Lazy synchronization

A bit is added to each node.

If a reachable node has bit 1, it has been logically removed
(and will be physically removed).

340 /530

Lazy synchronization: remove

In lazy synchronization, remove (x) proceeds as follows:

>

>

Search (without locks) for a node ¢ with a key > hash(x).
Lock its predecessor p and c itself.

Check whether p (1) isn't marked, and (2) points to c.

If this validation fails, then release the locks and start over.

Else, if the key of c is greater than hash(x), return false.

If the key of ¢ equals hash(x):

» mark c,
» redirect p to the successor of ¢, and

> return true.

Release the locks.

341 /530

Lazy synchronization: add

add (x) proceeds similarly:

» Search for a node ¢ with a key > hash(x).

» Lock its predecessor p and c itself.

» Check whether p (1) isn’t marked, and (2) points to c.

» |f this validation fails, then release the locks and start over.

» Else, if the key of ¢ equals hash(x), return false.

If the key of c is greater than hash(x):

» create a node n with key hash(x), value x, bit 0, and link to c,
» redirect p to n, and

> return true.

Release the locks.

342 /530

Lazy synchronization: validation is needed

Example: Let two threads concurrently apply
remove (x) with hash(x)=a, and remove (y) with hash(y)=b.

a |0 b | 0 >max| 0 [null

B -

343 /530

Lazy synchronization: validation is needed

Example: Let two threads concurrently apply
remove (x) with hash(x)=a, and remove (y) with hash(y)=b.

min| 0 ——>-—> b |0 >max| 0 [null

344 /530

Lazy synchronization: validation is needed

Example: Let two threads concurrently apply

remove (x) with hash(x)=a, and remove (y) with hash(y)=b.

1 1

EEE -EEE ele[d -

max

null

345 /530

Lazy synchronization: validation is needed

Example: Let two threads concurrently apply

remove (x) with hash(x)=a, and remove (y) with hash(y)=b.

1 1

EEE -EEE ele[d -

max

null

346 /530

Lazy synchronization: validation is needed

Example: Let two threads concurrently apply

remove (x) with hash(x)=a, and remove (y) with hash(y)=b.

1 1

max

null

_—

347 /530

Lazy synchronization: validation is needed

Example: Let two threads concurrently apply

remove (x) with hash(x)=a, and remove (y) with hash(y)=b.

min| 0 | ~_ a |1 | —

max

null

348 /530

Lazy synchronization: validation is needed

Example: Let two threads concurrently apply
remove (x) with hash(x)=a, and remove (y) with hash(y)=b.

1 1

i @ \y— i @ [l

Validation shows that node a is marked for removal.

349 /530

Lazy synchronization: contains

contains (x) doesn't require locks:

» Search for a node with the key hash(x).

>

» |f such a node is found, check whether it is marked.

If no such node is found, return false.

If so, return false, else return true.

350 /530

Lazy synchronization: linearization

The abstraction map maps each linked list to the set of items
that reside in an unmarked node reachable from head.

The linearization points:

>

successful add: When the predecessor is redirected to
the added node.

successful remove: When the mark is set.
successful contains: When the (unmarked) node is found.

unsuccessful add and remove: When validation is completed
successfully.

unsuccessful contains: 777

351 /530

Lazy synchronization: linearizing unsuccessful contains

Example: Four methods are applied concurrently:

» remove (x) with hash(x)=a and contains(y) with hash(y)=b
are being executed

» remove(y) and add(y) are about to be invoked

1 1
Bl -

o
Y

max| 0 |null

352 /530

Lazy synchronization: linearizing unsuccessful contains

Example: Four methods are applied concurrently:

» remove(x) with hash(x)=a and contains(y) with hash(y)=b
are being executed

» remove(y) and add(y) are about to be invoked

max| 0 |null

<§

353 /530

Lazy synchronization: linearizing unsuccessful contains

Example: Four methods are applied concurrently:

» remove (x) with hash(x)=a and contains(y) with hash(y)=b
are being executed

» remove(y) and add(y) are about to be invoked

o
Y

max| 0 |null

- -

354 /530

Lazy synchronization: linearizing unsuccessful contains

Example: Four methods are applied concurrently:

» remove (x) with hash(x)=a and contains(y) with hash(y)=b
are being executed

» remove(y) and add(y) are about to be invoked

min| 0 \y max| 0 [null

355 /530

Lazy synchronization: linearizing unsuccessful contains

Example: Four methods are applied concurrently:

» remove(x) with hash(x)=a and contains(y) with hash(y)=b
are being executed

» remove(y) and add(y) are about to be invoked

max| 0 |null

356 / 530

Lazy synchronization: linearizing unsuccessful contains

Example: Four methods are applied concurrently:

» remove(x) with hash(x)=a and contains(y) with hash(y)=b
are being executed

» remove(y) and add(y) are about to be invoked

m contains(y) can be linearized ! m

357 /530

Lazy synchronization: linearizing unsuccessful contains

Example: Four methods are applied concurrently:

» remove(x) with hash(x)=a and contains(y) with hash(y)=b
are being executed

» remove(y) and add(y) are about to be invoked

358 /530

Lazy synchronization: linearizing unsuccessful contains

Example: Four methods are applied concurrently:

» remove (x) with hash(x)=a and contains(y) with hash(y)=b
are being executed

» remove(y) and add(y) are about to be invoked

Y

max| 0 |null

el

359 /530

Lazy synchronization: linearizing unsuccessful contains

Example: Four methods are applied concurrently:

» remove (x) with hash(x)=a and contains(y) with hash(y)=b
are being executed

» remove(y) and add(y) are about to be invoked

o]

360 /530

Lazy synchronization: linearizing unsuccessful contains

Example: Four methods are applied concurrently:

» remove(x) with hash(x)=a and contains(y) with hash(y)=b
are being executed

» remove(y) and add(y) are about to be invoked

S

361 /530

Lazy synchronization: linearizing unsuccessful contains

Example: Four methods are applied concurrently:

» remove (x) with hash(x)=a and contains(y) with hash(y)=b
are being executed

» remove(y) and add(y) are about to be invoked

1 1
O EEE

362 /530

Lazy synchronization: linearizing unsuccessful contains

Example: Four methods are applied concurrently:

» remove (x) with hash(x)=a and contains(y) with hash(y)=b
are being executed

» remove(y) and add(y) are about to be invoked

m now it’s too late to linearize contains(y) ! m
]
b |0]| —

363 /530

Lazy synchronization: linearizing unsuccessful contains

Example: Four methods are applied concurrently:

» remove (x) with hash(x)=a and contains(y) with hash(y)=b
are being executed

» remove(y) and add(y) are about to be invoked

1 1

364 /530

Lazy synchronization: linearizing unsuccessful contains

An unsuccessful contains(x) can in each execution be linearized
at a moment when x isn’t in the set.

» |f x isn't present in the set at the moment contains (x)
is invoked, then we linearize contains (x) when it is invoked.

» Else, a remove(x) has its linearization point between
the moments when contains(x) is invoked and returns.

We linearize contains(x) right after the linearization point
of such a remove (x).

365 /530

Lazy synchronization: progress property

The lazy synchronization algorithm isn’t starvation-free,
since validation of add and remove by a thread may be unsuccessful
an infinite number of times.

However, contains is wait-free.

Drawbacks:

» contended add and remove calls retraverse the list

» add and remove are still blocking

366 /530

Lock-free synchronization: simple idea is flawed

We will now look at a lock-free implementation of sets,

using compareAndSet to redirect links.

This simple idea is flawed...

Example 1: add(x) with hash(x)=b and remove (y) with hash(y)=a

are being executed.

el 5 -HHE -

max

null

367 /530

Lock-free synchronization: simple idea is flawed

We will now look at a lock-free implementation of sets,

using compareAndSet to redirect links.

This simple idea is flawed...

Example 1: add(x) with hash(x)=b and remove (y) with hash(y)=a

are being executed.

B EE

max

null

368 /530

Lock-free synchronization: simple idea is flawed

We will now look at a lock-free implementation of sets,
using compareAndSet to redirect links.

This simple idea is flawed...

Example 1: add(x) with hash(x)=b and remove (y) with hash(y)=a

are being executed.

P

min

C

o

Node b isn't added!

max

null

369 /530

Lock-free synchronization: simple idea is flawed

Example 2: remove (x) with hash(x)=b and remove (y) with
hash(y)=a are being executed.

EE CEE -

Question: How can this problem be resolved ?

371/530

Lock-free synchronization: simple idea is flawed

Example 2: remove (x) with hash(x)=b and remove (y) with
hash(y)=a are being executed.

O EE e

Question: How can this problem be resolved ?

372/530

Lock-free synchronization: simple idea is flawed

Example 2: remove (x) with hash(x)=b and remove (y) with
hash(y)=a are being executed.

P

min b | —T—>max/null

Node b isn't removed !

Question: How can this problem be resolved ?

373 /530

Lock-free synchronization

Solution: Again nodes are supplied with a bit to mark removed nodes.
compareAndSet treats the link and mark of a node as one unit

(using the AtomicMarkableReference class).

Example: add(x) with hash(x)=b and remove(y) with hash(y)=a
are being executed.

mlo]5 -ENDE -

o
Y

max| 0 [null

374 /530

Lock-free synchronization

Solution: Again nodes are supplied with a bit to mark removed nodes.
compareAndSet treats the link and mark of a node as one unit

(using the AtomicMarkableReference class).

Example: add(x) with hash(x)=b and remove(y) with hash(y)=a
are being executed.

eelo]S -ENEE -

getReference()

o
Y

max| 0 |null

375 /530

Lock-free synchronization

Solution: Again nodes are supplied with a bit to mark removed nodes.

compareAndSet treats the link and mark of a node as one unit
(using the AtomicMarkableReference class).

Example: add(x) with hash(x)=b and remove (y) with hash(y)=a
are being executed.

s

compareAndSet(a,c,0,0)

Y

max| 0 |null

377 /530

Lock-free synchronization

Solution: Again nodes are supplied with a bit to mark removed nodes.
compareAndSet treats the link and mark of a node as one unit

(using the AtomicMarkableReference class).

Example: add(x) with hash(x)=b and remove(y) with hash(y)=a
are being executed.

Y

max| 0 [null

378 /530

Lock-free synchronization

Solution: Again nodes are supplied with a bit to mark removed nodes.
compareAndSet treats the link and mark of a node as one unit

(using the AtomicMarkableReference class).

Example: add(x) with hash(x)=b and remove (y) with hash(y)=a
are being executed.

eAndSet(c,b,0,0) >

b |0 |]

Y

max| 0 |null

add (x) must start over!

379 /530

AtomicMarkableReference class

AtomicMarkableReference(T) maintains:
» an object reference of type T, and

» a Boolean mark bit.

An internal object is created, representing a boxed (reference, bit) pair.

These two fields can be updated in one atomic step.

380 /530

AtomicMarkableReference class: methods

boolean compareAndSet(T expectedRef, T newRef,

boolean expectedMark, boolean newMark)
Atomically sets reference and mark to newRef and newMark,
if reference and mark equal expectedRef and expectedMark.

boolean attemptMark(T expectedRef, boolean newMark)
Atomically sets mark to newMark, if reference equals expectedRef.

void set(T newRef, boolean newMark)
Atomically sets reference and mark to newRef and newMark.

T get(boolean[] currentMark) Atomically returns the value of
reference and writes the value of mark at place 0 of the argument array.

T getReference() Returns the value of reference.
boolean isMarked() Returns the value of mark.

381 /530

Lock-free synchronization: physical removal

When an add or remove call that traverses the list encounters
a marked node curr, it attempts to physically remove this node
by applying to its predecessor pred:

compareAndSet (curr,succ,0,0)
to redirect pred to the successor succ of curr.

If such an attempt succeeds, then the traversal continues.

If such an attempt fails, then the method call must start over,
because it may be traversing an unreachable part of the list.

389 /530

Lock-free synchronization: remove

remove (x) proceeds as follows:

» Search for a node ¢ with a key > hash(x) (reference and mark
of a node are read in one atomic step using get ()).

» During this search, try to physically remove marked nodes,
using compareAndSet.

If at some point such a physical removal fails, start over.

» |If the key of c is greater than hash(x), return false.

If the key of ¢ equals hash(x):

» apply getReference() to obtain the successor s of ¢, and
» apply compareAndSet(s,s,0,1) to try and mark c.
» If this fails, start over.

Else, apply compareAndSet(c,s,0,0) to try and redirect
the predecessor p of c to s, and return true.

390 /530

Lock-free synchronization: add

add (x) proceeds as follows:

» Search for a node ¢ with a key > hash(x).

» During this search, try to physically remove marked nodes,
using compareAndSet.

If at some point such a physical removal fails, start over.

» |If the key of ¢ equals hash(x), return false.

If the key of c is greater than hash(x):

» create a node n with key hash(x), value x, bit 0, and link to c, and

» apply compareAndSet(c,n,0,0) to try and redirect
the predecessor p of c to n.

» [f this fails, start over.

Else, return true.

391 /530

Lock-free synchronization: contains

contains(x) traverses the list without cleaning up marked nodes.

» Search for a node with the key hash(x).

» |f no such node is found, return false.

» If such a node is found, check whether it is marked.

» If so, return false, else return true.

392 /530

Lock-free synchronization: linearization

The linearization points:

» successful add: When the predecessor is redirected to
the added node.

» successful remove: When the mark is set.
» successful contains: When the (unmarked) node is found.

» unsuccessful add (x) and remove(x): When the key is found
that is equal to, respectively greater than, hash(x).

» unsuccessful contains(x): At a moment when x isn't in the set.

393 /530

Lock-free synchronization: progress property

The lock-free algorithm is lock-free.

It is not wait-free, because list traversal of add and remove
by a thread may be unsuccessful an infinite number of times.

contains is wait-free.

The lock-free algorithm for sets is in the Java Concurrency Package.

394 /530

