Five aspects of learning a PL

1. Syntax: How do you write language constructs?
2. Semantics: What do programs mean? (Type checking, evaluation rules)
3. Idioms: What are typical patterns for using language features to express your computation?
4. Libraries: What facilities does the language (or a well-known project) provide "standard"? (E.g., file access, data structures)
5. Tools: What do language implementations provide to make your job easier? (E.g., top-level, debugger, GUI editor, ...)

- All are essential for good programmers to understand
- Breaking a new PL down into these pieces makes it easier to learn

Expressions

Expressions (aka terms):

- primary building block of OCaml programs
- akin to statements or commands in imperative languages
- can get arbitrarily large since any expression can contain subexpressions, etc.

Every kind of expression has:

- Syntax
- Semantics:
- Type-checking rules: produce a type or fail with an error message
- Evaluation rules: produce a value
- (or exception or infinite loop)
- Used only on expressions that type-check

Values

A value is an expression that does not need any further evaluation
-34 is a value of type int
$-34+17$ is an expression of type int but is not a value

Let expressions

```
Syntax:
    let x = e1 in e2
```

\mathbf{x} is an identifier
e1 and e2 are expressions
let $x=e 1$ in e2 is itself an expression
$\mathbf{x}=\mathbf{e} 1$ is a binding
e.g.
let $x=2$ in $x+x$
let inc $x=x+1$ in inc 10
let $\mathrm{y}=$ "zar" in (let $\mathrm{z}=$ "doz" in $\mathrm{y}^{\wedge} \mathrm{z}$)

Let expressions

let $x=e 1$ in $e 2$

Evaluation:

- Evaluate e1 to a value v1
- Substitute v1 for \mathbf{x} in \mathbf{e} 2, yielding a new expression e2'
- Evaluate e2' to v
- Result of evaluation is \mathbf{v}

Let expressions

$$
\text { let } x=1+4 \text { in } x * 3
$$

--> Evaluate $\mathbf{e 1}$ to a value v1
let $x=5$ in $x * 3$
--> Substitute v1 for \mathbf{x} in e2, yielding a new expression e2'

$$
5 * 3
$$

--> Evaluate e^{\prime} ' to v
15
Result of evaluation is \mathbf{v}

Let expressions in REPL

Syntax:

let $\mathrm{x}=\mathrm{e}$
Implicitly, "in rest of what you type"
E.g., you type:
let $a=" z a r " ;$
let $b=" d o z " ;$
let $c=a^{\wedge} b$; ;

OCaml understands as
let $a=$ "zar" in
let $b=$ "doz" in
let $c=a^{\wedge} b$ in...

Scope

Bindings are in effect only in the scope (the "block") in which they occur.

```
let \(x=42\) in
    (* y is not in scope here *)
    \(\mathrm{x}+\left(\operatorname{let} \mathrm{y}={ }^{2} 3110 \mathrm{ln}\right.\)
        (* y is in scope here *)
        int_of_string y)
```

Exactly what you're used to from (e.g.) Java

Overlapping scope

Overlapping bindings of the same name is usually bad idiom (and darn confusing)
let $x=5$ in $(($ let $x=6$ in $x)+x)$

To what value does the above expression evaluate?

- 10
- 11
- 12
- None of the above

Substitution

$$
\begin{aligned}
& \text { let } x=5 \text { in }((\text { let } x=6 \text { in } x)+x) \\
& \text { ?->? }
\end{aligned}
$$

Not a choice:
let $x=5$ in $(6+6)$

Two choices:
A. ((let $x=6$ in $x)+5)$
B. ((let $x=6$ in 5$)+5)$

Substitution

$$
\begin{aligned}
& \text { let } x=5 \text { in }((\text { let } x=6 \text { in } x)+x) \\
& \text { ?->? }
\end{aligned}
$$

Not a choice:
let $x=5$ in $(6+6)$

Two choices:
A. ((let $x=6$ in $x)+5)$
B.

Principle of Name Irrelevance

The name of a variable should not matter.

In math, these are the same functions:
$f(x)=x^{2}$
$f(y)=y^{2}$

So in programming, these should be the same functions:
let $\mathrm{f} x=\mathrm{x}$ x
let $\mathrm{f} y=\mathrm{y}^{*} \mathrm{y}$

This principle is also called alpha equivalence

Principle of Name Irrelevance

Likewise, these should be the same expressions:
(let $x=6$ in x)
(let $y=6$ in y)

So these should also be the same:
let $x=5$ in ((let $x=6$ in $x)+x)$
let $x=5$ in $((\operatorname{let} y=6$ in $y)+x)$

But if we substitute inside inner let expression, they will not be the same:
$($ let $x=6$ in 5$)+5 \quad--->10$
$(\operatorname{let} y=6$ in $y)+5 \quad--->11$

Back to substitution

$$
\begin{aligned}
& \text { let } x=5 \text { in }((\text { let } x=6 \text { in } x)+x) \\
& \text { ?-?? }
\end{aligned}
$$

Not a choice:
let $x=5$ in $(6+6)$

Two choices:
A. ((let $x=6$ in $x)+5)$
B. $($ (let $x=6$ in 5$)+5)$

Shadowing

A new binding shadows an older binding of the same name

Shadowing is not assignment

let $x=5$ in $((\operatorname{let} x=6$ in $x)+x)$
----> 11
let $x=5$ in $(x+(\operatorname{let} x=6$ in $x))$
----> 11

Types

Write colon to indicate type of expression

As does the top-level:
\# let $\mathrm{x}=42$; ;
val x : int $=42$

Type-checking of let expression:
If e1:t1,
and if $\mathbf{e} 2: t 2$ (assuming that $\mathbf{x}: t 1$),
then (let $x=e 1$ in e2) : t2

Let expressions (summary)

- Syntax:

$$
\text { let } x=e 1 \text { in e2 }
$$

- Type-checking:

If e : t 1 , and if $\mathrm{e} 2: \mathrm{t} 2$ under the assumption that x : t1, then let $\mathrm{x}=\mathrm{e}$ in e 2 : t2

- Evaluation:
- Evaluate e1 to v1
- Substitute $\mathbf{v} 1$ for \mathbf{x} in $\mathbf{e} 2$ yielding new expression $\mathbf{e}^{\prime}{ }^{\prime}$
- Evaluate $\mathbf{e 2}^{\prime}$ to \mathbf{v}
- Result of evaluation is v

Function declaration

Functions:

- Like Java methods, have arguments and result
- Unlike Java, no classes, this, return, etc.

Example function declaration:

```
(* requires: y>=0 *)
(* returns: x to the power of y *)
let rec pow x y =
    if y=0 then 1
    else x * pow x (y-1)
```

Note: "rec" is required because the body includes a recursive function call: pow ($x, y-1$)

Function declaration

- Syntax:
let f x1 x 2 ... $\mathrm{xn}=\mathrm{e}$
- Evaluation:
- No evaluation!
- Just declaring the function
- Will be evaluated when applied to arguments
- Type-checking:
- Conclude that f : $\mathrm{t} 1 \quad->\ldots \quad->$ tn $->\mathrm{t}$ if e:t under assumptions:
- $x 1: t 1, \ldots, x n: t n$ (arguments with their types)
- f: t1 -> ... -> tn -> t (for recursion)

Writing argument types

Though types can be inferred, you can write them too:
let rec pow (x : int) (y : int) : int = if $\mathrm{y}=0$ then 1 else x * pow x (y-1)
let rec pow x y =
if $\mathrm{y}=0$ then 1
else x * pow x (y-1)
let cube $\mathrm{x}=$ pow x 3
let cube (x : int) : int $=$ pow x 3

Function application

Syntax: e0 e1 ... en

- Parentheses not strictly required around argument(s)
- If there is exactly one argument and you do use parentheses and you leave out the space, syntax looks like C function call: e0(e1)

Function application

Type-checking
ife0: t1 $->\ldots->t n->t$
ande1: t1, ..., en : tn
then e0 e1 ... en : t
e.g., pow 23 : int

Function application

Evaluation of e0 e1 ... en

1. Evaluate $\mathbf{e O}$ to a function let f x1 ... $\mathrm{xn}=\mathbf{e}$
2. Evaluate arguments e1...en en to values v1...vn
3. Substitute vi for $x i$ in \mathbf{e} yielding new expression \mathbf{e}^{\prime}
4. Evaluate \mathbf{e}^{\prime} to a value \mathbf{v}, which is result

Anonymous functions

Something that is anonymous has no name.

- 42 is an anonymous int
- and we can bind it to a name: let $x=42$
- (fun $\mathbf{x}->\mathbf{x + 1}$) is an anonymous function
- and we can bind it to a name:
let inc $=$ fun $x->x+1$

Anonymous functions

Syntax: (fun x1 ... xn -> e)

Evaluation:

- A function is already a value: no further computation to do
- In particular, body e is not evaluated until function is applied

Type checking:
(fun x1 ... xn -> e) : t1->...->tn->t
if $\mathrm{e}: \mathrm{t}$ under assumptions $\mathrm{x} 1: \mathrm{t} 1, \ldots, \mathrm{xn}: \mathrm{tn}$

Anonymous functions

These two declarations are syntactically different but semantically equivalent:
let inc $=$ fun $x->x+1$
let inc $x=x+1$

Anonymous functions

These two expressions are syntactically different but semantically equivalent:
let $x=7$ in $x+1$
(fun x-> $x+1$) 7

Functions are values

- Can use them anywhere we use values
- Functions can take functions as arguments
- Functions can return functions as results
...so functions are higher-order
- This is not a new language feature; just a consequence of "functions are values"
- But it is a feature with massive consequences
"A language that doesn't affect the way you think about programming is not worth knowing." --Alan Perlis

Alan Jay Perlis

First Winner of Turing Award (1966)
for his influence in the area of advanced programming techniques and compiler construction

1922-1990
Google "perlisisms" for great quotes about programming

Higher-order functions

(* some base function *)
let double $x=2 * x$
let square $\mathrm{x}=\mathrm{x}$ * x
(* apply those functions twice *)
let quad x = double (double x)
let fourth $\mathrm{x}=$ square (square x)

Higher-order functions

(* higher order function that

* applies f twice to x *)
let twice $\mathrm{f} x=\mathrm{f}(\mathrm{f} x)$
val twice : ('a -> 'a) -> 'a -> 'a
' \mathbf{a} is a type variable: could be any type

Higher-order functions

(* higher-order function that * applies f twice to x *)
let twice $f x=f(f x)$
(* define functions using twice *)
let quad $x=$ twice double x
let fourth $x=$ twice square x
(* even better definitions *)
let quad = twice double
let fourth = twice square

