
What is a functional language?

A functional language:
•  defines computations as mathematical functions
•  avoids mutable state

State: the information maintained by a
computation

Mutable: can be changed (antonym: immutable)

Functional vs. imperative

Functional languages:
•  Higher level of abstraction
•  Easier to develop robust software
•  Immutable state: easier to reason about software

Imperative languages:
•  Lower level of abstraction
•  Harder to develop robust software
•  Mutable state: harder to reason about software

You don’t have to believe me now.
If you master a functional language, you will. !

Imperative programming

Commands specify how to compute by destructively
changing state:

x = x+1;
a[i] = 42;
p.next = p.next.next;

Functions/methods have side effects:
int wheels(Vehicle v) {  
 v.size++; return v.numWheels;  
}

Mutability

"e fantasy of mutability:
•  !ere is a single state
•  !e computer does one thing at a time

"e reality of mutability:
•  !ere is no single state

–  Programs have many threads, spread across many cores, spread
across many processors, spread across many computers…
each with its own view of memory

•  !ere is no single program
–  Most applications do many things at one time

…mutable programming is not well-suited to modern computing!

Functional programming

Expressions specify what to compute
– Variables never change value
– Functions never have side effects

"e reality of immutability:
– No need to think about state
– Powerful ways to build concurrent programs

Functional languages predict the future

•  Garbage collection
Java [1995], LISP [1958]

•  Generics
Java 5 [2004], ML [1990]

•  Higher-order functions
C#3.0 [2007], Java 8 [2014], LISP [1958]

•  Type inference
C++11 [2011], Java 7 [2011] and 8, ML [1990]

•  What's next?

Functional languages in the real world

•  F#, C# 3.0, LINQ (Microsoft)
•  Scala (Twitter, LinkedIn, FourSquare)
•  Java 8
•  Haskell (dozens of small companies/teams)
•  Erlang (distributed systems, Facebook chat)
•  OCaml (Jane Street)

Example 1: Sum Squares

// returns: Σ1<=i<=n i2

int sum_squares(int n) {
 sum=0;
 for (int x = 1; x <= n; x++) {
 sum = sum + x*x
 }
 return sum;
}

How can you do that without mutability?

Example 1: Sum Squares

// returns: Σ1<=i<=n i2

int sum_squares(int n) {
 if (n==0) {
 return 0;
 } else {
 return n*n + sum_squares(n-1)
 }
}

Example 2: Reverse List
// return a copy of x,
// with the order of its elements reversed
List reverse(List x) {
 List y = null;
 while (x != null) {
 List t = x.next;
 x.next = y;
 y = x;
 x = t;
 }
 return y;

}

Example 2: Reverse List

(* return the reverse of lst *)

let rec reverse lst =

 match lst with

 | [] -> []

 | h::t -> (reverse t) @ [h]

!is is not the most efficient algorithm

Example 3: Quicksort

•  Describe quicksort in English.
•  Describe quicksort in Java. (No.)
•  Describe quicksort in OCaml:

(* returns lst sorted according to < *)
let rec qsort lst =

 match lst with
 | [] -> []
 | pivot::rest -> (* poor choice of pivot *)
 let (left,right) = partition ((<) pivot) rest
 in (qsort left) @ [pivot] @ (qsort right)

!

But definitely don't use this exact algorithm

OCaml

A pretty good language for writing beautiful
programs

O = Objective, Caml=not important
ML is a family of languages; originally the “meta-language” for a tool

