose (arg,env) =
 let (b, x, y) = arg in
 if b then
 (f1, F1 {xe=x; ye=y})
 else
 (f2, F2 {ye=y})
;;

let f1 (n,env) =
 n + env.xe + env.ye
;;

let f2 (n,env) =
 n + env.ye
;;

type f1_env = {x1:int; y1:int} type f1_clos = (int * f1_env -> int) * f1_env

type f2_env = {y2:int} type f2_clos = (int * f2_env -> int) * f2_env

One Extra Note: Typing
Even though the original, non-closure-converted code was well-
typed, the closure-converted code isn’t—because the
environments are different

let choose (arg,env) =
 let (b, x, y) = arg in
 if b then
 (f1, F1 {xe=x; ye=y})
 else
 (f2, F2 {ye=y})
;;

let f1 (n,env) =
 n + env.xe + env.ye
;;

let f2 (n,env) =
 n + env.ye
;;

Solution 0: Don’t bother to typecheck after closure conversion.

After all, the source program was well typed (checked by the source-language ML typechecker),
and the compiler (with its closure conversion algorithm) cannot possibly have produced
a program with the wrong behavior.

That is, consider the post-closure-converted language to be an untyped language.

This is the traditional solution, and it’s not stupid. But can we do better?

One Extra Note: Typing
Even though the original, non-closure-converted code was well-
typed, the closure-converted code isn’t because the
environments are different

let choose (arg,env) =
 let (b, x, y) = arg in
 if b then
 (f1, F1 {x1=x; y2=y})
 else
 (f2, F2 {y2=y})
;;

let f1 (n,env) =
 match env with
 F1 e -> n + e.x1 + e.y2
 | F2 _ -> failwith "bad env!"
;;

let f2 (n,env) =
 match env with
 F1 _ -> failwith "bad env!"
 | F2 e -> n + e.y2
;;

type f1_env = {x1:int; y1:int} type f1_clos = (int * f1_env -> int) * f1_env

type f2_env = {y2:int} type f2_clos = (int * f2_env -> int) * f2_env

type env = F1 of f1_env | F2 of f2_env
type f1_clos = (int * env -> int) * env
type f2_clos = (int * env -> int) * env

fix I:

One Extra Note: Typing
Even though the original, non-closure-converted code was well-
typed, the closure-converted code isn’t because the
environments are different

let choose (arg,env) =
 let (b, x, y) = arg in
 if b then
 (f1, {xe=x; ye=y})
 else
 (f2, {ye=y})
;;

let f1 (n,env) =
 n + env.xe + env.ye
;;

let f2 (n,env) =
 n + env.ye
;;

type f1_env = {xe:int; ye:int} type f1_clos = (int * f1_env -> int) * f1_env

type f2_env = {xe:int} type f2_clos = (int * f2_env -> int) * f2_env

type f1_env = {xe:int; ye:int}
type f2_env = {xe:int}
type f1_clos = ∃ env.(int * env -> int) * env
type f2_clos = ∃ env.(int * env -> int) * env

fix II:

One Extra Note: Typing
Even though the original, non-closure-converted code was well-
typed, the closure-converted code isn’t because the
environments are different

let choose (arg,env) =
 let (b, x, y) = arg in
 if b then
 (f1, {xe=x; ye=y})
 else
 (f2, {ye=y})
;;

let f1 (n,env) =
 n + env.xe + env.ye
;;

let f2 (n,env) =
 n + env.ye
;;

type f1_env = {xe:int; ye:int} type f1_clos = (int * f1_env -> int) * f1_env

type f2_env = {xe:int} type f2_clos = (int * f2_env -> int) * f2_env

type f1_env = {xe:int; ye:int}
type f2_env = {xe:int}
type f1_clos = ∃ env.(int * env -> int) * env
type f2_clos = ∃ env.(int * env -> int) * env

fix II:

“From System F to Typed Assembly Language,”
 -- Morrisett, Walker et al.

Aside: Existential Types
map has a universal polymorphic type:

when we closure-convert a function that has type int -> int, we get a function
with existential polymorphic type:

 ∃ 'a. ((int * 'a) -> int) * 'a

In OCaml, we can approximate existential types using datatypes (a data type
allows you to say "there exists a type 'a drawn from one of the following finite
number of options." In Haskell, you've got the real thing.

map : ('a -> 'b) -> 'a list -> 'b list "for all types 'a and for all types 'b, …"

"there exists some type 'a such that, …"

Closure Conversion: Summary

All function definitions equipped with extra env parameter:

All free variables obtained from parameters or environment:

All functions values paired with environment:

All function calls extract code and environment and call code:

let f_code (arg, env) = ...

x

let f arg = ...

env.cx

f (f_code, {cx1=v1; ...; cxn=vn})

f e let (f_code, f_env) = f in
f_code (e, f_env)

(after) (before)

The Space Cost of Closures

The space cost of a closure
= the cost of the pair of code and environment pointers (2 words)
+ the cost of the data referred to by function free variables
 (1 word for each free variable)

