
20/11/15

1

Mo#va#ng	memory-model	issues	
Tricky	and	surprisingly	wrong	unsynchronized	concurrent	code	

1

class C {
 private int x = 0;
 private int y = 0;

 void f() {
 x = 1;
 y = 1;
 }
 void g() {
 int a = y;
 int b = x;
 assert(b >= a);
 }
}

First	understand	why	it	looks	like	the	
asser#on	cannot	fail:	

•  Easy	case:		call	to	g	ends	before	any	
call	to	f	starts	

•  Easy	case:	at	least	one	call	to	f	
completes	before	call	to	g	starts	

•  If	calls	to	f	and	g	interleave…	

What	is	the	problem?	
The	code	has	a	data	race	

o  Two	actually	
o  Recall:	data	race:	unsynchronized	read/write	or	write/write	of	
same	loca#on	

If	code	has	data	races,	you	cannot	reason	about	it	with	
interleavings!	
o  That	is	simply	the	rules	of	Java	(and	C,	C++,	C#,	…)	
o  (Else	would	slow	down	all	programs	just	to	“help”	programs	with	
data	races,	and	that	was	deemed	a	bad	engineering	trade-off	
when	designing	the	languages/compilers/hardware)	

o  So	the	asser#on	can	fail	

2

20/11/15

2

Why	
For	performance	reasons,	the	compiler	and	the	

hardware	oSen	reorder	memory	opera#ons	

3

x = 1;

y = 1;

int a = y;

int b = x;

assert(b >= a);

Thread	1:	f Thread	2:	g

Of	course,	you	cannot	just	let	them	reorder	anything	they	want	

The	grand	compromise	
The	compiler/hardware	will	never	perform	a	memory	reordering	that	

affects	the	result	of	a	single-threaded	program	
	
The	compiler/hardware	will	never	perform	a	memory	reordering	that	

affects	the	result	of	a	data-race-free	mul#-threaded	program	
	
So:	If	no	interleaving	of	your	program	has	a	data	race,	then	you	can	

forget	about	all	this	reordering	nonsense:	the	result	will	be	
equivalent	to	some	interleaving	

	
Your	job:	Avoid	data	races	
Compiler/hardware	job:	Give	illusion	of	interleaving	if	you	do	your	job	

	

4

20/11/15

3

Fixing	our	example	
  Naturally,	we	can	use	synchroniza#on	to	avoid	data	races	

o  Then,	indeed,	the	asser#on	cannot	fail	

5

class C {
 private int x = 0;
 private int y = 0;
 void f() {
 synchronized(this) { x = 1; }
 synchronized(this) { y = 1; }
 }
 void g() {
 int a, b;
 synchronized(this) { a = y; }
 synchronized(this) { b = x; }
 assert(b >= a);
 }
}

A	second	fix	
  Java	has	volatile	fields:	accesses	do	not	count	as	data	races		
  Implementa#on:	slower	than	regular	fields,	faster	than	locks	
  Really	for	experts:	avoid	them;	use	standard	libraries	instead	
  And	why	do	you	need	code	like	this	anyway?	

6

class C {
 private volatile int x = 0;
 private volatile int y = 0;
 void f() {
 x = 1;
 y = 1;
 }
 void g() {
 int a = y;
 int b = x;
 assert(b >= a);
 }
}

20/11/15

4

Code	that’s	wrong	
  A	more	realis#c	example	of	code	that	is	wrong	
o  No	guarantee	Thread	1	will	ever	stop	even	if	“user	quits”	

7

class C {
 boolean stop = false;
 void f() {
 while(!stop) {
 // draw a monster
 }
 }
 void g() {
 stop = didUserQuit();
 }
}

Thread	1:		f()

Thread	2:		g()

Mo#va#ng	Deadlock	Issues	
Consider	a	method	to	transfer	money	between	bank	accounts		

8

class BankAccount {
 …
 synchronized void withdraw(int amt) {…}
 synchronized void deposit(int amt) {…}
 synchronized void transferTo(int amt,
 BankAccount a) {
 this.withdraw(amt);
 a.deposit(amt);
 }
}

20/11/15

5

The	Deadlock	
Suppose	x	and	y	are	fields	holding	accounts	

9

acquire lock for x
do withdraw from x

block on lock for y

acquire lock for y
do withdraw from y

block on lock for x

Thread	1:	x.transferTo(1,y)

Ti
m
e	

Thread	2:	y.transferTo(1,x)

Deadlock,	in	general	
A	deadlock	occurs	when	there	are	threads	T1,	…,	Tn	

such	that:	
  For	i=1,..,n-1,	Ti	is	wai#ng	for	a	resource	held	by	T(i
+1)	
Tn	is	wai#ng	for	a	resource	held	by	T1	

In	other	words,	there	is	a	cycle	of	wai#ng	
o  Can	formalize	as	a	graph	of	dependencies	with	cycles	bad	

Deadlock	avoidance	in	programming	amounts	to	
techniques	to	ensure	a	cycle	can	never	arise	

10

20/11/15

6

Back	to	our	example	
Op#ons	for	deadlock-proof	transfer:	
	

1.  Make	a	smaller	cri#cal	sec#on:	transferTo	not	
synchronized	
o  Exposes	intermediate	state	aSer	withdraw	before	deposit
o  May	be	okay,	but	exposes	wrong	total	amount	in	bank	

2.  Coarsen	lock	granularity:	one	lock	for	all	accounts	allowing	
transfers	between	them	
o  Works,	but	sacrifices	concurrent	deposits/withdrawals	

3.  Give	every	bank-account	a	unique	number	and	always	
acquire	locks	in	the	same	order	
o  En9re	program	should	obey	this	order	to	avoid	cycles	
o  Code	acquiring	only	one	lock	can	ignore	the	order	

11

Ordering	locks	

12

class BankAccount {
 …
 private int acctNumber; // must be unique
 void transferTo(int amt, BankAccount a) {
 if(this.acctNumber < a.acctNumber)
 synchronized(this) {
 synchronized(a) {
 this.withdraw(amt);
 a.deposit(amt);
 }}
 else
 synchronized(a) {
 synchronized(this) {
 this.withdraw(amt);
 a.deposit(amt);
 }}
 }
}

20/11/15

7

Another	example	
From	the	Java	standard	library	

13

class StringBuffer {
 private int count;
 private char[] value;
 …
 synchronized append(StringBuffer sb) {
 int len = sb.length();
 if(this.count + len > this.value.length)
 this.expand(…);
 sb.getChars(0,len,this.value,this.count);
 }
 synchronized getChars(int x, int, y,
 char[] a, int z) {
 “copy this.value[x..y] into a starting at z”
 }
}

Reading	vs.	wri#ng	
Recall:	

o  Mul#ple	concurrent	reads	of	same	memory:	Not	a	problem	
o  Mul#ple	concurrent	writes	of	same	memory:	Problem	
o  Mul#ple	concurrent	read	&	write	of	same	memory:	Problem	

So	far:	
o  If	concurrent	write/write	or	read/write	might	occur,	use	
synchroniza#on	to	ensure	one-thread-at-a-#me	

But	this	is	unnecessarily	conserva#ve:	
o  Could	s#ll	allow	mul#ple	simultaneous	readers!	

14

20/11/15

8

Example	

Consider	a	hashtable	with	one	coarse-grained	lock	
o  So	only	one	thread	can	perform	opera#ons	at	a	#me	

But	suppose:	
o  There	are	many	simultaneous	lookup	opera#ons	
o  insert	opera#ons	are	very	rare	

Note:	Important	that	lookup	does	not	actually	
mutate	shared	memory,	like	a	move-to-front	list	
opera#on	would	

15

Readers/writer	locks	
A	new	synchroniza#on	ADT:	The	readers/writer	lock	

  A	lock’s	states	fall	into	three	categories:	
o  “not	held”		
o  “held	for	wri#ng”	by	one	thread		
o  “held	for	reading”	by	one	or	more	threads	

	

  new:	make	a	new	lock,	ini#ally	“not	held”	
acquire_write:	block	if	currently	“held	for	reading”	or	
“held	for	wri#ng”,	else	make	“held	for	wri#ng”	
release_write:	make	“not	held”	
acquire_read:	block	if	currently	“held	for	wri#ng”,	else	
make/keep	“held	for	reading”	and	increment	readers	count	
release_read:	decrement	readers	count,	if	0,	make	“not	
held”	

16

0	≤	writers	≤ 1	
0 ≤ readers	
writers*readers==0	

20/11/15

9

Pseudocode	example	(not	Java)	

17

class Hashtable<K,V> {
 …
 // coarse-grained, one lock for table
 RWLock lk = new RWLock();
 V lookup(K key) {
 int bucket = hasher(key);
 lk.acquire_read();
 … read array[bucket] …
 lk.release_read();
 }
 void insert(K key, V val) {
 int bucket = hasher(key);
 lk.acquire_write();
 … write array[bucket] …

 lk.release_write();
 }
}

Readers/writer	lock	details	
  A	readers/writer	lock	implementa#on	(“not	our	
problem”)	usually	gives	priority	to	writers:	
o  Once	a	writer	blocks,	no	readers	arriving	later	will	get	the	lock	
before	the	writer	

o  Otherwise	an	insert	could	starve	

  Re-entrant?		
o  Mostly	an	orthogonal	issue	
o  But	some	libraries	support	upgrading	from	reader	to	writer	

  Why	not	use	readers/writer	locks	with	more	fine-
grained	locking,	like	on	each	bucket?	
o  Not	wrong,	but	likely	not	worth	it	due	to	low	conten#on	

18

20/11/15

10

In	Java	
	

Java’s	synchronized	statement	does	not	support	readers/
writer	

	

Instead,	library		
java.util.concurrent.locks.ReentrantReadWrit

eLock

  Different	interface:	methods	readLock	and	writeLock	
return	objects	that	themselves	have	lock	and	unlock	
methods	

  Does	not	have	writer	priority	or	reader-to-writer	upgrading	
o  Always	read	the	documenta#on	

19

Mo#va#ng	Condi#on	Variables	

To	mo#vate	condi#on	variables,	consider	the	canonical	
example	of	a	bounded	buffer	for	sharing	work	among	
threads	

	

Bounded	buffer:	A	queue	with	a	fixed	size	

For	sharing	work	–	think	an	assembly	line:		
o  Producer	thread(s)	do	some	work	and	enqueue	result	objects	
o  Consumer	thread(s)	dequeue	objects	and	do	next	stage	
o  Must	synchronize	access	to	the	queue	

	
20

f e d c buffer	

back	 front	

producer(s)	
enqueue	

consumer(s)	
dequeue	

20/11/15

11

Code,	ajempt	1	

21

class Buffer<E> {
 E[] array = (E[])new Object[SIZE];
 … // front, back fields, isEmpty, isFull methods
 synchronized void enqueue(E elt) {
 if(isFull())
 ???
 else
 … add to array and adjust back …
 }
 synchronized E dequeue()
 if(isEmpty())
 ???
 else
 … take from array and adjust front …
 }
}

Wai#ng	
enqueue	to	a	full	buffer	should	not	raise	an	excep#on	
o  Wait	un#l	there	is	room	

dequeue	from	an	empty	buffer	should	not	raise	an	
excep#on	
o  Wait	un#l	there	is	data	

Bad	approach	is	to	spin	(wasted	work	and	keep	grabbing	lock)	

22

void enqueue(E elt) {
 while(true) {
 synchronized(this) {
 if(isFull()) continue;
 … add to array and adjust back …
 return;
}}}
// dequeue similar

20/11/15

12

What	we	want	
  Bejer	would	be	for	a	thread	to	wait		un#l	it	can	proceed		

o  Be	no9fied		when	it	should	try	again	
o  In	the	mean#me,	let	other	threads	run	

  Like	locks,	not	something	you	can	implement	on	your	own	
o  Language	or	library	gives	it	to	you,	typically	implemented	with	

opera#ng-system	support	

  An	ADT	that	supports	this:	condi#on	variable	
o  Informs	waiter(s)	when	the	condi9on	that	causes	it/them	to	wait	

has	varied	

  Terminology	not	completely	standard;	will	mostly	s#ck	with	
Java	

23

Java	approach:	not	quite	right	

24

class Buffer<E> {
 …
 synchronized void enqueue(E elt) {
 if(isFull())
 this.wait(); // releases lock and waits
 add to array and adjust back
 if(buffer was empty)
 this.notify(); // wake somebody up
 }
 synchronized E dequeue() {
 if(isEmpty())
 this.wait(); // releases lock and waits
 take from array and adjust front
 if(buffer was full)
 this.notify(); // wake somebody up
 }
}

20/11/15

13

Key	ideas	
  Java	weirdness:	every	object	“is”	a	condi#on	variable	
(and	a	lock)	
o  other	languages/libraries	oSen	make	them	separate	

  wait:		
o  “register”	running	thread	as	interested	in	being	woken	up	
o  then	atomically:	release	the	lock	and	block	
o  when	execu#on	resumes,	thread	again	holds	the	lock	

  notify:
o  pick	one	wai#ng	thread	and	wake	it	up	
o  no	guarantee	woken	up	thread	runs	next,	just	that	it	is	no	
longer	blocked	on	the	condi9on	–	now	wai#ng	for	the	lock	

o  if	no	thread	is	wai#ng,	then	do	nothing	

25

Bug	#1	

Between	the	#me	a	thread	is	no#fied	and	it	re-acquires	
the	lock,	the	condi#on	can	become	false	again!	

26

synchronized void enqueue(E elt){
 if(isFull())
 this.wait();
 add to array and adjust back
 …
}

if(isFull())
 this.wait();

add to array

Ti
m
e	

Thread	2	(dequeue)	Thread	1	(enqueue)	

take from array
if(was full)

this.notify();

make full again

Thread	3	(enqueue)	

20/11/15

14

Bug	fix	#1	

Guideline:	Always		re-check	the	condi#on	aSer	
re-gaining	the	lock	

27

synchronized void enqueue(E elt) {
 while(isFull())
 this.wait();
 …
}
synchronized E dequeue() {
 while(isEmpty())
 this.wait();
 …
}

Bug	#2	
  If	mul#ple	threads	are	wai#ng,	we	wake	up	only	one	
o  Sure	only	one	can	do	work	now,	but	can’t	forget	the	others!	

28

while(isFull())
 this.wait();

…

Ti
m
e	

Thread	2	(enqueue)	Thread	1	(enqueue)	

// dequeue #1
if(buffer was full)
 this.notify();

// dequeue #2
if(buffer was full)
 this.notify();

Thread	3	(dequeues)	
while(isFull())
 this.wait();

…

20/11/15

15

Bug	fix	#2	

notifyAll	wakes	up	all	current	waiters	on	the	condi#on	
variable	

	

Guideline:	If	in	any	doubt,	use	notifyAll		
o  Wasteful	waking	is	bejer	than	never	waking	up	

  So	why	does	notify	exist?	
o  Well,	it	is	faster	when	correct…	

29

synchronized void enqueue(E elt) {
 …
 if(buffer was empty)
 this.notifyAll(); // wake everybody up
}
synchronized E dequeue() {
 …
 if(buffer was full)
 this.notifyAll(); // wake everybody up
}

Last	condi#on-variable	comments	

  notify/notifyAll oSen	called signal/broadcast,	
also	called pulse/pulseAll

  Condi#on	variables	are	subtle	and	harder	to	use	than	locks	
  But	when	you	need	them,	you	need	them		

o  Spinning	and	other	work-arounds	do	not	work	well	

  Fortunately,	like	most	things	in	a	data-structures	course,	the	
common	use-cases	are	provided	in	libraries	wrijen	by	experts	
o  Example:		
java.util.concurrent.ArrayBlockingQueue<E>

o  All	uses	of	condi#on	variables	hidden	in	the	library;	client	just	calls	
put	and	take

30

20/11/15

16

Concurrency	summary	
  Access	to	shared	resources	introduces	new	kinds	of	bugs	

o  Data	races	
o  Cri#cal	sec#ons	too	small	
o  Cri#cal	sec#ons	use	wrong	locks	
o  Deadlocks	

  Requires	synchroniza#on	
o  Locks	for	mutual	exclusion	(common,	various	flavors)	
o  Condi#on	variables	for	signaling	others	(less	common)		

  Guidelines	for	correct	use	help	avoid	common	pinalls	

  Not	clear	shared-memory	is	worth	the	pain	
o  But	other	models	(e.g.,	message	passing)	not	a	panacea	

31

DISTRIBUTED	PROCESSING	

32

20/11/15

17

Distributed	Processing	

  distributed	processing:	the	execu#on	of	
concurrent	processes	by	running	them	on	
separate	processors	which	communicate	by	
message	passing.	
  Our	view:	language-based	approach	

33

Assump#ons	

  processors	share	only	a	communica#on	network,	
  the	processes	don’t	share	a	common	address	
space,	so	they	can’t	communicate	via	shared	
variables	instead	they	communicate	by	sending	
and	receiving	messages	

34

20/11/15

18

Message	Passing	

  Processes	communicate	by	sending	and	
receiving	messages	using	special	message	
passing	primi#ves	which	include	
synchronisa#on:	
o  send	(des?na?on)	message:	sends	message	to	
another	process	

o  receive	(source)	message:	indicates	that	a	process	is	
ready	to	receive	a	message	message	from	another	
process	source	

35

  asynchronous	communica?on:	the	sending	
process	con#nues	without	wai#ng	for	the	
message	to	be	received,	e.g.,	Unix	sockets,	
java.net	
  synchronous	communica?on:	the	sending	
process	is	delayed	un#l	the	corresponding	
receive	is	executed,	e.g.,	CSP,	occam	
  remote	invoca?on:	the	sending	process	is	
delayed	un#l	a	reply	is	received,	e.g.,	RPC	
(java.rmi),	Extended	Rendezvous	

36

20/11/15

19

Remote	invoca#on	

  With	remote	invoca9on	a	process	executes	a	
synchronous	send	and	waits	un#l	the	reply	is	
received:	
  combines	aspects	of	monitors	and	synchronous	
message	passing:	
o  as	with	monitors	interac#on	is	via	public	procedures	
o  as	with	synchronous	send,	calling	a	procedure	delays	
the	caller	

o  provides	two	way	communica#on	from	the	caller	to	
the	process	servicing	the	call	and	back	

37

Two	forms	

  Remote	Procedure	Call	creates	a	new	process	to	
handle	each	call	
  Extended	Rendezvous	services	a	request	using	
an	exis#ng	process	

38

20/11/15

20

Java	RMI	

  The	package	java.rmi	implements	Java’s	version	
of	RPC:	remote	invoca#on	is	based	on	the	model	
of	a	procedure	call	
  in	Java,	non-sta#c	methods	must	be	invoked	on	
an	object	
  Java	therefore	requires	both	remote	methods	
(procedures)	and	remote	objects	on	which	the	
remote	methods	can	be	invoked.	

39

Remote	Objects	

  A	Java	remote	object	is	one	whose	methods	can	be	
invoked	from	another	JVM,	poten#ally	on	a	
different	host:	
  a	remote	object	is	described	by	one	or	more	remote	
interfaces	which	extend	java.rmi.Remote	
  methods	declared	in	a	Remote	interface	must	
throwRemoteExcep#ons	
  	remote	method	invoca#on	(RMI)	is	the	ac#on	of	
invoking	a	method	of	a	remote	interface	on	a	
remote	object	

40

20/11/15

21

Structure	of	RMI	Apps	

  a	server	creates	some	remote	objects,	makes	
references	to	them	accessible	and	waits	for	
clients	to	invoke	(remote)	methods	on	the	
remote	objects	
  a	client	gets	a	remote	reference	to	a	remote	
object	in	the	server,	either	from	the	RMI	registry	
or	as	a	return	value	to	a	remote	method,	and	
invokes	(remote)	methods	on	it	
  a	component	of	a	distributed	Java	applica#on	
can	act	as	both	a	client	and	server	

41

RMI	Registry	
  The	system	provides	a	par#cular	remote	object,	the	
RMI	registry	for	finding	references	to	remote	
objects:	
  	once	a	remote	object	is	registered	with	the	RMI	
registry	on	the	local	host,	clients	on	any	host	can	
look	up	the	remote	object	by	name,	obtain	a	
reference	to	it	(stub),	and	then	invoke	its	methods	
  the	registry	is	typically	used	only	to	locate	the	first	
remote	object	that	a	client	needs	to	use	from	a	
par#cular	server	
  the	registry	listens	on	a	known	port,	usually	1099	on	
the	same	host	as	the	server.	

42

20/11/15

22

43

STUB	

  A	stub	acts	as	a	proxy	for	a	remote	object	and	is	
responsible	for	carrying	out	method	calls	on	the	
remote	object.		
  Invoking	a	stub	method:		
o  ini#ates	a	connec#on	with	the	remote	JVM	containing	the	
remote	object;		

o  writes	and	transmits	the	method	parameters	to	the	
remote	JVM;		

o  waits	for	the	results	of	the	method	invoca#on;	and		
o  reads	the	result	(return	value	or	excep#on)	and	returns	it	
to	the	caller		

44

20/11/15

23

Parameter	passing	

  An	argument	to	or	return	value	form	a	remote	
object	can	be	any	Java	object	that	is	serializable:		
o  non-remote	method	arguments	and	results	are	
passed	by	copying–	changes	made	to	the	object	are	
not	visible	to	other	clients.		

o  remote	objects	are	passed	by	reference	(i.e.,	a	copy	of	
the	stub	is	passed	or	returned)–changes	made	by	one	
client	to	the	state	of	the	remote	object	are	visible	to	
all	clients.		

45

46

20/11/15

24

47

48

20/11/15

25

49

50

20/11/15

26

51

52

20/11/15

27

53

54

20/11/15

28

55

  Before	a	caller	can	invoke	a	method	on	a	remote	
object,	it	must	obtain	a	remote	reference	to	it:		
o  the	Naming	interface	is	used	for	registering	and	
looking	up	remote	objects	in	the	registry		

o  once	a	remote	object	is	registered	with	the	RMI	
registry	on	the	local	host,	clients	on	any	host	can	look	
up	the	remote	object	by	name,	obtain	its	reference	
and	then	invoke	its	methods.		

56

20/11/15

29

57

58

20/11/15

30

59

60

  the	RWDic#onaryServerImpl_Stub	is	
downloaded	to	the	client’s	JVM	from	the	
registry’s	web	server		
  the	stub	knows	the	anonymous	port	on	which	
the	RWDic#onaryServer_Impl	is	listening	for	
method	calls		
  the	WriterClient	can	then	invoke	methods	on	the	
stub,	e.g.,	put(String	key,	Data	value)		

20/11/15

31

61

62

20/11/15

32

63

