
20/11/15

1

Thread-unsafe code
  How	can	the	following	class	be	

broken	by	mul6ple	threads?	

 1 public class Counter {
 2 private int c = 0;

 3 public void increment() {
 4 int old = c;
 5 c = old + 1; // c++;
 6 }

 7 public void decrement() {
 8 int old = c;
 9 c = old - 1; // c--;
10 }

11 public int value() {
12 return c;
13 }
14 }

Scenario	that	breaks	it:	

  Threads	A	and	B	start.	
  A	calls	increment	and	runs	to	

the	end	of	line	4.		It	retrieves	the	
old	value	of	0.	

  B	calls	decrement	and	runs	to	
the	end	of	line	8.		It	retrieves	the	
old	value	of	0.	

  A	sets	c	to	its	old	(0)	+	1.	
  B	sets	c	to	its	old	(0)	-	1.	

  The	final	value()	is	-1,	though	
aLer	one	increment	and	one	
decrement,	it	should	be	0!	

Synchronized blocks
// synchronized block:
// uses the given object as a lock
synchronized (object) {
 statement(s);
}

  Every	Java	object	can	act	as	a	"lock"	for	concurrency.	
o  A	thread	T1	can	ask	to	run	a	block	of	code,	
"synchronized"	on	a	given	object	O.	
ü If	no	other	thread	is	using	O,	then	T1	locks	the	object	and	
proceeds.	

ü If	another	thread	T2	is	already	using	O,	then	T1	becomes	
blocked	and	must	wait	un6l	T1	is	finished	using	O.		Then	T1	can	
proceed.	

20/11/15

2

Synchronized methods
// synchronized method: locks on "this" object
public synchronized type name(parameters) { ... }

// synchronized static method: locks on the given class
public static synchronized type name(parameters) { ... }
	
	

  A	synchronized	method	grabs	the	object	or	class's	lock	
at	the	start,	runs	to	comple6on,	then	releases	the	lock.	
o  A	shorthand	for	wrapping	the	en6re	body	of	the	method	in	a	
synchronized (this) {...}	block.	

o  Useful	for	methods	whose	en6re	bodies	should	not	be	
entered	by	mul6ple	threads	at	the	same	6me.	

public synchronized void readFile(String name) {...}

	

Synchronized counter
public class Counter {
 private int c = 0;

 public synchronized void increment() {
 int old = c;
 c = old + 1; // c++;
 }

 public synchronized void decrement() {
 int old = c;
 c = old - 1; // c--;
 }

 public int value() {
 return c;
 }
}

o  Should	the	value	method	be	synchronized?		Why/why	not?	

20/11/15

3

Races	

A	race	condi6on	occurs	when	the	computa6on	
result	depends	on	scheduling	(how	threads	
are	interleaved)	

	
Bugs	that	exist	only	due	to	concurrency	

o  No	interleaved	scheduling	with	1	thread	
	
Typically,	problem	is	some	intermediate	state	

that	“messes	up”	a	concurrent	thread	that	
“sees”	that	state	

	 5

Example	

6

class Stack<E> {
 … // state used by isEmpty, push, pop
 synchronized boolean isEmpty() { … }
 synchronized void push(E val) { … }
 synchronized E pop() {
 if(isEmpty())

 throw new StackEmptyException();
 …
 }
 E peek() { // this is wrong
 E ans = pop();
 push(ans);
 return ans;
 }
}

20/11/15

4

peek,	sequen6ally	speaking	

  In	a	sequen6al	world,	this	code	is	of	
ques6onable	style,	but	unques6onably	
correct	

	

7

peek,	concurrently	speaking	
  peek	has	no	overall	effect	on	the	shared	data	
o  It	is	a	“reader”	not	a	“writer”	

  But	the	way	it	is	implemented	creates	an	
inconsistent	intermediate	state	
o  Even	though	calls	to	push	and	pop	are	synchronized	so		
there	are	no	data	races	on	the	underlying	array/list/
whatever	

o  (A	data	race	is	simultaneous	(unsynchronized)	read/write	or	
write/write	of	the	same	memory:	more	on	this	soon)	

  This	intermediate	state	should	not	be	exposed	
o  Leads	to	several	bad	interleavings	

8

20/11/15

5

peek	and	isEmpty	
  Property	we	want:	If	there	has	been	a	push	and	no	pop,	
then	isEmpty	returns	false

  With	peek	as	wriben,	property	can	be	violated	–	how?	

9

E ans = pop();

push(ans);

return ans;

push(x)
boolean b = isEmpty()

Ti
m
e	

Thread	2	Thread	1	(peek)	

peek	and	isEmpty	
  Property	we	want:	If	there	has	been	a	push	and	no	pop,	
then	isEmpty	returns	false

  With	peek	as	wriben,	property	can	be	violated	–	how?	

10

E ans = pop();

push(ans);

return ans;

push(x)
boolean b = isEmpty()

Ti
m
e	

Thread	2	Thread	1	(peek)	

20/11/15

6

peek	and	push	
  Property	we	want:	Values	are	returned	from	pop	in	LIFO	
order

  With	peek	as	wriben,	property	can	be	violated	–	how?	

11

E ans = pop();

push(ans);

return ans;

push(x)
push(y)
E e = pop()

Ti
m
e	

Thread	2	Thread	1	(peek)	

peek	and	push	
  Property	we	want:	Values	are	returned	from	pop	in	LIFO	
order

  With	peek	as	wriben,	property	can	be	violated	–	how?	

12

E ans = pop();

push(ans);

return ans;

push(x)
push(y)
E e = pop()
 Ti

m
e	

Thread	2	Thread	1	(peek)	

20/11/15

7

peek	and	pop	
  Property	we	want:	Values	are	returned	from	pop	in	LIFO	
order

  With	peek	as	wriben,	property	can	be	violated	–	how?	

13

E ans = pop();

push(ans);

return ans;

Ti
m
e	

Thread	2	Thread	1	(peek)	
push(x)
push(y)
E e = pop()

peek	and	peek	
  Property	we	want:	peek	does	not	throw	an	excep6on	if	
number	of	pushes	exceeds	number	of	pops

  With	peek	as	wriben,	property	can	be	violated	–	how?	

14

E ans = pop();

push(ans);

return ans;

Ti
m
e	

Thread	2	

E ans = pop();

push(ans);

return ans;

Thread	1	(peek)	

20/11/15

8

peek	and	peek	
  Property	we	want:	peek	doesn’t	throw	an	excep6on	if	
number	of	pushes	exceeds	number	of	pops

  With	peek	as	wriben,	property	can	be	violated	–	how?	

15

E ans = pop();

push(ans);

return ans;

Ti
m
e	

Thread	2	

E ans = pop();

push(ans);

return ans;

Thread	1	(peek)	

The	fix	
  In	short,	peek	needs	synchroniza6on	to	disallow	interleavings	

o  The	key	is	to	make	a	larger	cri4cal	sec4on	
o  Re-entrant	locks	allow	calls	to	push	and	pop

16

class Stack<E> {
 …
 synchronized E peek(){
 E ans = pop();
 push(ans);
 return ans;
 }
}

class C {
 <E> E myPeek(Stack<E> s){
 synchronized (s) {
 E ans = s.pop();
 s.push(ans);
 return ans;
 }
 }
}

20/11/15

9

Example,	again	

17

class Stack<E> {
 private E[] array = (E[])new Object[SIZE];
 int index = -1;
 boolean isEmpty() { // unsynchronized: wrong?!
 return index==-1;
 }
 synchronized void push(E val) {
 array[++index] = val;

 }
 synchronized E pop() {
 return array[index--];

 }
 E peek() { // unsynchronized: wrong!
 return array[index];
 }
}

Why	wrong?	

  	push	and	pop	adjust	the	state	“in	one	6ny	step”	

  But	this	code	is	s6ll	wrong	and	depends	on	
language-implementa6on	details	you	cannot	
assume	
o  Even	“6ny	steps”	may	require	mul6ple	steps	in	the	
implementa6on:	array[++index] = val
probably	takes	at	least	two	steps	

o  Code	has	a	data	race,	allowing	very	strange	behavior		

  Moral:	Do	not	introduce	a	data	race,	even	if	every	
interleaving	you	can	think	of	is	correct	

18

20/11/15

10

The	dis6nc6on	
	

The		term	“race	condi6on”	can	refer	to	two	different	
things	resul6ng	from	lack	of	synchroniza6on:	
	

1.  Data	races:	Simultaneous	read/write	or	write/
write	of	the	same	memory	loca6on	
o  	always	an	error,	due	to	compiler	&	HW	
o  Original	peek	example	has	no	data	races	

2.  Bad	interleavings:	Despite	lack	of	data	races,	
exposing	bad	intermediate	state	
o  “Bad”	depends	on	your	specifica6on	
o  Original	peek	example	had	several	

	
	

19

Gelng	it	right	

Avoiding	race	condi6ons	on	shared	resources	is	
difficult	
o  Decades	of	bugs	have	led	to	some	conven4onal	
wisdom:	general	techniques	that	are	known	to	work	

	

20

20/11/15

11

3	choices	
For	every	memory	loca6on	(e.g.,	object	field)	in	your	program,	

you	must	obey	at	least	one	of	the	following:	
1.  Thread-local:	Do	not	use	the	loca6on	in	>	1	thread	
2.  Immutable:	Do	not	write	to	the	memory	loca6on	
3.  Synchronized:	Use	synchroniza6on	to	control	access	to	the	

loca6on	

21

all	memory	 thread-local	
memory	 immutable	

memory	

need		
synchroniza6on	

Thread-local	
Whenever	possible,	do	not	share	resources	

o  Easier	to	have	each	thread	have	its	own	thread-local	copy	
of	a	resource	than	to	have	one	with	shared	updates	

o  This	is	correct	only	if	threads	do	not	need	to	communicate	
through	the	resource	
ü  That	is,	mul6ple	copies	are	a	correct	approach	
ü  Example:	Random	objects	

o  Note:	Because	each	call-stack	is	thread-local,	never	need	
to	synchronize	on	local	variables	

In	typical	concurrent	programs,	the	vast	majority	of	
objects	should	be	thread-local:	shared-memory	
should	be	rare	–	minimize	it	

22

20/11/15

12

Immutable	
Whenever	possible,	do	not	update	objects	

o  Make	new	objects	instead	

  One	of	the	key	tenets	of	func4onal	programming		
o  Generally	helpful	to	avoid	side-effects	
o  Much	more	helpful	in	a	concurrent	selng	

  If	a	loca6on	is	only	read,	never	wriben,	then	no	
synchroniza6on	is	necessary!	
o  Simultaneous	reads	are	not	races	and	not	a	problem	
	

In	prac4ce,	programmers	usually	over-use	muta4on	–	
minimize	it	

23

The	rest	
ALer	minimizing	the	amount	of	memory	that	is	(1)	thread-

shared	and	(2)	mutable,	we	need	guidelines	for	how	to	
use	locks	to	keep	other	data	consistent	

	
Guideline	#0:	No	data	races	
  Never	allow	two	threads	to	read/write	or	write/write	
the	same	loca6on	at	the	same	6me	

Necessary:	In	Java	or	C,	a	program	with	a	data	race	is	
almost	always	wrong	

	
Not	sufficient:	Our	peek	example	had	no	data	races	
	

24

20/11/15

13

Consistent	Locking	
Guideline	#1:	For	each	loca6on	needing	synchroniza6on,	have	a	lock	

that	is	always	held	when	reading	or	wri6ng	the	loca6on	
	
  We	say	the	lock	guards	the	loca6on	

  The	same	lock	can	(and	oLen	should)	guard	mul6ple	loca6ons			

  Clearly	document	the	guard	for	each	loca6on	
	
  In	Java,	oLen	the	guard	is	the	object	containing	the	loca6on	

o  this	inside	the	object’s	methods	
o  But	also	oLen	guard	a	larger	structure	with	one	lock	to	ensure	mutual	

exclusion	on	the	structure	

25

Consistent	Locking	con6nued	

26

Consistent	locking	is:	
	

•  Not	sufficient:	It	prevents	all	data	races	but	s6ll	allows	bad	
interleavings	
–  Our	peek	example	used	consistent	locking	

•  Not	necessary:	Can	change	the	locking	protocol	dynamically…	

20/11/15

14

Beyond	consistent	locking	
  Consistent	locking	is	an	excellent	guideline	
o  A	“default	assump6on”	about	program	design	

  But	it	isn’t	required	for	correctness:	Can	have	
different	program	phases	use	different	
invariants	
o  Provided	all	threads	coordinate	moving	to	the	next	
phase	

27

Lock	granularity	
Coarse-grained:		Fewer	locks,	i.e.,	more	objects	per	lock	

o  Example:	One	lock	for	en6re	data	structure	(e.g.,	array)	
o  Example:	One	lock	for	all	bank	accounts	

Fine-grained:	More	locks,	i.e.,	fewer	objects	per	lock	
o  Example:	One	lock	per	data	element	(e.g.,	array	index)	
o  Example:	One	lock	per	bank	account	

“Coarse-grained	vs.	fine-grained”	is	really	a	con6nuum	

28

…	

…	

20/11/15

15

Trade-offs	
Coarse-grained	advantages	

o  Simpler	to	implement	
o  Faster/easier	to	implement	opera6ons	that	access	mul6ple	
loca6ons	(because	all	guarded	by	the	same	lock)	

o  Much	easier:	opera6ons	that	modify	data-structure	shape	

Fine-grained	advantages	
o  More	simultaneous	access	(performance	when	coarse-grained	
would	lead	to	unnecessary	blocking)	

Guideline	#2:	Start	with	coarse-grained	(simpler)	and	move	
to	fine-grained	(performance)	only	if	conten4on	on	the	
coarser	locks	becomes	an	issue.	

29

Example:	Hashtable	
  Coarse-grained:	One	lock	for	en6re	hashtable	
  Fine-grained:	One	lock	for	each	bucket	

Which	supports	more	concurrency	for	add and	lookup?	
	
Which	makes	implemen6ng	resize	easier?	

o  How	would	you	do	it?	

Maintaining	a	numElements	field	for	the	table	will	
destroy	the	benefits	of	using	separate	locks	for	each	
bucket	
o  Why?	

30

20/11/15

16

Cri6cal-sec6on	granularity	
A	second,	orthogonal	granularity	issue	is	cri6cal-sec6on	size	

o  How	much	work	to	do	while	holding	lock(s)	

If	cri6cal	sec6ons	run	for	too	long:	
o  Performance	loss	because	other	threads	are	blocked	

If	cri6cal	sec6ons	are	too	short:	
o  Bugs	because	you	broke	up	something	where	other	threads	
should	not	be	able	to	see	intermediate	state	

Guideline	#3:	Do	not	do	expensive	computa6ons	or	I/O	in	
cri6cal	sec6ons,	but	also	don’t	introduce	race	condi6ons	

31

Fine-grained critical sections
  Technically,	the	shared	resource	is	the	linked	list	in	the	
given	hash	bucket	elements[h],	not	the	en4re	hash	
table	array.	

o  Example:	
ü lock	bucket	4	
ü s6ll	okay	to	read	bucket	7	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	
value	

54	

14	

24	11	 7	 49	

20/11/15

17

Fine-grained locking
// keep a lock for each

bucket

// Thread 1: add(42);
public void add(E value) {
 int h = hash(value); //

2
 Node n = new Node(value);
 ...
 ...
 ...
 ...
 synchronized (locks[h]) {
 n.next = elements[h];
 elements[h] = n;
 size++;
 }
}

	

 ...
 ...
 ...
 ...
 ...
// Thread 2: add(72);
public void add(E value) {
 int h = hash(value); // 2
 Node n = new Node(value);
 ...
 synchronized (locks[h]) {
 ... blocked ...
 ... blocked ...
 ... blocked ...
 n.next = elements[h];
 elements[h] = n;
 size++;
 }
}

	

Ti
m
e	

Example	
Suppose	we	want	to	change	the	value	for	a	key	in	a	

hashtable	without	removing	it	from	the	table	
o  Assume	lock	guards	the	whole	table	

34

synchronized(lock) {
 v1 = table.lookup(k);
 v2 = expensive(v1);
 table.remove(k);
 table.insert(k,v2);
}

	cri4cal	sec4on	
was	too	long	
	
(table	locked	
during	
expensive	call)	

20/11/15

18

Example	
Suppose	we	want	to	change	the	value	for	a	key	in	a	

hashtable	without	removing	it	from	the	table	
o  Assume	lock	guards	the	whole	table	

35

synchronized(lock) {
 v1 = table.lookup(k);
}
v2 = expensive(v1);
synchronized(lock) {
 table.remove(k);
 table.insert(k,v2);
}

cri4cal	sec4on	was	
too	short	
	
(if	another	thread		
updated	the	entry,	
we	will	lose	an	
update)	

Example	
Suppose	we	want	to	change	the	value	for	a	key	in	a	

hashtable	without	removing	it	from	the	table	
o  Assume	lock	guards	the	whole	table	

36

done = false;
while(!done) {
 synchronized(lock) {
 v1 = table.lookup(k);
 }
 v2 = expensive(v1);
 synchronized(lock) {
 if(table.lookup(k)==v1) {
 done = true;
 table.remove(k);
 table.insert(k,v2);
}}}

cri4cal	sec4on	was	
just	right	
	
(if	another	update	
occurred,	try	our	
update	again)	

20/11/15

19

Atomicity	
An	opera6on	is	atomic	if	no	other	thread	can	see	it	partly	

executed	
o  Atomic	as	in	“appears	indivisible”	
o  Typically	want	ADT	opera6ons	atomic,	even	to	other	threads	
running	opera6ons	on	the	same	ADT	

	
Guideline	#4:		Think	in	terms	of	what	opera6ons	need	to	be	

atomic			
o  Make	cri6cal	sec6ons	just	long	enough	to	preserve	atomicity	
o  Then	design	the	locking	protocol	to	implement	the	cri6cal	
sec6ons	correctly	

That	is:	Think	about	atomicity	first	and	locks	second	

37

Don’t	roll	your	own	
  It	is	rare	that	you	should	write	your	own	data	structure	
o  Provided	in	standard	libraries	
o  Point	of	these	lectures	is	to	understand	the	key	trade-offs	and	
abstrac6ons	

  Especially	true	for	concurrent	data	structures	
o  Far	too	difficult	to	provide	fine-grained	synchroniza6on	without	
race	condi6ons	

o  Standard	thread-safe	libraries	like	ConcurrentHashMap	
wriben	by	world	experts	

Guideline	#5:	Use	built-in	libraries	whenever	they	meet	
your	needs	

38

20/11/15

20

Synchronized collections
  Java	provides	thread-safe	collec6on	wrappers	via	sta6c	
methods	in	the	Collections	class:	

 Set<String> words = new HashSet<String>();
 words = Collections.synchronizedSet(words);

o  These	are	essen6ally	the	same	as	wrapping	each	opera6on	on	the	
collec6on	in	a	synchronized	block.	
ü Simpler,	but	not	more	efficient,	than	the	preceding	code.	

Method	
Collections.synchronizedCollection(coll)
Collections.synchronizedList(list)
Collections.synchronizedMap(map)
Collections.synchronizedSet(set)

Concurrent collections
  New	package	java.util.concurrent	contains	
collec6ons	that	are	op6mized	to	be	safe	for	use	by	
mul6ple	threads:	
o  class ConcurrentHashMap<K, V> implements Map<K, V>
o  class ConcurrentLinkedDeque<E> implements Deque<E>
o  class ConcurrentSkipListSet<E> implements Set<E>
o  class CopyOnWriteArrayList<E> implements List<E>

  These	classes	are	generally	faster	than	using	a	
synchronized	version	of	the	normal	collec6ons	because	
mul6ple	threads	are	actually	able	to	use	them	at	the	same	
6me,	to	a	degree.	
o  hash	map:	one	thread	in	each	hash	bucket	at	a	6me	
o  deque:	one	thread	modifying	each	end	of	the	deque	(front/back)	
o  ...	

20/11/15

21

Object lock methods
  Every	Java	object	has	a	built-in	internal	"lock".	
o  A	thread	can	"wait"	on	an	object's	lock,	causing	it	to	pause.	
o  Another	thread	can	"no6fy"	on	an	object's	lock,	unpausing	any	
other	thread(s)	that	are	currently	wai6ng	on	that	lock.	

o  An	implementa6on	of	monitors,	a	classic	concurrency	construct.	

o  These	methods	are	not	oLen	used	directly;		but	they	are	used	
internally	by	other	concurrency	constructs		

method	 descrip<on	
notify() unblocks	one	random	thread	wai6ng	on	this	object's	lock	
notifyAll() unblocks	all	threads	wai6ng	on	this	object's	lock	
wait()
wait(ms)

causes	the	current	thread	to	wait	(block)	on	this	object's	
lock,	indefinitely	or	for	a	given	#	of	ms	

Wait	

  Check	condi6on	in	a	synchronized	block	
o  If	true,	con6nue	execu6on	
o  If	false,	call	wait()	
	
	

  Proper6es	of	wait()	
o  releases	the	implicit	lock	(of	the	synchr.	block)!	
o  threads	having	called	wait()	can’t	be	scheduled!	

42

20/11/15

22

No6fy	

  Ac6vate	threads	in	wait	set	
o  Single:	no6fy()	
o  All:	no6fyAll()	

43

Comments	

  Implementa6on	of	wait	set	performs	queuing	
  The	while()	loop	ensures	that	the	condi6on	is	
checked	prior	to	the	ac6on	
  Wai6ng	threads	consume	no	(ok	few)	resources	
o  	wait()	is	blocking	call	

  Can	be	interrupted	by	an	excep6on	
o  wait()/no6fy()	is	the	simplest	programming	interface	
to	condi6ons	

44

20/11/15

23

The volatile keyword
 private volatile type name;

  vola<le	field:	An	indica6on	to	the	VM	that	mul6ple	
threads	may	try	to	access/update	the	field's	value	at	the	
same	6me.	
o  Causes	Java	to	immediately	flush	any	internal	caches	any	6me	the	
field's	value	changes,	so	that	later	threads	that	try	to	read	the	
value	will	always	see	the	new	value	(never	the	stale	old	value).	

o  Allows	limited	safe	concurrent	access	to	a	field	inside	an	object	
even	if	another	thread	may	modify	the	field's	value.	

o  Does	not	solve	all	concurrency	issues;	should	be	replaced	by	
synchronized	blocks	if	more	complex	access	is	needed.	

Deadlock
  liveness:	Ability	for	a	mul6threaded	program	to	run	
promptly.	

  deadlock:	Situa6on	where	two	or	more	threads	are	
blocked	forever,	wai6ng	for	each	other.	
o  Example:	Each	is	wai6ng	for	the	other's	locked	resource.	
o  Example:	Each	has	too	large	of	a	synchronized	block.	

  livelock:	Situa6on	where	two	or	more	threads	are	caught	
in	an	infinite	cycle	of	responding	to	each	other.	

  starva<on:	Situa6on	where	one	or	more	threads	are	
unable	to	make	progress	because	of	another	"greedy"	
thread.	
o  Example:	thread	with	a	long-running	synchronized	method	

20/11/15

24

New classes for locking
import java.util.concurrent.*;
import java.util.concurrent.locks.*;

  These	classes	offer	higher	granularity	and	control	than	the		
synchronized	keyword	can	provide.	
o  Not	needed	by	most	programs.	
o  java.util.concurrent	also	contains	blocking	data	
structures.	

Class/interface	 descrip<on	
Lock an	interface	for	controlling	access	to	a	shared	resource	
ReentrantLock a	class	that	implements	Lock
ReadWriteLock like	Lock	but	separates	read	opera6ons	from	writes	
Condition a	par6cular	shared	resource	that	can	be	waited	upon;	

condi6ons	are	acquired	by	asking	for	one	from	a	Lock

