
Review: higher-order functions

•  Functions are values
•  Can use them anywhere we use values
– Arguments, results, parts of tuples, bound to

variables...

•  Functions can take functions as arguments
•  Functions can return functions as results

3

Review: anonymous functions

(aka function expressions)

•  Syntax: fun x -> e

•  Type checking:
– Conclude that fun x -> e : t1 -> t2

if e:t2 under assumption x:t1

•  Evaluation:
– A function is already a value

Lambda

•  Anonymous functions a.k.a. lambda expressions: λx . e
•  !e lambda means “what follows is an anonymous function”

–  x is its argument
–  e is its body
–  Just like fun x -> e, but slightly different syntax

•  Standard feature of any functional language (ML, Haskell,
Scheme, …)

•  You’ll see “lambda” show up in many places in PL, e.g.:
–  PHP: http://www.php.net/manual/en/function.create-function.php
–  A popular PL blog: http://lambda-the-ultimate.org/
–  Lambda style: https://www.youtube.com/watch?v=Ci48kqp11F8

5

Map

let rec map f = function

| [] -> []

| x::xs -> (f x)::(map f xs)

map : ('a -> 'b) -> 'a list -> 'b list

Map is HUGE:
•  You use it all the time once you know it
•  Exists in standard library as List.map, but the idea can be used in

any data structure (trees, stacks, queues…)

9

Question

What is value of lst after this code?

A.  [1;2;3;4]
B.  [2;4]
C.  [false; true; false; true]
D.  false

let is_even x = (x mod 2 = 0)
let lst = map is_even [1;2;3;4]

Question

What is value of lst after this code?

A.  [1;2;3;4]
B.  [2;4]
C.  [false; true; false; true]
D.  false

let is_even x = (x mod 2 = 0)
let lst = map is_even [1;2;3;4]

Question

What is value of lst after this code?

A.  [1;2;3;4]
B.  [2;4]
C.  [false; true; false; true]
D.  false

let is_even x = (x mod 2 = 0)
let lst = filter is_even [1;2;3;4]

Filter'

let'rec'filter'f'='func.on''
''''|'[]'3>'[]'
''''|'x::xs'3>'if'f'x'
'''''''''''''''''''''then'x::(filter'f'xs)'
'''''''''''''''''''''else'filter'f'xs'

val'filter':'('a'3>'bool)'3>''a'list'3>''a'list'='<fun>'

Question

What is value of lst after this code?

A.  [1;2;3;4]
B.  [2;4]
C.  [false; true; false; true]
D.  false

let is_even x = (x mod 2 = 0)
let lst = filter is_even [1;2;3;4]

Iterators
•  Map and filter are iterators
–  Not built-in to the language, an idiom

•  Benefit of iterators: separate recursive traversal from
data processing
–  Can reuse same traversal for different data processing
–  Can reuse same data processing for different data

structures
–  leads to modular, maintainable, beautiful code!

•  So far: iterators that change or omit data
–  what about combining data?
–  e.g., sum all elements of list

16

Fold v1.0

Idea: stick an operator between every element of list

folding [1;2;3] with (+)
becomes
1+2+3

==>

6

Fold v2.0

Idea: stick an operator between every element of list
But list could have 1 element, so need an initial value

folding [1] with 0 and (+)
becomes
0+1

==>

1

Fold v2.0

Idea: stick an operator between every element of list
But list could have 1 element, so need an initial value

folding [1;2;3] with 0 and (+)
becomes
0+1+2+3

==>

6

Fold v2.0

Idea: stick an operator between every element of list
But list could have 1 element, so need an initial value
Or list could be empty; just return initial value

folding [] with 0 and (+)

becomes
0

Question #4

What should the result of folding [1;2;3;4]
with 1 and (*) be?

A.  1
B.  24

C.  10
D.  0

Question #4

What should the result of folding [1;2;3;4]
with 1 and (*) be?

A.  1
B.  24
C.  10
D.  0

Fold v3.0

Idea: stick an operator between every element of list
But list could have 1 element, so need an initial value
Or list could be empty; just return initial value
Implementation detail: iterate left-to-right or right-to-left?

folding [1;2;3] with 0 and (+)
left to right becomes: ((0+1)+2)+3
right to left becomes: 1+(2+(3+0))
Both evaluate to 6; does it matter?

Yes: not all operators are associative, e.g. subtraction,
division, exponentiation, …

Fold v4.0

•  (+) accumulated a result of the same type as list itself
•  What about operators that change the type?
–  e.g., :: has type ‘a -> ‘a list -> ‘a list

folding from the right [1;2;3] with [] and ::
should produce

1::(2::(3::[])) = [1;2;3]

•  So the operator needs to accept
–  the accumulated result so far, and
–  the next element of the list

 …which may have different types!

Fold for real

Two versions in OCaml library:

List.fold_left

: ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

List.fold_right

: ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b

Fold for real

Two versions in OCaml library:

List.fold_left

: ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

List.fold_right

: ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b

Operator

Fold for real

Two versions in OCaml library:

List.fold_left

: ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

List.fold_right

: ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b

Input list

Fold for real

Two versions in OCaml library:

List.fold_left

: ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

List.fold_right

: ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b

Initial value of accumulator

Fold for real

Two versions in OCaml library:

List.fold_left

: ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

List.fold_right

: ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b

Final value of accumulator

fold_left

Accumulates an answer by
•  repeatedly applying f to “answer so far”,
•  starting with initial value acc,
•  folding “from the left”

fold_left f acc [a;b;c]
computes
f (f (f acc a) b) c

30

let rec fold_left f acc xs =
 match xs with
 [] -> acc
 | x::xs’ -> fold_left f (f acc x) xs’

fold_right

Accumulates an answer by
•  repeatedly applying f to “answer so far”,
•  starting with initial value acc,
•  folding “from the right”

fold_right f [a;b;c] acc
computes
f a (f b (f c acc))

31

let rec fold_right f xs acc =
 match xs with
 [] -> acc
 | x::xs’ -> f x (fold_right f xs’ acc)

Behold the HUGE power of fold
Implement so many other functions with fold!

32

let rev xs = fold_left (fun xs x -> x::xs) [] xs
let length xs = fold_left (fun a _ -> a+1) 0 xs
let map f xs = fold_right
 (fun x a -> (f x)::a) xs []
let filter f xs = fold_right
 (fun x a -> if f x then x::a else a) xs []

Beware the efficiency of fold

•  fold_left is tail recursive, fold_right is
not

•  fold_right might make it easier to express
computation (e.g., map)

•  Rule of thumb: for lists with > 10,000 elements,
use tail recursion

MapReduce

•  Fold has many synonyms/cousins in various functional
languages, including scan and reduce

•  Google organizes large-scale data-parallel computations with
MapReduce
–  open source implementation by Apache called Hadoop

“[Google’s MapReduce] abstraction is inspired by the map and reduce
primitives present in Lisp and many other functional languages. We
realized that most of our computations involved applying a map
operation to each logical record in our input in order to compute a set of
intermediate key/value pairs, and then applying a reduce operation to
all the values that shared the same key in order to combine the derived
data appropriately."
[Dean and Ghemawat, 2008]

