
RECORDS

Record definition

•  A record contains several named fields
•  Before you can use a record, must define a record type:

type time = {hour: int; min: int; ampm: string}

•  To build a record:
–  Write a record expression:
{hour=10; min=10; ampm="am"}

–  Order of fields doesn’t matter:
{min=10; hour=10; ampm="am"} is equivalent

•  To access record's field: r.hour

Record expressions

•  Syntax: {f1 = e1; …; fn = en}

•  Evaluation:
–  If e1 evaluates to v1, and … en evaluates to vn
–  !en {f1 = e1; …; fn = en} evaluates to {f1 = v1,
…, fn = vn}

–  Result is a record value

•  Type-checking:
–  If e1 : t1 and e2 : t2 and … en : tn,
–  and if t is a defined type of the form {f1:t1, …, fn:tn}
–  then {f1 = e1; …; fn = en}: t

Record field access

•  Syntax: e.f

•  Evaluation:
–  If e evaluates to {f = v, …}
– !en e.f evaluates to v

•  Type-checking:
–  If e : t1
–  and if t1 is a defined type of the form {f:t2, …}
–  then e.f : t2

Evaluation notation

We keep writing statements like:
If e evaluates to {f = v, …} then e.f evaluates
to v

Let's introduce a shorthand notation:
•  Instead of "e evaluates to v"
•  write "e ==> v"

So we can now write:
If e ==> {f = v, …} then e.f ==> v

By name vs. by position
•  Fields of record are identified by name

–  order we write fields in expression is irrelevant

•  Opposite choice: identify by position
–  e.g., “Would the student named NN. step forward?”

vs. “Would the student in seat n step forward?”

•  You’re accustomed to both:
–  Java object fields accessed by name
–  Java method arguments passed by position

(but accessed in method body by name)

•  OCaml has something you might not have seen:
–  A kind of data accessed by position

PAIRS AND TUPLES

Pairs

A pair of data: two pieces of data glued together
e.g.,
•  (1,2)
•  (true, "Hello")
•  ([1;2;3], 0.5)

We need language constructs to build pairs and
to access the pieces...

Pairs: building
•  Syntax: (e1,e2)

•  Evaluation:
–  If e1 ==> v1 and e2 ==> v2
– !en (e1,e2) ==> (v1,v2)
–  A pair of values is itself a value

•  Type-checking:
–  If e1:t1 and e2:t2,
–  then (e1,e2):t1*t2
–  A new kind of type, the product type

Pairs: accessing

•  Syntax: fst e and snd e
Projection functions

•  Evaluation:
–  If e ==> (v1,v2)
–  then fst e ==> v1
–  and snd e ==> v2

•  Type-checking:
–  If e: ta*tb,
–  then fst e has type ta
–  and snd e has type tb

Tuples

Actually, you can have tuples with more than two parts
–  A new feature: a generalization of pairs
–  Syntax, semantics are straightforward, except for projection...

•  (e1,e2,…,en)
•  t1 * t2 * … * tn
•  fst e, snd e, ???

Instead of generalizing projection functions,
use pattern matching…

New kind of pattern, the tuple pattern: (p1, ..., pn)

Pattern matching tuples
match (1,2,3) with
| (x,y,z) -> x+y+z

(* ==> 6 *)

let thrd t =
 match t with
 | (x,y,z) -> z

(* thrd : 'a*'b*'c -> 'c *)

Note: we never needed more than one branch in the match expression...

Pattern matching without match
(* OK *)
let thrd t =
 match t with
 | (x,y,z) -> z

(* good *)
let thrd t =
 let (x,y,z) = t in z

(* better *)
let thrd t =
 let (_,_,z) = t in z

(* best *)
let thrd (_,_,z) = z

Extended syntax for let

•  Previously we had this syntax:
–  let x = e1 in e2
–  let [rec] f x1 ... xn = e1 in e2

•  Everywhere we had a variable identifier x, we can really use

a pattern!
–  let p = e1 in e2
–  let [rec] f p1 ... pn = e1 in e2

•  Old syntax is just a special case of new syntax, since a
variable identifier is a pattern

Pattern matching arguments

(* OK *)
let sum_triple t =
 let (x,y,z) = t
 in x+y+z

(* better *)
let sum_triple (x,y,z) = x+y+z

Note how that last version looks syntactically like a
function in C/Java!

Unit

•  Can actually have a tuple () with no
components whatsoever
– !ink of it as a degenerate tuple

– Or, like a Boolean that can only have one value

•  “Unit” is
– a value written ()
– and a type written unit

•  Might seem dumb now; will be useful later!

Pattern matching records
(* OK *)
let get_hour t =
 match t with
 | {hour=h; min=m; ampm=s} -> h

(* better *)
let get_hour t =
 match t with
 | {hour=h; min=_; ampm=_} -> h

(* better *)
let get_hour t =
 match t with
 | {hour; min; ampm} -> hour

(* better *)
let get_hour t =
 match t with
 | {hour} -> hour

(* better *)
let get_hour t =
 let {hour} = t in hour

(* better *)
let get_hour {hour} = hour

(* best *)
let get_hour t = t.hour

New kind of pattern, the record pattern:
{f1[=p1]; ...; fn[=pn]}

By name vs. by position, again

How to choose between coding (4,7,9) and
{f=4;g=7;h=9}?
•  Tuples are syntactically shorter
•  Records are self-documenting
•  For many (4? 8? 12?) fields, a record is usually a

better choice

VARIANTS

Variant
type day = Sun | Mon | Tue | Wed
 | Thu | Fri | Sat

let day_to_int d =
 match d with
 | Sun -> 1
 | Mon -> 2
 | Tue -> 3
 | Wed -> 4
 | Thu -> 5
 | Fri -> 6
 | Sat -> 7

Building and accessing variants

Syntax: type t = C1 | ... | Cn
the Ci are called constructors

Evaluation: a constructor is already a value

Type checking: Ci : t

Accessing: use pattern matching; constructor name is
a pattern

Pokémon variant

Pokémon variant
type ptype = TNormal | TFire | TWater

type peff = ENormal | ENotVery | ESuper

let eff_to_float = function
 | ENormal -> 1.0
 | ENotVery -> 0.5
 | ESuper -> 2.0

let eff_att_vs_def : ptype*ptype -> peff = function
 | (TFire,TFire) -> ENotVery
 | (TWater,TWater) -> ENotVery
 | (TFire,TWater) -> ENotVery
 | (TWater,TFire) -> ESuper
 | _ -> ENormal

Argument order: records

If you are worried about clients of function forgetting which order to pass
arguments in tuple, use a record:

type att_def = {att:ptype; def:ptype}

let eff_att_vs_def : att_def -> peff = function
 | {att=TFire;def=TFire} -> ENotVery
 | {att=TWater;def=TWater} -> ENotVery
 | {att=TFire;def=TWater} -> ENotVery
 | {att=TWater;def=TFire} -> ESuper
 | _ -> ENormal

Argument order: labeled arguments

Or (though not quite as good) use labeled arguments:

let eff_att_vs_def ~att ~def =
 match (att, def) with
 | (TFire,TFire) -> ENotVery
 | (TWater,TWater) -> ENotVery
 | (TFire,TWater) -> ENotVery
 | (TWater,TFire) -> ESuper
 | _ -> ENormal

let super = eff_att_vs_def ~att:TWater ~def:TFire
let super = eff_att_vs_def ~def:TFire ~att:TWater
let notvery = eff_att_vs_def TFire TWater

Variants vs. records vs. tuples

•  Variants: one-of types aka sum types
•  Records, tuples: each-of types aka product

types

Define Build/construct Access/destruct

Variant type Constructor name Pattern matching

Record type Record expression
with {…}

Pattern matching
OR field selection with dot operator .

Tuple N/A Tuple expression
with (…)

Pattern matching
OR fst or snd

Question

Which of the following would be better represented
with records rather than variants?
A.  Coins, which can be pennies, nickels, dimes, or

quarters
B.  Students, who have names and id numbers
C.  A plated dessert, which has a sauce, a creamy

component, and a crunchy component
D.  A and C
E.  B and C

Question

Which of the following would be better represented
with records rather than datatypes?
A.  Coins, which can be pennies, nickels, dimes, or

quarters
B.  Students, who have names and NetIDs
C.  A plated dessert, which has a sauce, a creamy

component, and a crunchy component
D.  A and C
E.  B and C

OPTIONS

What is max of empty list?

let rec max_list = function
 | [] -> ???
 | h::t -> max h (max_list t)

How to fill in the ???

•  min_int would be a reasonable choice…
•  or could raise an exception…

•  in Java, might return null...
•  but OCaml gives us another option!

Options
Options:
•  t option is a type for any type t

 (much like t list is a type for any type t)

Building and Type Checking and Evaluation:
•  None has type 'a option

–  much like [] has type 'a list
–  None is a value

•  Some e : t option if e:t
–  much like e::[] has type t list if e:t
–  If e==>v then Some e==>Some v

Accessing:

match e with
 None -> ...
 | Some x -> ...

Again: What is max of empty list?

let rec max_list = function
 | [] -> None
 | h::t -> match max_list t with
 | None -> Some h
 | Some x -> Some (max h x)

(* max_list : 'a list -> 'a option *)

Very stylish!
…no possibility of exceptions
…no chance of programmer ignoring a “null return”

Recap: User-defined data types

•  Records
•  Tuples (pairs, unit)
•  Variants
•  Options

