Five aspects of learning a PL

1. Syntax: How do you write language constructs?
2. Semantics: What do programs mean? (Type checking, evaluation rules)

3. Idioms: What are typical patterns for using language features to express your
computation?

4. Libraries: What facilities does the language (or a well-known project) provide
“standard”? (E.g,, file access, data structures)

5. Tools: What do language implementations provide to make your job easier?
(E.g., top-level, debugger, GUI editor, ...)

e All are essential for good programmers to understand

Expressions

Expressions (aka terms):
* primary building block of OCaml programs
* akin to statements or commands in imperative languages

* can get arbitrarily large since any expression can contain
subexpressions, etc.

Every kind of expression has:
* Syntax
* Semantics:

— Type-checking rules: produce a type or fail with an error message

— Evaluation rules: produce a value
 (or exception or infinite loop)
* Used only on expressions that type-check

Values

A value is an expression that does not need any
further evaluation

— 34 isavalue of type int

— 34417 is an expression of type int butis not a
value

Expressions

Let expressions

Syntax:
let x = el in e2

X is an identifier

el and e2 are expressions

let x = el in e2isitselfan expression
x = elisabinding

e.g.
let x = 2 in xX+X

let inc x x+1 in inc 10

let v = "zar" in (let z = "doz" in y"z)

Let expressions

let x = el in e2

Evaluation:
— Evaluate el to a value v1

— Substitute v1 for x in e2, yielding a new expression
e2’
— Evaluate e2’ tov

— Result of evaluation is v

Let expressions

let x 1+4 in x*3
—=> Evaluate el to avaluevl
let x = 5 in x*3
—=> Substitute v1 for x in e2, yielding a new expression e2’
5*3
—=> Evaluatee2’ tov
15

Result of evaluation is v

Let expressions in REPL

Syntax:
let x = e

Implicitly, “in rest of what you type”

E.g., you type:
let a="zar";;
let b="doz";;
let c=a’b;;

Scope

Bindings are in effect only in the scope (the “block”) in
which they occur.

let x=42 in
(* y 1s not in scope here *)
Xx + (let y="3110" in
(* y 1s 1n scope here *)
int of string y)

from (e.g.) Java

Overlapping scope

Overlapping bindings of the same name is usually bad
idiom (and darn confusing)

let x = 5 in ((let x = 6 1n xX) + X)

To what value does the above expression evaluate?
° 10

° 11

° 12

* None of the above

Substitution

let x = 5 in ((let x = 6 in x) + X)
-—>
?7?7?

Not a choice:
let x = 5 in (6 + 6)

Two choices:
A. ((let x = 6 in x) + 5)
B. ((let x = 6 in 5) + 5)

Substitution

let x = 5 in ((let x = 6 in X) + X)
-—>
??7

Not a choice:
let x = 5 in (6 + 6)

Two choices:

B. {{tetx—6-+n 5}y + 5% Why?

Principle of Name Irrelevance

In math, these are the same functions:
f(x) = x2
fly) =y

So in programming, these should be the same functions:
let £ x = x*x

let £ yv = y*y

This principle is also called alpha equivalence

Principle of Name Irrelevance

Likewise, these should be the same expressions:
(let x = 6 in Xx)
(let y = 6 in y)

So these should also be the same:
let x = 5 in ((let x = 6 in X) + X)
let x = 5 in ((let y = 6 in y) + X)

But if we substitute inside inner 1et expression, they will not be
the same:

(let x = 6 in 5)
(let vy

|

(o)
;.
=

Back to substitution
let x = 5 in ((let x = 6 in X) + X)
-->

77?7

Not a choice:
let x = 5 in (6 + 6)

Two choices:

B. {{tetx—6-+n 5}y + 5% That's why!

Shadowing

A new binding shadows an older binding of the same name

Shadowing is not assignment

let x = 5 in ((let x = 6 in X) + X)
_——> 11
let x = 5 in (x + (let x = 6 in x))

—_———-> 11

Types
Write colon to indicate type of expression

As does the top-level:
let x = 42;;
val x : int = 42

Type-checking of let expression:
Ifel:tl,
and if e2 :t2 (assuming that x: 1),
then (let x = el in e2) : t2

Let expressions (summary)

* Syntax:
let x = el in e2
* Type-checking:

Ifel:tl,andife2:t2 under the assumption that
x:tl,thenlet x = el in e2 : t2

* Evaluation:
— Evaluate el to vl
— Substitute v1 for x in e2 yielding new expression e2’
— Evaluate e2’ tov
— Result of evaluation is v

Function declaration

Functions:
* Like Java methods, have arguments and result
e Unlike Java, no classes, this, return, etc.

Example function declaration:

(* requires: y>=0 ¥*)
(* returns: x to the power of y *)
let rec pow x y =

if y=0 then 1

else x * pow x (y-1)

Note: “rec” is required because the body includes a recursive function call:
pow (x, Y- 1)

Function declaration

* Syntax:
let £ x1 x2 ... xn

I
()]

* Evaluation:
— No evaluation!
— Just declaring the function
— Will be evaluated when applied to arguments

* Type-checking:

— Concludethatf :t1 -> ... -> tn -> t
if e : £ under assumptions:
ex1:tl, ..., xn:tn (arguments with their types)

e £: t1 -> ... -> tn -> t (forrecursion)

Writing argument types

Though types can be inferred, you can write them too:

let rec pow (x : int) (y : int)
if y=0 then 1
else x * pow x (y-1)

let rec pow x y =
if y=0 then 1

else x * pow x (y-1)

let cube x = pow x 3

let cube (x : int) : int = pow x 3

int

Function application

Syntax: e0 el ... en

* Parentheses not strictly required around
argument(s)

* If there is exactly one argument and you do use

parentheses and you leave out the space, syntax
ooks like C function call: e0 (el)

Function application

Type-checking
ife0 : t1 -> ... -> tn -> t
andel : t1, ..., en : tn

thenel el ... en : t

eg,pow 2 3 : int

Function application

Evaluationof e0 el ... en

1.

Evaluate eO to a function
let £ x1 ... Xn = e

Evaluate arguments el. . . en to values
vi...vn

Substitute vi for xi in e yielding new
expression e’

Evaluate e’ to a value v, which is result

Anonymous functions

Something that is anonymous has no name.

* 42 isananonymous int

 and we can bind it to a name;
let x = 42

* (fun x -> x+1) isananonymous function

e and we can bind it to a hame:
let inc = fun x -> x+1

Anonymous functions

Syntax: (fun x1 ... xn -> e)

Evaluation:

no further computation to
do

* In particular, body e is not evaluated until function is
applied

Type checking:
(fun x1 ... xn -> e) : tl->...->tn->t
if e:tunderassumptionsxl:tl, ..., xn:tn

Anonymous functions

These two declarations are syntactically different
but semantically equivalent:

let inc = fun x -> x+1
xX+1

let inc X

Anonymous functions

These two expressions are syntactically different
but semantically equivalent:

let x = 7 in x+1
(fun x -> x+1) 7

Functions are values

* (Can use them anywhere we use values
* Functions can take functions as arguments

* Functions can return functions as results
...so functions are higher-order

* This is not a new language feature; just a consequence of

* Butitis afeature with massive consequences

"A language that doesn't affect the way you think about
programming is not worth knowing." --Alan Perlis

Alan Jay Perlis

First Winner of Turing Award (1966)

' for his influence in the area of
advanced programming techniques
and compiler construction

1922-1990

Google "perlisisms” for great quotes
about programming

Higher-order functions

(* some base function *)
let double x = 2%*x

let square x = X*X

(* apply those functions twice *)
let quad x = double (double x)
let fourth x = square (square X)

Higher-order functions

(* higher order function that
* applies f twice to x *)
let twice £f x = £ (f x)

val twice : ('a -> 'a) -> 'a -> 'a

'ais atype variable: could be any type

Higher-order functions

(* higher-order function that
* applies f twice to x *)
let twice £ x = £ (f Xx)

(* define functions using twice *)
let quad x = twice double x
let fourth x = twice square x

(* even better definitions *)
let quad = twice double
let fourth = twice square

