
Five aspects of learning a PL

1.  Syntax: How do you write language constructs?

2.  Semantics: What do programs mean? (Type checking, evaluation rules)

3.  Idioms: What are typical patterns for using language features to express your
computation?

4.  Libraries: What facilities does the language (or a well-known project) provide
“standard”? (E.g., file access, data structures)

5.  Tools: What do language implementations provide to make your job easier?
(E.g., top-level, debugger, GUI editor, …)

•  All are essential for good programmers to understand
•  Breaking a new PL down into these pieces makes it easier to learn

Expressions
Expressions (aka terms):
•  primary building block of OCaml programs
•  akin to statements or commands in imperative languages
•  can get arbitrarily large since any expression can contain

subexpressions, etc.

Every kind of expression has:
•  Syntax
•  Semantics:

–  Type-checking rules: produce a type or fail with an error message
–  Evaluation rules: produce a value

•  (or exception or infinite loop)
•  Used only on expressions that type-check

Values

A value is an expression that does not need any
further evaluation
– 34 is a value of type int
– 34+17 is an expression of type int but is not a

value

Expressions Values

Let expressions
Syntax:
 let x = e1 in e2

x is an identifier
e1 and e2 are expressions
let x = e1 in e2 is itself an expression
x = e1 is a binding

e.g.
let x = 2 in x+x
let inc x = x+1 in inc 10
let y = "zar" in (let z = "doz" in y^z)

Let expressions

let x = e1 in e2

Evaluation:
– Evaluate e1 to a value v1
– Substitute v1 for x in e2, yielding a new expression
e2’

– Evaluate e2’ to v
– Result of evaluation is v

Let expressions

 let x = 1+4 in x*3

--> Evaluate e1 to a value v1
 let x = 5 in x*3

--> Substitute v1 for x in e2, yielding a new expression e2’
 5*3
--> Evaluate e2’ to v
 15

 Result of evaluation is v

Let expressions in REPL

Syntax:
let x = e

Implicitly, “in rest of what you type”

 let a="zar" in
 let b="doz" in

 let c=a^b in…

OCaml&understands&as&E.g.,&you&type:&
let a="zar";;
let b="doz";;
let c=a^b;;

Scope

Bindings are in effect only in the scope (the “block”) in
which they occur.

let x=42 in

 (* y is not in scope here *)

 x + (let y="3110" in

 (* y is in scope here *)

 int_of_string y)

Exactly what you’re used to from (e.g.) Java

Overlapping scope

Overlapping bindings of the same name is usually bad
idiom (and darn confusing)

let x = 5 in ((let x = 6 in x) + x)

To what value does the above expression evaluate?
•  10
•  11
•  12
•  None of the above

Substitution

 let x = 5 in ((let x = 6 in x) + x)

-->
 ???

Not a choice:
let x = 5 in (6 + 6)

Two choices:
A.  ((let x = 6 in x) + 5)
B.  ((let x = 6 in 5) + 5)

Substitution

 let x = 5 in ((let x = 6 in x) + x)

-->
 ???

Not a choice:
let x = 5 in (6 + 6)

Two choices:
A.  ((let x = 6 in x) + 5)
B.  ((let x = 6 in 5) + 5) Why?

Principle of Name Irrelevance

"e name of a variable should not matter.

In math, these are the same functions:
f(x) = x2

f(y) = y2

So in programming, these should be the same functions:
let f x = x*x
let f y = y*y

"is principle is also called alpha equivalence

Principle of Name Irrelevance

Likewise, these should be the same expressions:
(let x = 6 in x)
(let y = 6 in y)

So these should also be the same:
let x = 5 in ((let x = 6 in x) + x)
let x = 5 in ((let y = 6 in y) + x)

But if we substitute inside inner let expression, they will not be
the same:
(let x = 6 in 5) + 5 ----> 10
(let y = 6 in y) + 5 ----> 11

Back to substitution

 let x = 5 in ((let x = 6 in x) + x)

-->
 ???

Not a choice:
let x = 5 in (6 + 6)

Two choices:
A.  ((let x = 6 in x) + 5)
B.  ((let x = 6 in 5) + 5) "at's why!

A new binding shadows an older binding of the same name

let x = 5 in ((let x = 6 in x) + x)

Shadowing

Shadowing is not assignment

let x = 5 in ((let x = 6 in x) + x)

----> 11

let x = 5 in (x + (let x = 6 in x))

----> 11

Types

Write colon to indicate type of expression

As does the top-level:
let x = 42;;
val x : int = 42

Type-checking of let expression:

If e1:t1,
and if e2:t2 (assuming that x:t1),
then (let x = e1 in e2) : t2

Let expressions (summary)

•  Syntax:
 let x = e1 in e2
•  Type-checking:

If e1:t1, and if e2:t2 under the assumption that
x:t1, then let x = e1 in e2 : t2

•  Evaluation:
–  Evaluate e1 to v1
–  Substitute v1 for x in e2 yielding new expression e2’
–  Evaluate e2’ to v
–  Result of evaluation is v

Function declaration
Functions:
•  Like Java methods, have arguments and result
•  Unlike Java, no classes, this, return, etc.

Example function declaration:
(* requires: y>=0 *)
(* returns: x to the power of y *)
let rec pow x y =
 if y=0 then 1
 else x * pow x (y-1)

Note: “rec” is required because the body includes a recursive function call:
pow(x,y-1)

Function declaration
•  Syntax:
 let f x1 x2 ... xn = e

•  Evaluation:
– No evaluation!
–  Just declaring the function
– Will be evaluated when applied to arguments

•  Type-checking:
– Conclude that f : t1 -> ... -> tn -> t

if e:t under assumptions:
•  x1:t1, ..., xn:tn (arguments with their types)
•  f: t1 -> ... -> tn -> t (for recursion)

Writing argument types

"ough types can be inferred, you can write them too:

let rec pow (x : int) (y : int) : int =

 if y=0 then 1

 else x * pow x (y-1)

let rec pow x y =

 if y=0 then 1

 else x * pow x (y-1)

let cube x = pow x 3

let cube (x : int) : int = pow x 3

Function application

Syntax: e0 e1 ... en

•  Parentheses not strictly required around
argument(s)

•  If there is exactly one argument and you do use
parentheses and you leave out the space, syntax
looks like C function call: e0(e1)

Function application

Type-checking
 if e0 : t1 -> ... -> tn -> t

and e1 : t1, ..., en : tn

then e0 e1 ... en : t

e.g., pow 2 3 : int

Function application

Evaluation of e0 e1 ... en

1.  Evaluate e0 to a function
let f x1 ... xn = e

2.  Evaluate arguments e1...en to values
v1...vn

3.  Substitute vi for xi in e yielding new
expression e’

4.  Evaluate e’ to a value v, which is result

Anonymous functions

Something that is anonymous has no name.

•  42 is an anonymous int
•  and we can bind it to a name:
let x = 42

•  (fun x -> x+1) is an anonymous function
•  and we can bind it to a name:
let inc = fun x -> x+1

Anonymous functions

Syntax: (fun x1 ... xn -> e)

Evaluation:
•  A function is already a value: no further computation to

do
•  In particular, body e is not evaluated until function is

applied

Type checking:
(fun x1 ... xn -> e) : t1->...->tn->t
if e:t under assumptions x1:t1, ..., xn:tn

Anonymous functions

"ese two declarations are syntactically different
but semantically equivalent:

let inc = fun x -> x+1

let inc x = x+1

Anonymous functions

"ese two expressions are syntactically different
but semantically equivalent:

let x = 7 in x+1

(fun x -> x+1) 7

Functions are values

•  Can use them anywhere we use values
•  Functions can take functions as arguments
•  Functions can return functions as results

 …so functions are higher-order

•  "is is not a new language feature; just a consequence of
"functions are values"

•  But it is a feature with massive consequences

"A language that doesn't affect the way you think about
programming is not worth knowing." --Alan Perlis

Alan Jay Perlis

First Winner of Turing Award (1966)

for his influence in the area of
advanced programming techniques
and compiler construction

Google "perlisisms" for great quotes
about programming

1922-1990

Higher-order functions

(* some base function *)

let double x = 2*x

let square x = x*x

(* apply those functions twice *)

let quad x = double (double x)

let fourth x = square (square x)

Higher-order functions

(* higher order function that

 * applies f twice to x *)

let twice f x = f (f x)

val twice : ('a -> 'a) -> 'a -> 'a

'a is a type variable: could be any type

Higher-order functions

(* higher-order function that
 * applies f twice to x *)
let twice f x = f (f x)

(* define functions using twice *)
let quad x = twice double x
let fourth x = twice square x

(* even better definitions *)
let quad = twice double
let fourth = twice square

