
Welcome to the jungle of concurrent objects

Method calls on concurrent threads can overlap (in time).

As a result, an object may never be between method calls.

All possible interactions between method calls must be taken
into account.

What does it mean for a concurrent object to be correct ?
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Linearizability

We order the method calls in an execution, by associating them to
a moment in time when they are active.

That is: an execution on a concurrent object is linearizable
if each method call in the execution:

I appears to take e↵ect instantaneously,

I at a moment in time between its invocation and return events,

I in line with the system specification.

An object is linearizable if all its possible executions are linearizable.
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Linearizability: example 1

q.deq()  x

time

LINEARIZABLE

q.deq()  yq.enq(x)

q.enq(y)

Since x is enqueued before y (in the FIFO queue),
it should also be dequeued before y.
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Linearizability: example 2

q.enq(x) q.deq()  y

q.enq(y)

time

q.deq()  x

LINEARIZABLE
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q.enq(x) q.deq()  y

q.enq(y)

time

q.deq()  x

LINEARIZABLE
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Linearizability: example 3

q.enq(y) q.deq()  x

q.enq(x) q.deq()  y

time

NOT LINEARIZABLE
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Linearization of unfinished method calls

For a method call that has an invocation but no return event,
one can either:

I let it take e↵ect before the end of the execution; or

I omit the method call from the execution altogether
(i.e., it didn’t take e↵ect before the end of the execution).
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Wait-free bounded FIFO queue for two threads

As an example, consider a concurrent bounded FIFO queue,
with an enqueue (q.enq(x)) and a dequeue (q.deq()) method.

Interactions between these methods can be avoided by protecting
the queue using a lock.

But this results in an ine�cient implementation (recall Amdahl’s law).

The next slide shows an implementation of a FIFO queue
without locks for two threads: An enqueuer and a dequeuer.

It is wait-free: The enqueuer and dequeuer can progress by themself.
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Wait-free bounded FIFO queue for two threads

class WaitFreeQueuehTi {
volatile int head, tail;

T[] items;

public WaitFreeQueue(int capacity) {
items = T[] new Object[capacity];

head = 0; tail = 0;

}
public void enq(T x) throws FullException {
if tail - head == items.length throw new FullException();

items[tail % items.length] = x; tail++;

}
public T deq() throws EmptyException {
if tail == head throw new EmptyException();

T y = items[head % items.length]; head++;

return y;

}
}
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Wait-free bounded FIFO queue: correctness

Intuitively, this algorithm is correct for the following reasons:

I Only the enqueuer writes to tail and items[...],
and only the dequeuer writes to head.

I The condition if tail - head == items.length

stops the enqueuer from overwriting an element in the queue
before the dequeuer has read it.

Here it is used that head is volatile, and the dequeuer only
increases head after it read items[head % items.length].

I The condition if tail == head

stops the dequeuer from reading an element in the queue
before the enqueuer has placed it in the queue.

Here it is used that tail is volatile, and the enqueuer only
increases tail after it wrote to items[tail % items.length].
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Question

Why don’t we need to declare the slots in the items array volatile ?

Answer: Reading or writing to a volatile variable (here head or tail)
imposes a memory barrier in which the entire cache is flushed/invalidated.
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Wait-free bounded FIFO queue is linearizable

Linearization point of enq() is if tail - head == items.length.

(If this condition is false, the enqueued item can only be dequeued
after tail++.)

Linearization point of deq() is if tail == head.

(If this condition is false, the dequeued item can only be overwritten
after head++.)

So any execution of the wait-free bounded FIFO queue is linearizable.
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Flawed bounded FIFO queue

In the dequeuer, let us swap the order of two program statements:
head++; T item = items[(head - 1) % capacity];

Let the capacity be 1.

Suppose the enqueuer performs the methods enq(a) and enq(b),
and the dequeuer performs the method deq().

The following execution isn’t linearizable:

enq: tail - head == 0 enq: tail - head == 0

enq: items[0] = a enq: items[0] = b

enq: tail = 1 deq: y = b

deq: tail - head == 1 deq: return b

deq: head = 1
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Sequential consistency

For multiprocessor memory architectures,
linearizability is often considered too strict.

An execution on a concurrent object is sequentially consistent
if each method call in the execution:

I appears to take e↵ect instantaneously,

I in program order on each thread,

I in line with the system specification.

An object is sequentially consistent if all its possible executions
are sequentially consistent.

Sequentially consistent is less restrictive than linearizability,
because it allows method calls to take e↵ect after they returned.
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Sequential consistency: example 1

q.enq(x) q.deq()  y

time

q.enq(y) q.deq()  x

SEQUENTIALLY  CONSISTENT !
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Sequential consistency: example 1

time

q.enq(y) q.deq()  x

SEQUENTIALLY  CONSISTENT !

q.enq(x) q.deq()  y
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Sequential consistency: example 2

q.enq(y)q.enq(x)

q.deq()  x

time

q.deq()  y

NOT  SEQUENTIALLY  CONSISTENT
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Compositionality

Linearizability is compositional:
the composition of linearizable objects is again linearizable.

By contrast, sequential consistency isn’t compositional.

q.enq(x)p.enq(x) p.deq()  y

q.enq(y) p.enq(y) q.deq()  x

time

The executions for objects p and q are by themselves
sequentially consistent, but their composition isn’t.

83 / 530



Out-of-order execution

Most hardware architectures don’t support sequential consistency,
as it would outlaw widely used compiler optimizations.

Since memory access is very slow compared to processor speed,
processors read/write to a cache, instead of directly to memory.

Processors can execute thousands of instructions,
while writes in the cache are lazily written back to memory.

This makes sense because the vast majority of reads/writes
isn’t for synchronization.

Reads/writes for synchronization should be announced explicitly.

This comes with a performance penalty.

84 / 530



We stick to linearizability

Which correctness requirement is right for a given application ?

This depends on the needs of the application.

I A printer server can allow jobs to be reordered.

I A banking server better be sequentially consistent.

I A stock-trading server requires linearizability.

We will stick to linearizability, as it is well-suited for high-level objects.
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Monitors

In Java, a monitor is associated with an object.

It combines data, methods and synchronization in one modular package.

Always at most one thread may be executing a method of the monitor.

A monitor provides mechanisms for threads to:

I temporarily give up exclusive access, until some condition is met,

I or signal to other threads that such a condition may hold.

216 / 530



Conditions

While a thread is waiting, say for a queue to become nonempty,
the lock on this queue should be released.

Else other threads would never be able to dequeue an item.

In Java, a Condition object associated with a lock allows a thread
to release the lock temporarily, by calling the await() method.

A thread can be awakened:

I by another thread (that performs signal() or signalAll()),

I or because some condition becomes true.
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Conditions

An awakened thread must:

I try to reclaim the lock;

I when this has happened, retest the property it is waiting for;

I if the property doesn’t hold, release the lock by calling await().

wrong: if “boolean expression” condition.await()

correct: while “boolean expression” condition.await()

The thread may be woken up if another thread calls
condition.signal() (which wakes up one thread) or
condition.signalAll() (which wakes up all threads).
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Bounded FIFO queue with locks and conditions: enqueue

final Condition notFull = lock.newCondition();

final Condition notEmpty = lock.newCondition();

public void enq(T x) {
lock.lock();

try {
while count == items.length

notFull.await();

items[tail] = x;

if ++tail == items.length

tail = 0;

++count;

notEmpty.signal();

} finally {
lock.unlock();

}
}
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Bounded FIFO queue with locks and conditions: dequeue

public T deq() {
lock.lock();

try {
while count == 0

notEmpty.await();

T y = items[head];

if ++head == items.length

head = 0;

--count;

notFull.signal();

return y;

} finally {
lock.unlock();

}
}
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Lost-wakeup problem

Condition objects are vulnerable to lost wakeups: A thread may wait
forever without realizing the condition it is waiting for has become true.

Example: In enq(), let notEmpty.signal() only be performed
if the queue turns from empty to nonempty:

if ++count == 1 { notEmpty.signal(); }

A lost wakeup can occur if multiple dequeuers are waiting;
only one dequeuer is woken up.

Programming practices to avoid lost wakeups:

I Signal all threads waiting for a condition (not just one).

I Specify a timeout for waiting threads.
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Relaxing mutual exclusion

The strict mutual exclusion property of locks is often relaxed.

Three examples are:

I Readers-writers lock: Allows concurrent readers,
while a writer disallows concurrent readers and writers.

I Reentrant lock: Allows a thread to acquire the same lock
multiple times, to avoid deadlock.

I Semaphore: Allows at most c concurrent threads
in their critical section, for some given capacity c .
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Readers-writers lock: reader lock

class ReadLock implements Lock {
public void lock() {

lock.lock();

try {
while writer

condition.await();

readers++;

} finally {
lock.unlock();

}
}
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Readers-writers lock: reader lock

public void unlock() {
lock.lock();

try {
readers--;

if readers == 0

condition.signalAll();

} finally {
lock.unlock();

}
}

}
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Readers-writers lock: writer lock

class WriteLock implements Lock {
public void lock() {

lock.lock();

try {
while (writer || readers > 0)

condition.await();

writer = true;

} finally {
lock.unlock();

}
}
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Readers-writers lock: writer lock

public void unlock() {
lock.lock();

try {
writer = false;

condition.signalAll();

} finally {
lock.unlock();

}
}

}

The unlock method needs to grab the lock: A thread can only signal
or start to await a condition if it owns the corresponding lock.
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Readers-writers lock: writer lock

Question: What is the drawback of this writer lock ?

Answer: A writer can be delayed indefinitely by a continuous stream
of readers.

Question: How can this be resolved ?

Answer: Allow one writer to set writer = true if writer == false.

Then other threads can’t start to read.
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Readers-writers lock: writer lock

class WriteLock implements Lock {
public void lock() {

lock.lock();

try {
while writer

condition.await();

writer = true;

while readers > 0

condition.await();

} finally {
lock.unlock();

}
}

The unlock method is as before.
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Synchronized methods in Java

While a thread is executing a synchronized method on an object,
other threads that invoke a synchronized method on this object block.

A synchronized method acquires the intrinsic lock of the object
on which it is invoked, and releases the lock when it returns.

A synchronized method imposes a memory barrier:

I At the start, the cache is invalidated.

I At completion, modified fields in working memory are
written back to shared memory.
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Synchronized methods

Synchronized methods are reentrant.

Monitors are provided for synchronized methods:

I wait() causes a thread to wait until another thread notifies it
of a condition change;

I notify() wakes up one waiting thread;

I notifyAll() wakes up all waiting threads.
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Synchronized methods: drawbacks

Synchronized methods

1. aren’t starvation-free

2. are rather coarse-grained

3. can give a false feeling of security

4. may use other locks than one might expect

236 / 530



Synchronized methods: drawback 3

Example: Instead of using a lock and conditions,
we make the enq() method on the bounded queue synchronized.

(So await and signal are replaced by wait and notify.)

One might expect that other method calls will always see
a proper combination of values of the variables count and tail.

But this is only guaranteed for other synchronized methods on queues.
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Synchronized methods: drawback 4

A static synchronized method acquires the intrinsic lock of a class
(instead of an object).

A static synchronized method on an inner class only acquires
the intrinsic lock of the inner class, and not of the enclosing class.
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Synchronized blocks

A synchronized block must specify the object that provides
the intrinsic lock.

Example: public void addName(String name) {
synchronized(this) {
lastName = name;

nameCount++;

}
nameList.add(name);

}

Danger: Nested synchronized blocks may cause deadlock
if they acquire locks in opposite order.
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Barrier synchronization

Suppose a number of tasks must be completed before an overall task
can proceed.

This can be achieved with barrier synchronization.

A barrier keeps track whether all threads have reached it.

When the last thread reaches the barrier, all threads resume execution.

Waiting at a barrier resembles waiting to enter a critical section.

It can be based on spinning (remote or on a locally cached copy),
or on being woken up.
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Synchronization approaches

Coarse-grained synchronization, in which each method call locks
the entire object, can become a sequential bottleneck.

Four synchronization approaches for concurrent access to an object:

I Fine-grained: Split the object in components with their own locks.

I Optimistic: Search without locks for a certain component, lock it,
check if it didn’t change during the search, and only then adapt it.

I Lazy: Search without locks for a certain component, lock it,
check if it isn’t marked, mark it if needed, and only then adapt it.

I Non-blocking: Avoid locks, by read-modify-write operations.
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List-based sets

We will show the four techniques on a running example: sets.

Consider a linked list in which each node has three fields:

I the actual item of interest

I the key, being the item’s (unique) hash code

I next contains a reference to the next node in the list

There are sentinel nodes head and tail.

Nodes in the list are sorted in key order.

head and tail carry the smallest and largest key, respectively.

An implementation of sets based on lists (instead of e.g. trees)
will of course never have a very good performance...
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List-based sets: methods

We define three methods:

I add(x): Add x to the set;
return true only if x wasn’t in the set.

I remove(x): Remove x from the set;
return true only if x was in the set.

I contains(x): Return true only if x is in the set.

These methods should be linearizable such that they act
as on a sequential set (on a uniprocessor).

An abstraction map maps each linked list to the set of items
that reside in a node reachable from head.
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Coarse-grained synchronization

With coarse-grained locking, these methods lock the entire list.

The methods search without contention whether x is in the list.

min ca max null
add(x)

hash(x)=b
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Coarse-grained synchronization
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Coarse-grained synchronization
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Fine-grained synchronization

Let each node carry its own lock.

add(x) and remove(x) require locks in ascending key order,
until they find x or conclude it isn’t present.

Threads acquire locks in a hand-over-hand fashion.

Example: A search for c.

min ba c max null
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Fine-grained synchronization: remove

remove(x) continues until:

I either it locks a node with key hash(x);

then it removes this node by redirecting the link of
the predecessor to the successor of this node, and returns true.

I or it locks a node with a key greater than hash(x);

then it concludes that x isn’t in the list, and returns false.

Example: We apply remove(x) with hash(x)=b to the list below.

min ba c max null
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Fine-grained synchronization: two locks are needed

If threads would hold only one lock at a time (instead of two),
this algorithm would be incorrect.

Example: Let two threads concurrently apply
remove(x) with hash(x)=b, and remove(y) with hash(y)=c.

min ba c max null

Node c isn’t removed !
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Fine-grained synchronization

Since threads are required to hold two locks at a time,
this problem doesn’t occur.

Example: Let two threads concurrently apply
remove(x) with hash(x)=b, and remove(y) with hash(y)=c.

min ba c max null
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Fine-grained synchronization: add

add(x) continues until:

I either it locks a node with key hash(x);

then it concludes that x is in the list, and returns false.

I or it locks a node with a key c > hash(x);

then it redirects the link of the predecessor of c to a new node
with key = hash(x) and next = c, and returns true.

Example: We apply add(x) with hash(x)=b to the list below.

min ca d max null
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Fine-grained synchronization: correctness

To remove a node, this node and its predecessor must be locked.

So while a node is being removed, this node, its predecessor
and its successor can’t be removed.

And no nodes can be added between its predecessor and its successor.

Likewise, to add a node, this node’s predecessor and successor
must be locked.

So while a node is being added, its predecessor and successor
can’t be removed, and no other nodes can be added between them.
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Fine-grained synchronization: linearization

The linearization points of add and remove:

I successful add: When the predecessor is redirected to
the added node.

I successful remove: When the predecessor is redirected to
the successor of the removed node.

I unsuccessful add and remove: When it is detected that
the call is unsuccessful.
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Fine-grained synchronization: progress property

The fine-grained synchronization algorithm is deadlock-free:
always the thread holding the “furthest” lock can progress.

Moreover, the algorithm can be made starvation-free,
by using for instance the bakery algorithm to ensure
that any thread can eventually get the lock of head.

(Since calls can’t overtake each other, for performance,
calls on large keys should be scheduled first.)
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Fine-grained synchronization: evaluation

Fine-grained synchronization allows threads to traverse the list
in parallel.

However, it requires a chain of acquiring and releasing locks,
which can be expensive.

And the result is a rather sequential implementation.
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Optimistic synchronization

In optimistic synchronization, add and remove proceed as follows:

I Search without locks for a pair of nodes on which the method call
can be performed, or turns out to be unsuccessful.

I Lock these nodes (always predecessor before successor).

I Check whether the locked nodes are “correct”:

if the first locked node

I is reachable from head, and
I points to the second locked node.

I If this validation fails, then release the locks and start over.

I Else, proceed as in fine-grained synchronization.
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Optimistic synchronization: validation is needed

Example: Let two threads concurrently apply
remove(x) with hash(x)=a, and remove(y) with hash(y)=b.

max nullmin ba

Validation shows that node a isn’t reachable from head.
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Optimistic synchronization: linearization

The linearization points of add and remove:

I successful add: When the predecessor is redirected to
the added node.

I successful remove: When the predecessor is redirected to
the successor of the removed node.

I unsuccessful add and remove: When validation is completed
successfully (but the call itself is unsuccessful).
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Optimistic synchronization: progress property

The optimistic synchronization algorithm is deadlock-free,
because an unsuccessful validation means that another thread
successfully completed an add or remove.

It is not starvation-free, because validation by a thread
may be unsuccessful an infinite number of times.
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Optimistic synchronization: evaluation

Optimistic synchronization in general requires less locking
than fine-grained synchronization.

However, each method call traverses the list at least twice.

Question: How could validation be simplified ?
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Lazy synchronization

A bit is added to each node.

If a reachable node has bit 1, it has been logically removed
(and will be physically removed).
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