
Type synonyms

Syntax: type id = t

•  Anywhere you write t, you can also write id
•  !e two names are synonymous

e.g.
type point = float * float
type vector = float list
type matrix = float list list

Type synonyms

type point = float*float

let getx : point -> float =
 fun (x,_) -> x

let pt : point = (1.,2.)
let floatpair : float*float = (1.,3.)

let one = getx pt
let one' = getx floatpair

Type Abbreviations

• We have already seen some type abbreviations:

• These abbreviations can be helpful documentation:

• But they add nothing of substance to the language

– they are equal in every way to an existing type

type point = float * float

let distance (p1:point) (p2:point) : float =
let square x = x *. x in
let (x1,y1) = p1 in
let (x2,y2) = p2 in
sqrt (square (x2 -. x1) +. square (y2 -. y1))

Type Abbreviations

• We have already seen some type abbreviations:

• As far as O'Caml is concerned, you could have written:

• Since the types are equal, you can substitute the definition for

the name wherever you want

– we have not added any new data structures

type point = float * float

let distance (p1:float*float)
(p2:float*float) : float =

let square x = x *. x in
let (x1,y1) = p1 in
let (x2,y2) = p2 in
sqrt (square (x2 -. x1) +. square (y2 -. y1))

DATA TYPES

Data types

• O'Caml provides a general mechanism called a data type for

defining new data structures that consist of many alternatives

type my_bool = Tru | Fal

a value with type my_bool

is one of two things:

• Tru, or

• Fal

read the "|" as "or"

Data types

• O'Caml provides a general mechanism called a data type for

defining new data structures that consist of many alternatives

type my_bool = Tru | Fal

a value with type my_bool

is one of two things:

• Tru, or

• Fal

read the "|" as "or"

Tru and Fal are called

"constructors"

Data types

• O'Caml provides a general mechanism called a data type for

defining new data structures that consist of many alternatives

type my_bool = Tru | Fal

type color = Blue | Yellow | Green | Red

there's no need to stop

at 2 cases; define as many

alternatives as you want

Data types

• O'Caml provides a general mechanism called a data type for

defining new data structures that consist of many alternatives

• Creating values:

type my_bool = Tru | Fal

type color = Blue | Yellow | Green | Red

let b1 : my_bool = Tru
let b2 : my_bool = Fal
let c1 : color = Yellow
let c2 : color = Red

use constructors to create values

Data types

• Using data type values:

type color = Blue | Yellow | Green | Red

let c1 : color = Yellow
let c2 : color = Red

let print_color (c:color) : unit =
match c with
| Blue ->
| Yellow ->
| Green ->
| Red ->

use pattern matching to

determine which color

you have; act accordingly

Data types

• Using data type values:

type color = Blue | Yellow | Green | Red

let c1 : color = Yellow
let c2 : color = Red

let print_color (c:color) : unit =
match c with
| Blue -> print_string "blue"
| Yellow -> print_string "yellow"
| Green -> print_string "green"
| Red -> print_string "red"

Data types

• Using data type values:

type color = Blue | Yellow | Green | Red

let c1 : color = Yellow
let c2 : color = Red

let print_color (c:color) : unit =
match c with
| Blue -> print_string "blue"
| Yellow -> print_string "yellow"
| Green -> print_string "green"
| Red -> print_string "red"

Why not just use strings to represent colors instead of defining a new type?

Data types

type color = Blue | Yellow | Green | Red

let print_color (c:color) : unit =
match c with
| Blue -> print_string "blue"
| Yellow -> print_string "yellow"
| Red -> print_string "red"

Warning 8: this pattern-matching is not exhaustive.

Here is an example of a value that is not matched:

Green

oops!:

Data Types Can Carry Additional Values

• Data types are more than just enumerations of constants:

• Read as: a simple_shape is either:

– a Circle, which contains a pair of a point and float, or

– a Square, which contains a pair of a point and float

type point = float * float

type simple_shape =
Circle of point * float

| Square of point * float

(x,y)

s (x,y)

r

Data Types Can Carry Additional Values

• Data types are more than just enumerations of constants:

type point = float * float

type simple_shape =
Circle of point * float

| Square of point * float

let origin : point = (0.0, 0.0)

let circ1 : simple_shape = Circle (origin, 1.0)
let circ2 : simple_shape = Circle ((1.0, 1.0), 5.0)
let square : simple_shape = Square (origin, 2.3)

Data Types Can Carry Additional Values

• Data types are more than just enumerations of constants:

type point = float * float

type simple_shape =
Circle of point * float

| Square of point * float

let simple_area (s:simple_shape) : float =
match s with
| Circle (_, radius) -> 3.14 *. radius *. radius
| Square (_, side) -> side *. side

More General Shapes

r1

r2

Square s =

Ellipse (r1, r2) =

s2
s1RtTriangle (s1, s2) =

v2

v1 v3

v4v5

Polygon [v1; ...;v5] =

type point = float * float

type shape =
Square of float

| Ellipse of float * float
| RtTriangle of float * float
| Polygon of point list

s

More General Shapes

type point = float * float
type radius = float
type side = float

type shape =
Square of side

| Ellipse of radius * radius
| RtTriangle of side * side
| Polygon of point list

Type abbreviations can

aid readability

r1

r2

Square s =

Ellipse (r1, r2) =

s2
s1RtTriangle (s1, s2) =

v2

v1 v3

v4v5

RtTriangle [v1; ...;v5] =

s

More General Shapes

type point = float * float
type radius = float
type side = float

type shape =
Square of side

| Ellipse of radius * radius
| RtTriangle of side * side
| Polygon of point list

let sq : shape = Square 17.0
let ell : shape = Ellipse (1.0, 2.0)
let rt : shape = RtTriangle (1.0, 1.0)
let poly : shape = Polygon [(0., 0.); (1., 0.); (0.; 1.)]

they are all shapes;

they are constructed in

different ways

Polygon builds a shape

from a list of points

(where each point is itself a pair)

Square builds a shape

from a single side

RtTriangle builds a shape

from a pair of sides

More General Shapes

type point = float * float
type radius = float
type side = float

type shape =
Square of side

| Ellipse of radius * radius
| RtTriangle of side * side
| Polygon of point list

let area (s : shape) : float =
match s with
| Square s ->
| Ellipse (r1, r2)->
| RtTriangle (s1, s2) ->
| Polygon ps ->

a data type also defines

a pattern for matching

More General Shapes

type point = float * float
type radius = float
type side = float

type shape =
Square of side

| Ellipse of radius * radius
| RtTriangle of side * side
| Polygon of point list

let area (s : shape) : float =
match s with
| Square s ->
| Ellipse (r1, r2)->
| RtTriangle (s1, s2) ->
| Polygon ps ->

Square carries a value

with type float so s is

a pattern for float values

RtTriangle carries a value

with type float * float

so (s1, s2) is a pattern

for that type

a data type also defines

a pattern for matching

More General Shapes

type point = float * float
type radius = float
type side = float

type shape =
Square of side

| Ellipse of radius * radius
| RtTriangle of side * side
| Polygon of point list

let area (s : shape) : float =
match s with
| Square s -> s *. s
| Ellipse (r1, r2)-> r1 *. r2
| RtTriangle (s1, s2) -> s1 *. s2 /. 2.

| Polygon ps -> ???

a data type also defines

a pattern for matching

Computing Area

• How do we compute polygon area?

• For convex polygons:

– Case: the polygon has fewer than 3 points:

• it has 0 area! (it is a line or a point or nothing at all)

– Case: the polygon has 3 or more points:

• Compute the area of the triangle formed by the first 3 vertices

• Delete the second vertex to form a new polygon

• Sum the area of the triangle and the new polygon

v2

v1 v3

v4v5

= +

Computing Area

• How do we compute polygon area?

• For convex polygons:

– Case: the polygon has fewer than 3 points:

• it has 0 area! (it is a line or a point or nothing at all)

– Case: the polygon has 3 or more points:

• Compute the area of the triangle formed by the first 3 vertices

• Delete the second vertex to form a new polygon

• Sum the area of the triangle and the new polygon

• Note: This is a beautiful inductive algorithm:

– the area of a polygon with n points is computed in terms of a

smaller polygon with only n-1 points!

v2

v1 v3

v4v5

= +

Computing Area

v2

v1 v3

v4v5

=

let area (s : shape) : float =
match s with
| Square s -> s *. s
| Ellipse (r1, r2)-> r1 *. r2
| RtTriangle (s1, s2) -> s1 *. s2 /. 2.

| Polygon ps -> poly_area ps

let poly_area (ps : point list) : float =
match ps with
| p1 :: p2 :: p3 :: tail ->

tri_area p1 p2 p3 +. poly_area (p1::p3::tail)
| _ -> 0.

= +

This pattern says the

list has at least 3 items

Computing Area

let area (s : shape) : float =
match s with
| Square s -> s *. s
| Ellipse (r1, r2)-> r1 *. r2
| RtTriangle (s1, s2) -> s1 *. s2 /. 2.

| Polygon ps -> poly_area ps

let tri_area (p1:point) (p2:point) (p3:point) : float =
let a = distance p1 p2 in
let b = distance p2 p3 in
let c = distance p3 p1 in
let s = 0.5 *. (a +. b +. c) in
sqrt (s *. (s -. a) *. (s -. b) *. (s -. c))

let rec poly_area (ps : point list) : float =
match ps with
| p1 :: p2 :: p3 :: tail ->

tri_area p1 p2 p3 +. poly_area (p1::p3::ps)
| _ -> 0.

INDUCTIVE DATA TYPES

Inductive data types

• We can use data types to define inductive data

• A binary tree is:

– a Leaf containing no data

– a Node containing a key, a value, a left subtree and a right subtree

type key = string
type value = int

type tree =
Leaf

| Node of key * value * tree * tree

Inductive data types

• We can use data types to define inductive data

• A binary tree is:

– a Leaf containing no data

– a Node containing a key, a value, a left subtree and a right subtree

type key = int
type value = string

type tree =
Leaf

| Node of key * value * tree * tree

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =

type key = int
type value = string

type tree =
Leaf

| Node of key * value * tree * tree

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =
match t with
| Leaf ->
| Node (k', v', left, right) ->

Again, the type definition

specifies the cases you must

consider

type key = int
type value = string

type tree =
Leaf

| Node of key * value * tree * tree

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =
match t with
| Leaf -> Node (k, v, Leaf, Leaf)
| Node (k', v', left, right) ->

type key = int
type value = string

type tree =
Leaf

| Node of key * value * tree * tree

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =
match t with
| Leaf -> Node (k, v, Leaf, Leaf)
| Node (k', v', left, right) ->

if k < k' then
Node (k', v', insert left k v, right)

else if k > k' then
Node (k', v', left, insert right k v)

else
Node (k, v, left, right)

type key = int
type value = string

type tree =
Leaf

| Node of key * value * tree * tree

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =
match t with
| Leaf -> Node (k, v, Leaf, Leaf)
| Node (k', v', left, right) ->

if k < k' then
Node (k', v', insert left k v, right)

else if k > k' then
Node (k', v', left, insert right k v)

else
Node (k, v, left, right)

type key = int
type value = string

type tree =
Leaf

| Node of key * value * tree * tree

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =
match t with
| Leaf -> Node (k, v, Leaf, Leaf)
| Node (k', v', left, right) ->

if k < k' then
Node (k', v', insert left k v, right)

else if k > k' then
Node (k', v', left, insert right k v)

else
Node (k, v, left, right)

Implement lists with variants

type intlist = Nil | Cons of int * intlist

let emp = Nil

let l3 = Cons (3, Nil) (* 3::[] or [3]*)

let l123 = Cons(1, Cons(2, l3)) (* [1;2;3] *)

let rec sum (l:intlist) =

 match l with

 | Nil -> 0

 | Cons(h,t) -> h + sum t

Implement lists with variants

let rec length = function
 | Nil -> 0
 | Cons (_,t) -> 1 + length t
(* length : intlist -> int *)

let empty = function
 | Nil -> true
 | Cons _ -> false
(* empty: intlist -> bool *)

Implement lists with variants

let rec fold_right f l acc =

 match l with

 | Nil -> acc

 | Cons(h,t) -> f h (fold_right f t acc)

(* fold_right:

 (int -> 'a -> 'a)

 -> intlist -> 'a -> 'a *)

let sumr l = fold_right (+) l 0

(* empty: intlist -> int *)

Implement lists with variants
let hd = function
 | Nil -> ???
 | Cons(h,t) -> h

One possibility is to return an option:

let hd = function
 | Nil -> None
 | Cons(h,t) -> Some h
(* hd: intlist -> int option *)

But the standard library throws an exception...

EXCEPTIONS

Example: implement hd
let hd = function
 | Nil -> raise (Failure "empty")
 | Cons(h,t) -> h

hd Nil;;
Exception: (Failure empty).

let head_or_zero lst =
 try hd lst with
 | Failure s -> 0

head_or_zero Nil;;
- : int = 0

Exceptions: Syntax
Definition:
exception E
exception E of t

Raise (aka throw):
raise e

Catch (aka handle):
try e with
| p1 -> e1
| ...
| pn -> en

Exception: Type checking
New kind of type: exn
if E is defined as exception E then E : exn
if E is defined as exception E of t and e : t
then E e : exn

Raise:
if e:exn then raise e may have any type t

Catch:
if e and p1..pn and e1..en all have type t
then try e with p1 -> e1 | ... | pn -> en
has type t

Exceptions: Evaluation

Raise:
If e ==> v then raise e produces an exception packet
containing v that propagates upward through the call stack to a
handler.

Catch:
try e with p1 -> e1 | ... | pn -> en
If e ==> v then the try expression evaluates to v.
If evaluation of e produces an exception packet, behave like a
pattern match on the value in that packet.
But if none of the patterns matches, re-raise the exception, thus
propagating it upwards.

Exceptions in standard library

exception Invalid_argument of string
raised by library functions to signal that the given arguments do
not make sense

exception Failure of string
raised by library functions to signal that they are undefined on
the given arguments

Convenience function in library:
let failwith : string -> 'a =
 fun s -> raise (Failure s)

Inductive data types: Another Example

• Recall, we used the type "int" to represent natural numbers

– but that was kind of broken: it also contained negative numbers

– we had to use a dynamic test to guard entry to a function:

– it would be nice if there was a way to define the natural

numbers exactly, and use OCaml's type system to guarantee no

client ever attempts to double a negative number

let double (n : int) : int =
if n < 0 then
raise (Failure "negative input!")

else
double_nat n

Inductive data types

• Recall, a natural number n is either:

– zero, or

– m + 1

• We use a data type to represent this definition exactly:

Inductive data types

• Recall, a natural number n is either:

– zero, or

– m + 1

• We use a data type to represent this definition exactly:

type nat = Zero | Next of nat

Inductive data types

• Recall, a natural number n is either:

– zero, or

– m + 1

• We use a data type to represent this definition exactly:

type nat = Zero | Succ of nat

let rec nat_to_int (n : nat) : int =
match n with
Zero -> 0

| Succ n -> 1 + nat_to_int n

Inductive data types

• Recall, a natural number n is either:

– zero, or

– m + 1

• We use a data type to represent this definition exactly:

type nat = Zero | Next of nat

let rec nat_to_int (n : nat) : int =
match n with
Zero -> 0

| Next n -> 1 + nat_to_int n

let rec double_nat (n : nat) : nat =
match n with
| Zero -> Zero
| Succ m -> Succ (Succ(double_nat m))

A Note on

Parameterized Type Definitions

type (‘key, ‘val) tree =

Leaf

| Node of ‘key * ‘val * (‘key, ‘val) tree * (‘key, ‘val) tree

type ‘a stree = (string, ‘a) tree

type sitree = int stree

type ‘x f = body

arg f

definition:

use:

type f x = body

f arg

definition:

use:

General form: A Better Notation:

Take-home Message

• Think of parameterized types like functions:

– a function that take a type as an argument

– produces a type as a result

• Theoretical basis:

– System F-omega

– a typed lambda calculus with general type-level functions as

well as value-level functions

Summary

• OCaml datatypes: a powerful mechanism for defining complex

data structures:

– They are precise

• contain exactly the elements you want, not more elements

– They are general

• recursive, non-recursive (mutually recursive and polymorphic)

– The type checker helps you detect errors

• missing cases in your functions

– Next time: help in program evolution

	OCaml Datatypes
	OCaml So Far
	Type Abbreviations
	Type Abbreviations
	Type Abbreviations
	Data types
	Data types
	Data types
	Data types
	Data types
	Data types
	Data types
	Data types
	Data types
	Data Types Can Carry Additional Values
	Data Types Can Carry Additional Values
	Data Types Can Carry Additional Values
	Compare
	More General Shapes
	More General Shapes
	More General Shapes
	More General Shapes
	More General Shapes
	More General Shapes
	Computing Area
	Computing Area
	Computing Area
	Computing Area
	Inductive Data types
	Inductive data types
	Inductive data types
	Inductive data types
	Inductive data types
	Inductive data types
	Inductive data types
	Inductive data types
	Inductive data types
	Inductive data types: Another Example
	Inductive data types
	Inductive data types
	Inductive data types
	Inductive data types
	A Note on Parameterized Type Definitions
	Slide Number 44
	Take-home Message
	Summary

