Thread-unsafe code

-~ How can the following class be Scenario that breaks it:
broken by multiple threads?

-~ Threads A and B start.

1 public class Counter {

2 private int ¢ = 0; « Acalls increment and runs to

3 public void increment() the end of line 4. It retrieves the

4 int old = c; oldvalue of 0.

g) c =old+1; // ct+; # Bcalls decrement and runs to
. ' the end of line 8. It retrieves the

g puk.l’rlléco‘l’gli g‘?crement() { old value of 0.

9 c=o0ld-1; // c-—-; . Asetsctoits old (0) + 1.

10

}
11 public int value() {

« Bsetsctoitsold(0)-1.

g } return c; « The final value () is -1, though
14) after one increment and one

decrement, it should be 0!

Synchronized blocks
W

/ uses the given object as a lock
synchronized (object) {
statement(s);
}

-« Every Java object can act as a "lock" for concurrency.

o Athread T, can ask to run a block of code,
"synchronized" on a given object O.
v'If no other thread is using O, then T, locks the object and
proceeds.
v'If another thread T, is already using O, then T, becomes
blocked and must wait until T, is finished using O. Then T, can
proceed.

20/11/15

Sa

Synchronized methods

onized method: "this" object
public synchronized type name (parameters)

// synchronized static method: locks on the given class
public static synchronized type name (parameters) { ... }

A synchronized method grabs the object or class's lock

at the start, runs to completion, then releases the lock.

o A shorthand for wrapping the entire body of the method in a
synchronized (this) {...} block.

o Useful for methods whose entire bodies should not be
entered by multiple threads at the same time.

public synchronized void readFile (String name) {...}

Synchronized counter
pubtic class Countef;T""———s“_____________—//,

private int c = 0;

public synchronized void increment () {
int old = c;
c = old + 1; // c++;

}

public synchronized void decrement () {
int old = c;
c =o0ld -1; // c--;

}

public int value() {
return c;

}
}

o Should the value method be synchronized? Why/why not?

20/11/15

20/11/15

Races
____——————-——————————————-__N“~_____~______’///

A race condition occurs when the computation
result depends on scheduling (how threads
are interleaved)

Bugs that exist only due to concurrency
o No interleaved scheduling with 1 thread

Typically, problem is some intermediate state
that “messes up” a concurrent thread that
“sees” that state

Example

class Stack<E> {
.. // state used by isEmpty, push, pop
synchronized boolean isEmpty () { .. }
synchronized void push(E val) { .. }
synchronized E pop() {
if (isEmpty())
throw new StackEmptyException() ;

}

E peek() { // this is wrong
E ans = pop() ;
push (ans) ;
return ans;

peek, sequentially speaking
/—\J

- |n a sequential world, this code is of
guestionable style, but unquestionably
correct

peek, concurrently speaking

-« peek has no overall effect on the shared data

o Itisa “reader” not a “writer”

-~ But the way it is implemented creates an
inconsistent intermediate state

o Even though calls to push and pop are synchronized so
there are no data races on the underlying array/list/
whatever

o (A data race is simultaneous (unsynchronized) read/write or
write/write of the same memory: more on this soon)

-~ This intermediate state should not be exposed
o Leads to several bad interleavings

20/11/15

FCN

Time

peek and isEmpty

-« Property we want: If there has been a push and no pop,

then isEmpty returns false

With peek as written, property can be violated — how?

Thread 1 (peek)

E ans = pop()
push (ans) ;

return ans;

’

Thread 2

push (x)
boolean b = isEmpty ()

S

Time

peek and isEmpty

« Property we want: If there has been a push and no pop,

then isEmpty returns false

With peek as written, property can be violated — how?

Thread 1 (peek)

push (ans) ;

return ans;

E ans = pop()

Thread 2
; E —=push (x)
<7 boolean b = isEmpty ()

10

20/11/15

FCN

FCN

Time

peek and push

Property we want: Values are returned from pop in LIFO

order

With peek as written, property can be violated — how?

Thread 1 (peek)

E

ans = pop();

push (ans) ;

return ans;

Thread 2

push (x)
push (y)
E e = pop()

1

peek and push

« Property we want: Values are returned from pop in LIFO

S

Time

order

With peek as written, property can be violated — how?

Thread 1 (peek)

Thread 2

E

ans = pop();

<€

push (ans) ;

return ans; /

push (x)
push (y)

_—

»E e = pop()

12

20/11/15

FCN

FCN

peek and pop

Property we want: Values are returned from pop in LIFO

order

With peek as written, property can be violated — how?

Thread 1 (peek) Thread 2
E ans = pop(); \push(x)
push (y)
g push (ans) ; E e = pop()
E
return ans;
v
13
peek and peek
« Property we want: peek does not throw an exception if
number of pushes exceeds number of pops
-« \With peek as written, property can be violated — how?
Thread 1 (peek) Thread 2
E ans = pop(); E ans = pop()
g push (ans) ; push (ans) ;
£

return ans;

return ans;

14

20/11/15

peek and peek

-« Property we want: peek doesn’t throw an exception if
number of pushes exceeds number of pops

-« With peek as written, property can be violated — how?

Thread 1 (peek)

E ans = pop();

push (ans) ;

Time

return ans;

= E ans = pop();

Thread 2

push (ans) ;

return ans;

15

The fix
- In short, peek needs synchronization to df i gs

o The key is to make a larger critical section
o Re-entrant locks allow calls to push and pop

class Stack<E> {

synchronized E peek() {
E ans = pop();
push (ans) ;
return ans;

class C {
<E> E myPeek (Stack<E> s) {
synchronized (s) {
E ans = s.pop()
s.push (ans) ;
return ans;

16

20/11/15

Example, again

class Stack<E> {

private E[] array = (E[])new Object[SIZE];

int index = -1;

boolean isEmpty() { // unsynchronized: wrong?!
return index==-1;

}

synchronized void push(E wval) {
array[++index] = val;

}

synchronized E pop() {
return array|[index--];

}

E peek() { // unsynchronized: wrong!
return array[index];

}

17

Why wrong?

-~ push and pop adjust the state “in one tiny step”

-~ But this code is still wrong and depends on
language-implementation details you cannot

assume
o Even “tiny steps” may require multiple steps in the
implementation: array [++index] = val

probably takes at least two steps
o Code has a data race, allowing very strange behavior

- Moral: Do not introduce a data race, even if every
interleaving you can think of is correct

18

20/11/15

The distinction
/—\J

The term “race condition” can refer to two different
things resulting from lack of synchronization:

1. Data races: Simultaneous read/write or write/
write of the same memory location
o always an error, due to compiler & HW
o Original peek example has no data races

2. Bad interleavings: Despite lack of data races,
exposing bad intermediate state
o “Bad” depends on your specification
o Original peek example had several

19

Getting it right
/\J

Avoiding race conditions on shared resources is
difficult
o Decades of bugs have led to some conventional
wisdom: general techniques that are known to work

20

20/11/15

10

3 choices

For every memory location (e.g., obj i i ur pr m,
you must obey at least one of the following:

1. Thread-local: Do not use the location in > 1 thread

2. Immutable: Do not write to the memory location
3. Synchronized: Use synchronization to control access to the
location
need
synchronization
all memory thread-local

memory

immutable
memory

21

Thread-local

Whenever possible, do not share

o Easier to have each thread have its own thread-local copy
of a resource than to have one with shared updates

o Thisis correct only if threads do not need to communicate
through the resource
v' That is, multiple copies are a correct approach
v' Example: Random objects

o Note: Because each call-stack is thread-local, never need
to synchronize on local variables

In typical concurrent programs, the vast majority of
objects should be thread-local: shared-memory
should be rare — minimize it

22

20/11/15

11

Immutable

Whenever possible, do not update objects
o Make new objects instead

-« One of the key tenets of functional programming
o Generally helpful to avoid side-effects
o Much more helpful in a concurrent setting

-~ |f a location is only read, never written, then no
synchronization is necessary!

o Simultaneous reads are not races and not a problem

In practice, programmers usually over-use mutation —
minimize it

23

The rest

After minimizing the amount of memory that is (1) thread-

shared and (2) mutable, we need guidelines for how to
use locks to keep other data consistent

Guideline #0: No data races

- Never allow two threads to read/write or write/write
the same location at the same time

Necessary: In Java or C, a program with a data race is
almost always wrong

Not sufficient: Our peek example had no data races

24

20/11/15

12

20/11/15

Consistent Locking
mw«

that is always held when reading or writing the location
-~ \We say the lock guards the location
-~ The same lock can (and often should) guard multiple locations
«~ Clearly document the guard for each location

«~ |n Java, often the guard is the object containing the location
o this inside the object’s methods

o But also often guard a larger structure with one lock to ensure mutual
exclusion on the structure

25

Consistent Locking continued

Consistent locking is:

* Not sufficient: It prevents all data races but still allows bad
interleavings

— Our peek example used consistent locking
* Not necessary: Can change the locking protocol dynamically...

26

13

Beyond consistent locking

- Consistent locking is an excellent guideline

o A “default assumption” about program design

-« But it isn’t required for correctness: Can have
different program phases use different
invariants

o Provided all threads coordinate moving to the next
phase

27

Lock granularity

oarse-grained: Fewer locks; e bjects per lock
o Example: One lock for entire data structure (e.g., array)
o Example: One lock for all bank accounts

rA\\
Fine-grained: More locks, |!., fewer objects per lock

o Example: One lock per data element (e.g., array index)
o Example: One lock per bank account

= A D A

“Coarse-grained vs. fine-grained” is really a continuum

28

20/11/15

14

Trade-offs

Coarse-grained advantages
o Simpler to implement

o Faster/easier to implement operations that access multiple
locations (because all guarded by the same lock)

o Much easier: operations that modify data-structure shape

Fine-grained advantages

o More simultaneous access (performance when coarse-grained
would lead to unnecessary blocking)

Guideline #2: Start with coarse-grained (simpler) and move

to fine-grained (performance) only if contention on the
coarser locks becomes an issue.

29

Example: Hashtable

-« Coarse-grained: One lock for entire hashtable

-« Fine-grained: One lock for each bucket
Which supports more concurrency for add and lookup?

Which makes implementing resize easier?
o How would you do it?

Maintaining a numElements field for the table will
destroy the benefits of using separate locks for each
bucket

o Why?

30

20/11/15

15

20/11/15

Critical-section granularity

A second, orthogonal granularity issue is critical-section size

o How much work to do while holding lock(s)

If critical sections run for too long:
o Performance loss because other threads are blocked

If critical sections are too short:

o Bugs because you broke up something where other threads
should not be able to see intermediate state

Guideline #3: Do not do expensive computations or I/O in
critical sections, but also don’t introduce race conditions

31

Fine-grained critical sections
-« Technically, the shared resource’i i ist in the

given hash bucket elements [h], not the entire hash
table array.

index | 0| 1]2] 3

valve | | | ||]

I
E«_ ©

o Example:
vlock bucket 4
v'still okay to read bucket[] 14

=] —g]{x] |-

16

Time

Fine-grained locking

// keep a lock for each
bucket

// Thread 1: add(42);
public void add(E value) {

int h = hash(value); // // Thread 2: add(72);
2 public void add(E value) {
Node n = new Node (value) ; int h = hash(value); // 2

Node n = new Node (value);

synchronized (locks[h]) {

. blocked ...
Tt . blocked ...
synchronized (locks[h]) { ... blocked ...
n.next = elements[h]; n.next = elements[h];
elements[h] = n; elements[h] = n;
size++; size+t+;

} }
}

Example

Suppose we want to change the va ina

hashtable without removing it from the table
o Assume lock guards the whole table

critical section synchronized (lock) {

was too long vl = table.lookup (k) ;
v2 = expensive(vl);

(table locked table.remove (k) ;

during table.insert (k,v2) ;

expensive call) }

34

20/11/15

17

Example

Suppose we want to change the va ina

hashtable without removing it from the table
o Assume lock guards the whole table

critical section was
too short

(if another thread
updated the entry,
we will lose an
update)

synchronized (lock) {
vl = table.lookup (k) ;
}
v2 = expensive(vl) ;
synchronized (lock) ({
table.remove (k) ;
table.insert (k,v2) ;
}

35

Example

Suppose we want to change the va ina

hashtable without removing it from the table
o Assume lock guards the whole table

critical section was
just right

(if another update
occurred, try our
update again)

done = false;
while (!done) {
synchronized (lock) {
vl = table.lookup (k) ;
}
v2 = expensive(vl);
synchronized (lock) {

if (table.lookup (k)==vl) {

done = true;

table.remove (k) ;

table.insert (k,v2) ;
11}

36

20/11/15

18

Atomicity

An operation is atomic if no other thread can see it partly
executed
o Atomic as in “appears indivisible”

o Typically want ADT operations atomic, even to other threads
running operations on the same ADT

Guideline #4: Think in terms of what operations need to be
atomic
o Make critical sections just long enough to preserve atomicity

o Then design the locking protocol to implement the critical
sections correctly

That is: Think about atomicity first and locks second

37

Don’t roll your own

«~ |t is rare that you should write your own data structure
o Provided in standard libraries

o Point of these lectures is to understand the key trade-offs and
abstractions

-« Especially true for concurrent data structures

o Far too difficult to provide fine-grained synchronization without
race conditions

o Standard thread-safe libraries like ConcurrentHashMap
written by world experts

Guideline #5: Use built-in libraries whenever they meet
your needs

38

20/11/15

19

Synchronized collections
- Java provides thread-safe collection-wrappers via static

methods in the Collections class:

Method

Collections.synchronizedCollection (coll)

Collections.synchronizedList (list)

Collections.synchronizedMap (map)

Collections.synchronizedSet (set)

Set<String> words = new HashSet<String>();
words = Collections.synchronizedSet (words) ;

o These are essentially the same as wrapping each operation on the
collectionina synchronized block.

v'Simpler, but not more efficient, than the preceding code.

Concurrent collections
»@KMWMS

collections that are optimized to be safe for use by
multiple threads:

class ConcurrentHashMap<K, V> implements Map<K, V>
class ConcurrentLinkedDeque<E> implements Deque<E>
class ConcurrentSkipListSet<E> implements Set<E>
class CopyOnWriteArrayList<E> implements List<E>

[e] o O o

These classes are generally faster than using a
synchronized version of the normal collections because
multiple threads are actually able to use them at the same
time, to a degree.

o hash map: one thread in each hash bucket at a time

o deque: one thread modifying each end of the deque (front/back)

O ...

20/11/15

20

Object lock methods

o Athread can "wait" on an object's lock, causing it to pause.

o Another thread can "notify" on an object's lock, unpausing any
other thread(s) that are currently waiting on that lock.

o An implementation of monitors, a classic concurrency construct.

method description
notify () unblocks one random thread waiting on this object's lock
notifyAll () unblocks all threads waiting on this object's lock
wait () causes the current thread to wait (block) on this object's
wait (ms) lock, indefinitely or for a given # of ms

o These methods are not often used directly; but they are used
internally by other concurrency constructs

Wait
-« Check condition in a synchronized block
o If true, continue execution
o If false, call wait()

synchronized (lockObject)
{ while(! condition){ lockObject.wait();}
action;

}

- Properties of wait()
o releases the implicit lock (of the synchr. block)!
o threads having called wait() can’t be scheduled!

42

20/11/15

21

Notify

m

- Activate threads in wait set

o Single: notify()
o All: notifyAll()

synchronized (lockObject) {
establish_the condition;
lockCbject.notifyAll ()

43

Comments
/—\J

- Implementation of wait set performs queuing

- The while() loop ensures that the condition is

checked prior to the action

-~ Waiting threads consume no (ok few) resources
o wait() is blocking call

- Can be interrupted by an exception

o wait()/notify() is the simplest programming interface
to conditions

44

20/11/15

22

The volatile keyword

-« volatile field: An indication to the VM that multiple
threads may try to access/update the field's value at the
same time.

o Causes Java to immediately flush any internal caches any time the
field's value changes, so that later threads that try to read the
value will always see the new value (never the stale old value).

o Allows limited safe concurrent access to a field inside an object
even if another thread may modify the field's value.

o Does not solve all concurrency issues; should be replaced by
synchronized blocks if more complex access is needed.

Deadlock
- fiveness: Ability for a multithreaded-program to rufi

promptly.

-~ deadlock: Situation where two or more threads are
blocked forever, waiting for each other.
o Example: Each is waiting for the other's locked resource.
o Example: Each has too large of a synchronized block.

-~ livelock: Situation where two or more threads are caught
in an infinite cycle of responding to each other.

-~ starvation: Situation where one or more threads are
unable to make progress because of another "greedy"
thread.

o Example: thread with a long-running synchronized method

20/11/15

23

New classes for locking

Java.util.cC x5
import java.util.concurrent.locks. ™7

Class/interface

description

Lock

an interface for controlling access to a shared resource

ReentrantLock | aclassthatimplements Lock
ReadWriteLock | like Lock but separates read operations from writes
Condition a particular shared resource that can be waited upon;

conditions are acquired by asking for one from a Lock

-~ These classes offer higher granularity and control than the

synchronized keyword can provide.
o Not needed by most programs.
o Java.util.concurrent also contains blocking data

structures.

20/11/15

24

