
13/11/15

1

Concurrent	Programming	
Concurrency:	Correctly	and	efficiently	managing	access	to	

shared	resources	from	mul7ple	possibly-simultaneous	
clients	

	
Requires	coordina(on,	par7cularly	synchroniza7on	to	avoid	

incorrect	simultaneous	access:	make	somebody	block	
o  Want	to	block	un7l	another	thread	is	“done	using	what	we	
need”	not	“completely	done	execu7ng”	

Even	correct	concurrent	applica7ons	are	usually	highly														
non-determinis7c:	how	threads	are	scheduled	affects	
what	opera7ons	from	other	threads	they	see	when	
o  non-repeatability	complicates	tes7ng	and	debugging	

1

Examples	
Mul7ple	threads:	
	
1.  Processing	different	bank-account	opera7ons	

o  What	if	2	threads	change	the	same	account	at	the	same	7me?	

2.  Using	a	shared	cache	of	recent	files	(e.g.,	hashtable)	
o  What	if	2	threads	insert	the	same	file	at	the	same	7me?	

3.  Crea7ng	a	pipeline	(think	assembly	line)	with	a	queue	
for	handing	work	to	next	thread	in	sequence?	
o  What	if	enqueuer	and	dequeuer	adjust	a	circular	array	queue	

at	the	same	7me?	

2

13/11/15

2

Java	Concurrency	

  The	java.lang.Runnable	interface	
o  void	run();	
  The	java.lang.Thread	class	
o  Thread(Runnable	r);	
o  void	start();	
o  sta7c	void	sleep(long	millis);	
o  void	join();	
o  boolean	isAlive();	
o  sta7c	Thread	currentThread();	
  See	IncrementTest.java	

Atomicity	
  An	ac7on	is	atomic	if	it	is	indivisible	
o  Effec7vely,	it	happens	all	at	once	
o  No	effects	of	the	ac7on	are	visible	un7l	it	is	complete	
o  No	other	ac7ons	have	an	effect	during	the	ac7on	

  In	Java,	integer	increment	(i++)	is	not	atomic	
1.  Load	data	from	variable		
2.  	Increment	data	by	1	
3.	Store	data	to	variable	i	

13/11/15

3

Race	Condi7on	

  A	race	condi7on	is	when	mul7ple	threads	access	
shared	data	and	unexpected	results	occur	
depending	on	the	order	of	their	ac7ons	

Alice,	Bob	Bill	and	the	Bank	
A. Alice to pay Bob $30

Bank actions
A1. Does Alice have $30 ?
A2. Give $30 to Bob
A3. Take $30 from Alice

 B. Alice to pay Bill $30

Bank actions
B1. Does Alice have $30 ?
B2. Give $30 to Bill
B3. Take $30 from Alice

If Alice starts with $40, can
Bob and Bill both get $30?

13/11/15

4

Alice,	Bob	Bill	and	the	Bank	
A. Alice to pay Bob $30

Bank actions
A1. Does Alice have $30 ?
A2. Give $30 to Bob
A3. Take $30 from Alice

 B. Alice to pay Bill $30

Bank actions
B1. Does Alice have $30 ?
B2. Give $30 to Bill
B3. Take $30 from Alice

If Alice starts with $40, can
Bob and Bill both get $30?

A.1
A.2
B.1
B.2
A.3
B.3

Why	threads?	
Unlike	parallelism,	not	about	implemen7ng	algorithms	faster	
	
But	threads	s7ll	useful	for:	
	

  Code	structure	for	responsiveness	
o  Example:	Respond	to	GUI	events	in	one	thread	while	another	

thread	is	performing	an	expensive	computa7on	

  Processor	u(liza(on	(mask	I/O	latency)	
o  If	1	thread	“goes	to	disk,”	have	something	else	to	do	

	

  Failure	isola(on	
o  Convenient	structure	if	want	to	interleave	mul7ple	tasks	and	do	

not	want	an	excep7on	in	one	to	stop	the	other	
	

8

13/11/15

5

Sharing	resources	
It	is	common	in	concurrent	programs	that:	
	
  Different	threads	might	access	the	same	resources	in	an	
unpredictable	order	or	even	at	about	the	same	7me	

  Program	correctness	requires	that	simultaneous	access	be	
prevented	using	synchroniza7on	

  Simultaneous	access	is	rare	
o  Makes	tes7ng	difficult	
o  Must	be	much	more	disciplined	when	designing	/	implemen7ng	a	

concurrent	program	
o  Will	discuss	common	idioms	known	to	work	

9

Canonical	example	
Correct	code	in	a	single-threaded	world	

10

class BankAccount {
 private int balance = 0;
 int getBalance() { return balance; }
 void setBalance(int x) { balance = x; }
 void withdraw(int amount) {
 int b = getBalance();
 if(amount > b)
 throw new WithdrawTooLargeException();
 setBalance(b – amount);
 }
 … // other operations like deposit, etc.
}

13/11/15

6

Interleaving	
Suppose:	

o  Thread	T1	calls	x.withdraw(100)
o  Thread	T2	calls	y.withdraw(100)

If	second	call	starts	before	first	finishes,	we	say	the	calls	
interleave	
o  Could	happen	even	with	one	processor	since	a	thread	can	
be	pre-empted	at	any	point	for	7me-slicing	

If	x	and	y	refer	to	different	accounts,	no	problem	
o  “You	cook	in	your	kitchen	while	I	cook	in	mine”	
o  But	if	x	and	y	alias,	possible	trouble…	

11

A	bad	interleaving	
Interleaved	withdraw(100)	calls	on	the	same	account	

o  Assume	ini7al	balance	== 150

12

int b = getBalance();

if(amount > b)
 throw new …;
setBalance(b – amount);

int b = getBalance();
if(amount > b)
 throw new …;
setBalance(b – amount);

Thread	1	 Thread	2	

Ti
m
e	

“Lost	withdraw”	–		
unhappy	bank	

13/11/15

7

Incorrect	“fix”	
It	is	temp7ng	and	almost	always	wrong	to	fix	a	bad	interleaving	

by	rearranging	or	repea7ng	opera7ons,	such	as:	

13

void withdraw(int amount) {
 if(amount > getBalance())
 throw new WithdrawTooLargeException();
 // maybe balance changed
 setBalance(getBalance() – amount);
}

This	fixes	nothing!	
•  Narrows	the	problem	by	one	statement	
•  (Not	even	that	since	the	compiler	could	turn	it	back	into	the	old	

version	because	you	didn’t	indicate	need	to	synchronize)	
•  And	now	a	nega7ve	balance	is	possible	–	why?	

Mutual	exclusion	
Sane	fix:	Allow	at	most	one	thread	to	withdraw	from	

account	A	at	a	7me	
o  Exclude	other	simultaneous	opera7ons	on	A	too	(e.g.,	deposit)	

Called	mutual	exclusion:	One	thread	using	a	resource	(here:	
an	account)	means	another	thread	must	wait	
o  a.k.a.	cri7cal	sec7ons,	which	technically	have	other	
requirements	

	
Programmer	must	implement	cri7cal	sec7ons	

o  “The	compiler”	has	no	idea	what	interleavings	should	or	should	
not	be	allowed	in	your	program	

o  Buy	you	need	language	primi7ves	to	do	it!	

14

13/11/15

8

Wrong!	
Why	can’t	we	implement	our	own	mutual-

exclusion	protocol?	
o  It’s	technically	possible	under	certain	assump7ons,	but	won’t	work	in	real	languages	anyway	

15

class BankAccount {
 private int balance = 0;
 private boolean busy = false;
 void withdraw(int amount) {
 while(busy) { /* “spin-wait” */ }
 busy = true;
 int b = getBalance();
 if(amount > b)
 throw new WithdrawTooLargeException();
 setBalance(b – amount);
 busy = false;
 }
 // deposit would spin on same boolean
}

Just	moved	the	problem!	

16

while(busy) { }

busy = true;

int b = getBalance();

if(amount > b)
 throw new …;
setBalance(b – amount);

while(busy) { }

busy = true;

int b = getBalance();
if(amount > b)
 throw new …;
setBalance(b – amount);

Thread	1	 Thread	2	

Ti
m
e	

“Lost	withdraw”	–		
unhappy	bank	

13/11/15

9

What	we	need	
  We	need	help	from	the	language	

  One	basic	solu7on:	Locks	
o  Not	Java	yet,	though	Java’s	approach	is	similar	and	slightly	
more	convenient	

  An	ADT	with	opera7ons:	
o  new:			make	a	new	lock,	ini7ally	“not	held”	
o  acquire:		blocks	if	this	lock	is	already	currently	“held”	

ü Once	“not	held”,	makes	lock	“held”	[all	at	once!]	
o  release:	makes	this	lock	“not	held”	

ü If	>=	1	threads	are	blocked	on	it,	exactly	1	will	acquire	it	

17

Why	that	works	
  An	ADT	with	opera7ons		new, acquire,
release

  The	lock	implementa7on	ensures	that	given	
simultaneous	acquires	and/or	releases,	a	correct	
thing	will	happen	
o  Example:	Two	acquires:	one	will	“win”	and	one	will	block	

  How	can	this	be	implemented?	
o  Need	to	“check	if	held	and	if	not	make	held”	“all-at-once”	
o  Uses	special	hardware	and	O/S	support		

ü See	computer-architecture	or	opera7ng-systems	course	
o  Here,	we	take	this	as	a	primi7ve	and	use	it	

18

13/11/15

10

Almost-correct	pseudocode		

19

class BankAccount {
 private int balance = 0;
 private Lock lk = new Lock();
 …
 void withdraw(int amount) {
 lk.acquire(); // may block

 int b = getBalance();
 if(amount > b)
 throw new WithdrawTooLargeException();
 setBalance(b – amount);
 lk.release();
 }
 // deposit would also acquire/release lk
}

Some	mistakes	
  A	lock	is	a	very	primi7ve	mechanism	

o  S7ll	up	to	you	to	use	correctly	to	implement	cri7cal	sec7ons	

  Incorrect:	Use	different	locks	for	withdraw	and	deposit
o  Mutual	exclusion	works	only	when	using	same	lock	
o  balance	field	is	the	shared	resource	being	protected	

  Poor	performance:	Use	same	lock	for	every	bank	account	
o  No	simultaneous	opera7ons	on	different	accounts	

  Incorrect:	Forget	to	release	a	lock	(blocks	other	threads	forever!)	
o  Previous	slide	is	wrong	because	of	the	excep7on	possibility!	

 	

20

if(amount > b) {
 lk.release(); // hard to remember!
 throw new WithdrawTooLargeException();
}

13/11/15

11

Other	opera7ons	
  If	withdraw	and	deposit	use	the	same	lock,	then	
simultaneous	calls	to	these	methods	are	properly	synchronized	

  But	what	about	getBalance	and	setBalance?	
o  Assume	they	are	public,	which	may	be	reasonable	

  If	they	do	not	acquire	the	same	lock,	then	a	race	between	
setBalance	and	withdraw	could	produce	a	wrong	result	

  If	they	do	acquire	the	same	lock,	then	withdraw	would	block	
forever	because	it	tries	to	acquire	a	lock	it	already	has	

21

Re-acquiring	locks?	
  Can’t	let	outside	world	
call	
	setBalance1

	
  Can’t	have	withdraw	
call	setBalance2

  Alternately,	we	can	
modify	the	meaning	of	
the	Lock	ADT	
	to	support	re-entrant	
locks	

22

int setBalance1(int x) {
 balance = x;
}
int setBalance2(int x) {
 lk.acquire();
 balance = x;
 lk.release();
}
void withdraw(int amount) {
 lk.acquire();
 …
 setBalance1(b – amount);
 lk.release();
}

13/11/15

12

Re-entrant	lock	
A	re-entrant	lock	(a.k.a.	recursive	lock)	

  “Remembers”		
o  the	thread	(if	any)	that	currently	holds	it		
o  a	count		

  When	the	lock	goes	from	not-held	to	held,	the	count	is	set	
to	0	

  If	(code	running	in)	the	current	holder	calls	acquire:	
o  it	does	not	block		
o  it	increments	the	count	

  On	release:	
o  if	the	count	is	>	0,	the	count	is	decremented		
o  if	the	count	is	0,	the	lock	becomes	not-held	

23

Re-entrant	locks	work	
This	simple	code	works	
fine	provided	lk is	a	
reentrant	lock	
  Okay	to	call	
setBalance	
directly	
  Okay	to	call	
withdraw	(won’t	
block	forever)	
	

24

int setBalance(int x) {
 lk.acquire();
 balance = x;
 lk.release();
}

void withdraw(int amount) {
 lk.acquire();
 …
 setBalance1(b – amount);
 lk.release();
}

13/11/15

13

Now	some	Java	
Java	has	built-in	support	for	re-entrant	locks	

o  Several	differences	from	our	pseudocode	
o  Focus	on	the	synchronized	statement	

25

synchronized (expression) {
 statements
}

1.  Evaluates	expression	to	an	object	
•  Every	object	(but	not	primi7ve	types)	“is	a	lock”	in	Java	

2.  Acquires	the	lock,	blocking	if	necessary	
•  “If	you	get	past	the	{,	you	have	the	lock”	

3.  Releases	the	lock	“at	the	matching	}”	
•  Even	if	control	leaves	due	to	throw,	return,	etc.	
•  So	impossible	to	forget	to	release	the	lock	

Java	version	#1	(correct	but	non-idioma7c)	

26

class BankAccount {
 private int balance = 0;
 private Object lk = new Object();
 int getBalance()
 { synchronized (lk) { return balance; } }
 void setBalance(int x)
 { synchronized (lk) { balance = x; } }
 void withdraw(int amount) {
 synchronized (lk) {

 int b = getBalance();
 if(amount > b)
 throw …
 setBalance(b – amount);
 }
 }
 // deposit would also use synchronized(lk)
}

13/11/15

14

Improving	the	Java	

  As	wrinen,	the	lock	is	private	
o  Might	seem	like	a	good	idea	
o  But	also	prevents	code	in	other	classes	from	wri7ng	
opera7ons	that	synchronize	with	the	account	
opera7ons	

  More	idioma7c	is	to	synchronize	on	this…
o  Also	more	convenient:	no	need	to	have	an	extra	
object	

27

Java	version	#2	

28

class BankAccount {
 private int balance = 0;
 int getBalance()
 { synchronized (this){ return balance; } }
 void setBalance(int x)
 { synchronized (this){ balance = x; } }
 void withdraw(int amount) {
 synchronized (this) {
 int b = getBalance();

 if(amount > b)
 throw …
 setBalance(b – amount);
 }
 }
 // deposit would also use synchronized(this)
}

13/11/15

15

Syntac7c	sugar	

Version	#2	is	slightly	poor	style	because	there	is	a	
shorter	way	to	say	the	same	thing:	

	Pupng	synchronized	before	a	method	
declara7on	means	the	en7re	method	body	is	
surrounded	by		

synchronized(this){…}
	

Therefore,	version	#3	(next	slide)	means	exactly	the	
same	thing	as	version	#2	but	is	more	concise	

	
	 29

Java	version	#3	(final	version)	

30

class BankAccount {
 private int balance = 0;
 synchronized int getBalance()
 { return balance; }
 synchronized void setBalance(int x)
 { balance = x; }
 synchronized void withdraw(int amount) {
 int b = getBalance();

 if(amount > b)
 throw …
 setBalance(b – amount);
 }
 // deposit would also use synchronized
}

13/11/15

16

More	Java	notes	
  Class	
java.util.concurrent.locks.Reentran
tLock	works	much	more	like	our	pseudocode	
o  Oqen	use	try { … } finally { … }	to	avoid	
forgepng	to	release	the	lock	if	there’s	an	excep7on	

  Also	library	and/or	language	support	for	readers/
writer	locks	and	condi(on	variables	(future	lecture)	

  Java	provides	many	other	features	and	details.		See,	
for	example:	
o  Java	Concurrency	in	Prac7ce	by	Goetz	et	al	

31

32

