
13/11/15

1

	
CONCURRENT	OBJECT	ORIENTED	PROGRAMMING	

Changing	a	major	assump/on	
So	far:	One	thing	happened	at	a	,me	
	

Called	sequen/al	programming	–	everything	part	of	one	
sequence	

	
Removing	this	assump/on	creates	major	challenges	&	

opportuni/es	
o  Programming:	Divide	work	among	threads	of	execu/on	and	
coordinate	(synchronize)	among	them	

o  Algorithms:	How	can	parallel	ac/vity	provide	speed-up		
	(more	throughput:	work	done	per	unit	/me)	

o  Data	structures:	May	need	to	support	concurrent	access	
(mul/ple	threads	opera/ng	on	data	at	the	same	/me)	

13/11/15

2

A	simplified	view	of	history	
Wri/ng	correct	and	efficient	mul/threaded	code	is	oMen	

much	more	difficult	than	for	single-threaded	(i.e.,	
sequen/al)	code	
o  Especially	in	common	languages	like	Java	and	C	

From	roughly	1980-2005,	desktop	computers	got	
exponen/ally	faster	at	running	sequen/al	programs	
o  About	twice	as	fast	every	couple	years	

But	nobody	knows	how	to	con/nue	this	
o  Increasing	clock	rate	generates	too	much	heat	
o  Rela/ve	cost	of	memory	access	is	too	high	
o  But	we	can	keep	making	“wires	exponen/ally	
smaller”	(Moore’s	“Law”),	so	put	mul/ple	processors	on	the	
same	chip	(“mul/core”)	

What	to	do	with	mul/ple	
processors?	

  Today	computers	likely	have	several	processors	
o  The	“chip”	companies	have	decided	to	do	this	(not	a	
“law”)	

  What	can	you	do	with	them?	
o  Run	mul/ple	totally	different	programs	at	the	same	/me	

ü Already	do	that?	Yes,	but	with	/me-slicing	
o  Do	mul/ple	things	at	once	in	one	program	

ü Our	focus	–	more	difficult	
ü Requires	rethinking	everything	from	asympto/c	complexity	
to	how	to	implement	data-structure	opera/ons	

13/11/15

3

Parallelism	vs.	Concurrency	
Note:	Terms	not	yet	standard	but	the	perspec/ve	is	essen/al	

o  Many	programmers	confuse	these	concepts	

There	is	some	connec/on:	
–  Common	to	use	threads	for	both	
–  If	parallel	computa/ons	need	access	to	shared	resources,	then	the	

concurrency	needs	to	be	managed	

Parallelism:		
			Use	extra	resources	to		
			solve	a	problem	faster	

resources	

Concurrency:	
		Correctly	and	efficiently	manage		
		access	to	shared	resources	

requests	work	

resource	

An	analogy	
A	program	is	like	a	recipe	for	a	cook	

o  One	cook	who	does	one	thing	at	a	/me!	(Sequen,al)	

Parallelism:	
o  Have	lots	of	potatoes	to	slice?		
o  Hire	helpers,	hand	out	potatoes	and	knives	
o  But	too	many	chefs	and	you	spend	all	your	/me	coordina/ng	

Concurrency:	
o  Lots	of	cooks	making	different	things,	but	only	4	stove	burners	
o  Want	to	allow	access	to	all	4	burners,	but	not	cause	spills	or	
incorrect	burner	seings	

13/11/15

4

Our	learning	goal	

  Understand	concurreny	and	parallism	as	sources	of	
complexity	in	soMware	development	
  Understand	the	common	abstrac/on	for	parallelism	
and	concurrency,	and	the	trade-off	among	them	
o  Explicit	concurrency:	Write	thread-safe	concurrent	
programs	in	Java	

o  Know	common	thread-safe	data	structures,	including	high-
level	details	of	their	implementa/on		

o  	Understand	trade-offs	between	mutable	and	immutable	
data	structures		

o  Know	common	uses	of	concurrency	in	soMware	design		

Parallelism	Example	
Parallelism:	Use	extra	computa/onal	resources	to	solve	a	

problem	faster	(increasing	throughput	via	simultaneous	
execu/on)	

	

Pseudocode		for	array	sum	
o  Bad	style,	but	may	get	roughly	4x	speedup	

int sum(int[] arr){
 res = new int[4];
 len = arr.length;
 FORALL(i=0; i < 4; i++) { //parallel iterations
 res[i] = sumRange(arr,i*len/4,(i+1)*len/4);
 }
 return res[0]+res[1]+res[2]+res[3];
}
int sumRange(int[] arr, int lo, int hi) {
 result = 0;
 for(j=lo; j < hi; j++)
 result += arr[j];
 return result;
}

13/11/15

5

Concurrency	Example	
Concurrency:	Correctly	and	efficiently	manage	access	to	shared	

resources	(from	mul/ple	possibly-simultaneous	clients)	
	

Pseudocode		for	a	shared	chaining	hashtable	
o  Prevent	bad	interleavings	(correctness)	
o  But	allow	some	concurrent	access	(performance)	

	

class Hashtable<K,V> {
 …
 void insert(K key, V value) {
 int bucket = …;
 prevent-other-inserts/lookups in table[bucket]
 do the insertion
 re-enable access to table[bucket]
 }
 V lookup(K key) {

 (similar to insert, but can allow concurrent
 lookups to same bucket)

 }
}

Programming	abstrac/ons	

  Processes		
o  Execu/on	environment	is	isolated	

ü 	Processor,	in-memory	state,	files,		
o  Inter-process	communica/on	via	message	passing	
Sockets,	pipes,	...		

  Threads		
o  Execu/on	environment	is	shared		
o  Inter-thread	communica/on	typically	fast,	via	shared	
state		

13/11/15

6

toad 27 15*214

Abstractions of concurrency

• Processes
! Execution environment is isolated

• Processor, in-memory state, files, …
!  Inter-process communication typically slow, via message
passing
• Sockets, pipes, …

• Threads
! Execution environment is shared
!  Inter-thread communication typically fast, via shared state

Process

Thread

State

Thread

Process

Thread

State

Thread

Shared	memory	
The	model	we	will	assume	is	shared	memory	with	explicit	threads	
	

Old	story:	A	running	program	has	
o  One	program	counter	(current	statement	execu/ng)	
o  One	call	stack	(with	each	stack	frame	holding	local	variables)		
o  Objects	in	the	heap	created	by	memory	alloca/on	(i.e.,	new)		

ü (nothing	to	do	with	data	structure	called	a	heap)	
o  Sta,c	fields	
	

New	story:	
o  A	set	of	threads,	each	with	its	own	program	counter	&	call	stack	

ü No	access	to	another	thread’s	local	variables	
o  Threads	can	(implicitly)	share	sta/c	fields	/	objects	

ü To	communicate,	write	somewhere	another	thread	reads	

13/11/15

7

Shared	memory	

…	

pc=…	

…
	

		pc=…	

…
	

		pc=…	

…
	

Unshared:	
locals	and	
control	

Shared:	
objects	and	
sta,c	fields	

Threads	each	have	own	unshared	call	stack	and	current	statement		
– 		(pc	for	“program	counter”)			
– 		local	variables	are	numbers,	null,	or	heap	references	

Any	objects	can	be	shared,	but	most	are	not	

Other	models	
We	will	focus	on	shared	memory,	but	you	should	know	several	

other	models	exist	and	have	their	own	advantages	

  Message-passing:	Each	thread	has	its	own	collec/on	of	
objects.		Communica/on	is	via	explicitly	sending/receiving	
messages	
o  Cooks	working	in	separate	kitchens,	mail	around	ingredients	

  Dataflow:	Programmers	write	programs	in	terms	of	a	DAG.		
					A	node	executes	aMer	all	of	its	predecessors	in	the	graph	

o  Cooks	wait	to	be	handed	results	of	previous	steps	

  Data	parallelism:	Have	primi/ves	for	things	like	“apply	
func/on	to	every	element	of	an	array	in	parallel”	

13/11/15

8

Our	Needs	
To	write	a	shared-memory	parallel	program,	need	new	
primi/ves	from	a	programming	language	or	library	
	
  Ways	to	create	and	run	mul,ple	things	at	once	
o  Let’s	call	these	things	threads	

  Ways	for	threads	to	share	memory		
o  OMen	just	have	threads	with	references	to	the	same	objects	

  Ways	for	threads	to	coordinate	(a.k.a.	synchronize)	
o  For	now,	a	way	for	one	thread	to	wait	for	another	to	finish	
o  Other	primi/ves	when	we	study	concurrency	

Java	basics	
First	learn	some	basics	built	into	Java	via	java.lang.Thread

	
To	get	a	new	thread	running:	
1.  Define	a	subclass	C	of	java.lang.Thread,	overriding	

run
2.  Create	an	object	of	class	C
3.  Call	that	object’s	start	method	

ü start	sets	off	a	new	thread,	using	run	as	its	“main”	

What	if	we	instead	called	the	run	method	of	C?	
o  This	would	just	be	a	normal	method	call,	in	the	current	thread	

	
Let’s	see	how	to	share	memory	and	coordinate	via	an	example…	

	
	

	

13/11/15

9

Thread	

  public	class	HelloThread	extends	Thread	{		
	public	void	run()	{		
	System.out.println("Hello	from	a	thread!");	

	
	public	sta/c	void	main(String	args[])	{		
	 	(new	HelloThread()).start();	}		

}	

Sleep	

Thread.sleep	causes	the	current	thread	to	
suspend	execu/on	for	a	specified	period.	

13/11/15

10

Interrupts	

  An	interrupt	is	an	indica/on	to	a	thread	that	it	
should	stop	what	it	is	doing	and	do	something	
else.		
  It's	up	to	the	programmer	to	decide	exactly	how	
a	thread	responds	to	an	interrupt,	but	it	is	very	
common	for	the	thread	to	terminate.		

Interrupts	
for (int i = 0; i < importantInfo.length; i++) {
 // Pause for 4 seconds
 try {
 Thread.sleep(4000);
 } catch (InterruptedException e) {
 // We've been interrupted: no more messages.
 return;
 }
 // Print a message
 System.out.println(importantInfo[i]);
}

13/11/15

11

join	

  The	join	method	allows	one	thread	to	wait	for	
the	comple/on	of	another.		
  If	t	is	a	Thread	object	whose	thread	is	currently	
execu/ng,	
o  t.join();	

  causes	the	current	thread	to	pause	execu/on	
un/l	t's	thread	terminates.	

Parallelism	idea	
  Example:	Sum	elements	of	a	large	array		
  Idea:		Have	4	threads	simultaneously	sum	1/4	of	the	array	

o  Warning:	This	is	an	inferior	first	approach	

											ans0 ans1 ans2 ans3
																																																							+	
																																																					ans

o  Create	4	thread	objects,	each	given	a	por/on	of	the	work	
o  Call	start()	on	each	thread	object	to	actually	run	it	in	parallel	
o  Wait	for	threads	to	finish	using	join()
o  Add	together	their	4	answers	for	the	final	result	

13/11/15

12

First	ayempt,	part	1	
class SumThread extends java.lang.Thread {

 int lo; // arguments
 int hi;
 int[] arr;

 int ans = 0; // result

 SumThread(int[] a, int l, int h) {
 lo=l; hi=h; arr=a;
 }

 public void run() { //override must have this type
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 }
}

Because	we	must	override	a	no-arguments/no-result	run,		
we	use	fields	to	communicate	across	threads	

First	ayempt,	con/nued	(wrong)	
class SumThread extends java.lang.Thread {
 int lo, int hi, int[] arr; // arguments
 int ans = 0; // result
 SumThread(int[] a, int l, int h) { … }
 public void run(){ … } // override
}

int sum(int[] arr){ // can be a static method
 int len = arr.length;
 int ans = 0;
 SumThread[] ts = new SumThread[4];
 for(int i=0; i < 4; i++) // do parallel computations
 ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
 for(int i=0; i < 4; i++) // combine results
 ans += ts[i].ans;
 return ans;
}

13/11/15

13

Second	ayempt	(s/ll	wrong)	

int sum(int[] arr){ // can be a static method
 int len = arr.length;
 int ans = 0;
 SumThread[] ts = new SumThread[4];
 for(int i=0; i < 4; i++){// do parallel computations
 ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
 ts[i].start(); // start not run
 }
 for(int i=0; i < 4; i++) // combine results
 ans += ts[i].ans;
 return ans;
}

class SumThread extends java.lang.Thread {
 int lo, int hi, int[] arr; // arguments
 int ans = 0; // result
 SumThread(int[] a, int l, int h) { … }
 public void run(){ … } // override
}

Third	ayempt	(correct	in	spirit)	

int sum(int[] arr){// can be a static method
 int len = arr.length;
 int ans = 0;
 SumThread[] ts = new SumThread[4];
 for(int i=0; i < 4; i++){// do parallel computations
 ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
 ts[i].start();
 }
 for(int i=0; i < 4; i++) { // combine results
 ts[i].join(); // wait for helper to finish!
 ans += ts[i].ans;
 }
 return ans;
}

class SumThread extends java.lang.Thread {
 int lo, int hi, int[] arr; // arguments
 int ans = 0; // result
 SumThread(int[] a, int l, int h) { … }
 public void run(){ … } // override
}

13/11/15

14

Join	(not	the	most	descrip/ve	word)	
  The	Thread	class	defines	various	methods	you	could	not	
implement	on	your	own	
o  For	example:	start,	which	calls	run	in	a	new	thread	

  The	join	method	is	valuable	for	coordina/ng	this	kind	of	
computa/on	
o  Caller	blocks	un/l/unless	the	receiver	is	done	execu/ng	(meaning	the	

call	to	run	returns)	
o  Else	we	would	have	a	race	condi/on	on	ts[i].ans

  This	style	of	parallel	programming	is	called	“fork/join”	

  Java	detail:	code	has	1	compile	error	because	join	may	
throw	java.lang.InterruptedException
o  In	basic	parallel	code,	should	be	fine	to	catch-and-exit	

Shared	memory?	
  Fork-join	programs	(thankfully)	do	not	require	much	
focus	on	sharing	memory	among	threads	

  But	in	languages	like	Java,	there	is	memory	being	
shared.	In	our	example:	
o  lo,	hi,	arr	fields	wriyen	by	“main”	thread,	read	by	helper	
thread	

o  ans	field	wriyen	by	helper	thread,	read	by	“main”	thread	

  When	using	shared	memory,	you	must	avoid	race	
condi/ons	
o  While	studying	parallelism,	we	will	s/ck	with	join
o  With	concurrency,	we	will	learn	other	ways	to	synchronize	

13/11/15

15

A	beyer	approach	
Several	reasons	why	this	is	a	poor	parallel	algorithm	
	

1.  Want	code	to	be	reusable	and	efficient	across	plazorms	
o  “Forward-portable”	as	core	count	grows	
o  So	at	the	very	least,	parameterize	by	the	number	of	threads	

	
int sum(int[] arr, int numTs){
 int ans = 0;
 SumThread[] ts = new SumThread[numTs];
 for(int i=0; i < numTs; i++){
 ts[i] = new SumThread(arr,(i*arr.length)/numTs,
 ((i+1)*arr.length)/numTs);
 ts[i].start();
 }
 for(int i=0; i < numTs; i++) {
 ts[i].join();
 ans += ts[i].ans;
 }
 return ans;
}

A	Beyer	Approach	
2.  Want	to	use	(only)	processors	“available	to	you	now”	

o  Not	used	by	other	programs	or	threads	in	your	program	
ü  Maybe	caller	is	also	using	parallelism	
ü  Available	cores	can	change	even	while	your	threads	run	

o  If	you	have	3	processors	available	and	using	3	threads	would	take	/me	X,	
then	crea/ng	4	threads	would	take	/me	1.5X
ü  Example:	12	units	of	work,	3	processors		

o  Work	divided	into	3	parts	will	take	4	units	of	/me	
o  Work	divided	into	4	parts	will	take	3*2	units	of	/me	

	

// numThreads == numProcessors is bad
// if some are needed for other things
int sum(int[] arr, int numTs){
 …
}

13/11/15

16

A	Beyer	Approach	
3. 	Though	unlikely	for	sum,	in	general	subproblems	

may	take	significantly	different	amounts	of	/me	

o  Example:	Apply	method	f	to	every	array	element,	but	
maybe	f	is	much	slower	for	some	data	items	
ü  Example:	Is	a	large	integer	prime?	

o  If	we	create	4	threads	and	all	the	slow	data	is	processed	
by	1	of	them,	we	won’t	get	nearly	a	4x	speedup	
ü  Example	of	a	load	imbalance	

	

A	Beyer	Approach	
The	counterintui/ve	(?)	solu/on	to	all	these	problems	is	to	use	

lots	of	threads,	far	more	than	the	number	of	processors	
o  But	this	will	require	changing	our	algorithm	
o  And	for	constant-factor	reasons,	abandoning	Java’s	threads	

	

											ans0 ans1 … ansN
 ans

1.  Forward-portable:	Lots	of	helpers	each	doing	a	small	piece	
2.  Processors	available:	Hand	out	“work	chunks”	as	you	go	

•  If	3	processors	available	and	have	100	threads,	then	ignoring	
constant-factor	overheads,	extra	/me	is	<	3%	

3.  Load	imbalance:	No	problem	if	slow	thread	scheduled	early	enough	
•  Varia/on	probably	small	anyway	if	pieces	of	work	are	small	

	

13/11/15

17

Naïve	algorithm	is	poor	
Suppose	we	create	1	thread	to	process	every	1000	elements	

	
int sum(int[] arr){
 …
 int numThreads = arr.length / 1000;
 SumThread[] ts = new SumThread[numThreads];
 …
}

Then	combining	results	will	have	arr.length / 1000 	addi/ons		
•  Linear	in	size	of	array	(with	constant	factor	1/1000)	
•  Previously	we	had	only	4	pieces	(constant	in	size	of	array)	

In	the	extreme,	if	we	create	1	thread	for	every	1	element,	the	loop	to	
combine	results	has	length-of-array	itera/ons	

•  Just	like	the	original	sequen/al	algorithm	
	

A	beyer	idea	

This	is	straighzorward	to	implement	using	divide-and-conquer	
o  Parallelism	for	the	recursive	calls	

+	 +	 +	 +	 +	 +	 +	 +	

+	 +	 +	 +	

+	 +	
+	

13/11/15

18

Divide-and-conquer	to	the	rescue!	

The	key	is	to	do	the	result-combining	in	parallel	as	well	
o  And	using	recursive	divide-and-conquer	makes	this	natural	
o  Easier	to	write	and	more	efficient	asympto/cally!	

class SumThread extends java.lang.Thread {
 int lo; int hi; int[] arr; // arguments
 int ans = 0; // result
 SumThread(int[] a, int l, int h) { … }
 public void run(){ // override
 if(hi – lo < SEQUENTIAL_CUTOFF)
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 else {
 SumThread left = new SumThread(arr,lo,(hi+lo)/2);
 SumThread right= new SumThread(arr,(hi+lo)/2,hi);
 left.start();
 right.start();
 left.join(); // don’t move this up a line – why?
 right.join();
 ans = left.ans + right.ans;
 }
 }
}
int sum(int[] arr){
 SumThread t = new SumThread(arr,0,arr.length);
 t.run();
 return t.ans;
}

Divide-and-conquer	really	works	
  The	key	is	divide-and-conquer	parallelizes	the	result-combining	

o  If	you	have	enough	processors,	total	/me	is	height	of	the	tree:	O(log	
n)	(op/mal,	exponen/ally	faster	than	sequen/al	O(n))	

o  Next	lecture:	study	reality	of	P	<<	n	processors	

  Will	write	all	our	parallel	algorithms	in	this	style	
o  But	using	a	special	library	engineered	for	this	style	

ü Takes	care	of	scheduling	the	computa/on	well	
o  OMen	relies	on	opera/ons	being	associa/ve	(like	+)	

+	 +	 +	 +	 +	 +	 +	 +	

+	 +	 +	 +	

+	 +	
+	

13/11/15

19

Being	realis/c	
  In	theory,	you	can	divide	down	to	single	elements,	
do	all	your	result-combining	in	parallel	and	get	
op/mal	speedup	
o  Total	/me	O(n/numProcessors		+	log	n)	

  In	prac/ce,	crea/ng	all	those	threads	and	
communica/ng	swamps	the	savings,	so:	
o  Use	a	sequen,al	cutoff,	typically	around	500-1000	

ü  Eliminates	almost	all	the	recursive	thread	crea/on	(boyom	
levels	of	tree)	

ü  Exactly	like	quicksort	switching	to	inser/on	sort	for	small	
subproblems,	but	more	important	here	

o  Do	not	create	two	recursive	threads;	create	one	and	do	the	
other	“yourself”	
ü  Cuts	the	number	of	threads	created	by	another	2x	

Half	the	threads	

  If	a	language	had	built-in	support	for	fork-join	parallelism,								
we	would	expect	this	hand-op/miza/on	to	be	unnecessary	

  But	the	library	we	are	using	expects	you	to	do	it	yourself	
o  And	the	difference	is	surprisingly	substan/al	

  Again,	no	difference	in	theory	

// wasteful: don’t
SumThread left = …
SumThread right = …
left.start();
right.start();
left.join();
right.join();
ans=left.ans+right.ans;

// better: do
SumThread left = …
SumThread right = …
// order of next 4 lines
// essential – why?
left.start();
right.run();
left.join();
ans=left.ans+right.ans;

13/11/15

20

Fewer	threads	pictorially	

+	
5	

+	
3	

+	
6	

+	
2	

+	
7	

+	
4	

+	
8	

+	
1	+	

3	
+	
2	

+	
4	

+	
1	

+	
2	

+	
1	+

1	

2	new	
threads	
at	each	step	
(and	only	leaves	
do	much	work)	

1	new	
thread	
at	each	step	

+	
8	

+	
9	

+	
10	

+	
11	

		+	
12	

+	
13	

		+	
14	

+	
15	+	

4	
+	
5	

+	
6	

+	
7	

+	
2	

+	
3	+

1	

That	library,	finally	
  Even	with	all	this	care,	Java’s	threads	are	too	“heavyweight”	

o  Constant	factors,	especially	space	overhead	
o  Crea/ng	20,000	Java	threads	just	a	bad	idea	L	

  The	ForkJoin	Framework	is	designed	to	meet	the	needs	of	
divide-and-conquer	fork-join	parallelism	
o  In	the	Java	7	standard	libraries	

ü (Also	available	for	Java	6	as	a	downloaded	.jar file)	
o  Sec/on	will	focus	on	pragma/cs/logis/cs	
o  Similar	libraries	available	for	other	languages		

ü C/C++:	Cilk	(inventors),	Intel’s	Thread	Building	Blocks	
ü C#:	Task	Parallel	Library	
ü …	

o  Library’s	implementa/on	is	a	fascina/ng	but	advanced	topic	

13/11/15

21

Different	terms,	same	basic	idea	

To	use	the	ForkJoin	Framework:	
  A	liyle	standard	set-up	code	(e.g.,	create	a	ForkJoinPool)	

Don’t	subclass	Thread	 					 			Do	subclass	
RecursiveTask<V>

Don’t	override	run 					 			Do	override	compute
Do	not	use	an	ans	field 					 			Do	return	a	V	from	

compute
Don’t	call	start 					 			Do	call	fork
Don’t	just	call	join 	 			Do	call	join	which	returns	answer	
Don’t	call	run	to	hand-op/mize	 			Do	call	compute	to	hand-

op/mize	
Don’t	have	a	topmost	call	to	run Do	create	a	pool	and	call	

invoke
	

	

Example:	final	version	(missing	
imports)	

class SumArray extends RecursiveTask<Integer> {
 int lo; int hi; int[] arr; // arguments
 SumArray(int[] a, int l, int h) { … }
 protected Integer compute(){// return answer
 if(hi – lo < SEQUENTIAL_CUTOFF) {
 int ans = 0;
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 return ans;
 } else {
 SumArray left = new SumArray(arr,lo,(hi+lo)/2);
 SumArray right= new SumArray(arr,(hi+lo)/2,hi);
 left.fork();
 int rightAns = right.compute();
 int leftAns = left.join();
 return leftAns + rightAns;
 }
 }
}
static final ForkJoinPool fjPool = new ForkJoinPool();
int sum(int[] arr){
 return fjPool.invoke(new SumArray(arr,0,arr.length));
}

13/11/15

22

Geing	good	results	in	prac/ce	
  Sequen/al	threshold	

o  Library	documenta/on	recommends	doing	approximately		
100-5000	basic	opera/ons	in	each	“piece”	of	your	algorithm	

  Library	needs	to	“warm	up”	
o  May	see	slow	results	before	the	Java	virtual	machine	re-op/mizes	

the	library	internals		
o  Put	your	computa/ons	in	a	loop	to	see	the	“long-term	benefit”	

  Wait	un/l	your	computer	has	more	processors	J	
o  Seriously,	overhead	may	dominate	at	4	processors,	but	parallel	

programming	is	likely	to	become	much	more	important	

  Beware	memory-hierarchy	issues		
o  Won’t	focus	on	this,	but	oMen	crucial	for	parallel	performance	

