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ABSTRACT
Nowadays we know how to effectively compress most ba-
sic components of any modern search engine, such as, the
graphs arising from the Web structure and/or its usage, the
posting lists, and the dictionary of terms. But we are not
aware of any study which has deeply addressed the issue of
compressing the raw Web pages. Many Web applications use
simple compression algorithms— e.g. gzip, or word-based
Move-to-Front or Huffman coders— and conclude that, even
compressed, raw data take more space than Inverted Lists.

In this paper we investigate two typical scenarios of use of
data compression for large Web collections. In the first sce-
nario, the compressed pages are stored on disk and we only
need to support the fast scanning of large parts of the com-
pressed collection (such as for map-reduce paradigms). In
the second scenario, we consider the fast access to individual
pages of the compressed collection that is distributed among
the RAMs of many PCs (such as for search engines and min-
ers). For the first scenario, we provide a thorough experi-
mental comparison among state-of-the-art compressors thus
indicating pros and cons of the available solutions. For the
second scenario, we compare compressed-storage solutions
with the new technology of compressed self-indexes [45].

Our results show that Web pages are more compressible
than expected and, consequently, that some common beliefs
in this area should be reconsidered. Our results are novel
for the large spectrum of tested approaches and the size
of datasets, and provide a threefold contribution: a non-
trivial baseline for designing new compressed-storage solu-
tions, a guide for software developers faced with Web-page
storage, and a natural complement to the recent figures on
InvertedList-compression achieved by [57, 58].

Categories and Subject Descriptors
E.4 [Coding and Information Theory]: Data com-

∗Supported in part by a Yahoo! Research grant and by
MIUR-FIRB Linguistica 2006.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’10, February 4–6, 2010, New York City, New York, USA.
Copyright 2010 ACM 978-1-60558-889-6/10/02 ...$10.00.

paction and compression; H.3 [Information Storage and
Retrieval]: Content Analysis and Indexing, Information
Storage, Information Search and Retrieval.

General Terms
Algorithms, Experimentation.

1. INTRODUCTION
The textual content of the Web is growing at a such stag-

gering rate that compressing it has become mandatory. In
fact, although ongoing advancements in technology lead to
ever increasing storage capacities, the reduction of storage
usage can still provide rich dividends because of its impact
on the number of machines/disks required for a given compu-
tation (hence the cost of their maintenance and their energy
consumption!), on the amount of data that can be cached
in the faster memory levels closer to the CPU (i.e. DRAMs
and L1/L2 caches), etc.. These issues are well known to
researchers and developers, and have motivated the investi-
gation of compressed formats for various data types— e.g.
sequences, trees, graphs, etc.— which are space succinct
and support fast random access and searches over the com-
pressed data. The net result is a rich literature of tech-
niques that may be used to build efficient indexing and min-
ing tools for large-scale applications which deal with the
many facets of Web data: content (text and multimedia in
general), structure (links) and usage (navigation and query
logs). Nowadays we know how to effectively compress most
basic components of a search engines, such as, the graphs
arising from the Web structure or its usage (see [10, 22, 16]
and refs therein), the posting lists (see [18, 59, 58, 57] and
refs therein) and the dictionary of terms (see [7, 35, 56]).

However, most Web IR tools also need to store the html
pages for retrieval, mining, and post-processing tasks. As
an example, any modern search engine—like Google, Ya-
hoo!, Live/bing, Ask—offers two additional precious func-
tions which need the original collection of indexed Web
pages: snippet retrieval (showing the context of a user query
within the result pages), and cached-link (showing the page
as it was crawled by the search engine). The challenge
in storing the original html-data is that its size is by far
larger than the digested information indexed by the above
(compression) techniques. Just to have an idea, the internal
memory of a commodity PC may host a graph of few mil-
lion nodes (pages) and billion edges (hyper-links) [10, 22],
as well as it may store the search engine built on the textual
content of those (few millions) pages [58]. The same seems



to be hardly true for the storage of the original html-pages,
because their overall size can reach hundreds of Gigabytes!

Despite the massive literature produced in this field (see
Sect. 1.1), we are not aware of any experimental study which
has deeply addressed the issue of compressing Terabytes of
Web-data by comparing all best known approaches and by
giving full details about them. Clearly, this is a key con-
cern if one wants to choose in a principled way his/her own
compressed-storage solution which best fits the specialties
of the (Web) application that will use it.

Known results for the compression of Web collections are
scattered over multiple papers which either do not consider
large datasets [29, 41], or refer to old compressors (e.g. [24,
46, 40, 44]), or do not provide the fine details of the proposed
compressor (e.g. [20]). We think that it is properly for these
reasons that many real Web applications use relatively sim-
ple compression algorithms. For example, Lucene [23] and
MG4J [11] use gzip on individual pages; the MG system [56]
uses a word-based Huffman coder; [54] uses Move-to-Front

to assign (sub-optimal) codewords to input words. In all
these cases the compression performance is far from what
we could achieve with state-of-the-art compressors. In fact,
it is well known that using gzip on each individual page
does not capture the repetitiveness among different pages,
and that Huffman and Move-to-Front do not take advantage
of the fact that each word is often accurately predicted by
the immediately preceding words. Nevertheless these sim-
ple compressors are the typical choice for Web applications
because they “fast” access single pages and achieve “reason-
able” compression ratios. However, apart from some folklore
results (such as 20% ratio for gzip on single pages, or 10%
for Google’s approach [20]), no complete and fully detailed
experimental study has yet investigated the compressed stor-
age and retrieval of very large Web collections.

Let us first review the literature of this field in order to
address then this issue in a more principled way.

1.1 Problem definition and related results
We consider the problem of compressing a large collection

of html-pages. We assume that the pages in the Web col-
lection are joined into a single long file which is then com-
pressed using a lossless data compression algorithm. This
approach offers the potential of detecting and exploiting re-
dundancy both within and across pages. Note that how
much inter-page redundancy can be detected and exploited
by a compressor depends on its ability to “look back” at the
previously seen data. However, such ability has a cost in
terms of memory usage and running time.

The classic tools gzip and bzip have been designed to have
a small memory footprint. For this reason they look at the
input file in small blocks (less than 1MB) and compress each
block separately. These tools can thus detect redundancy
only if it is relatively close within or among pages. More
recent and sophisticated compressors, like ppmd [49, 56]
and the family of bwt-based compressors [29, 56], have been
designed to use up to a few hundreds MBs of memory and
thus have the ability to take advantage of repetitions that
occur at much longer distances. However, since we are
dealing with very large collections it is clear that even these
tools cannot detect and exploit all their redundancy. These
are known problems [36], and for their solution we have
nowadays the following three approaches.

Use of a “global” compressor. A natural approach is to

modify an existing compressor giving it unlimited resources
so that it can work, and search for regularities, on arbitrarily
large files. We tested this approach by using an algorithm
based on the Burrows-Wheeler Transform (shortly bwt [56]),
and applied it on the whole collection . This algorithm is
able to compress the collection up to its kth order entropy,
for any k ≥ 0 [30]. However, because of the collection sheer
size, the bwt cannot be computed entirely in internal mem-
ory. We therefore resorted a disk-based bwt-construction
algorithm [28] and used it to compress one of our test col-
lections (namely UK50 of 50GB), achieving the impressive
compression ratio of 4.07%. Unfortunately the computa-
tion took roughly 400 hours of CPU time, so this approach
is certainly not practical but it will be used in Sect. 2.1 to
provide a reasonable estimate of the compressibility of UK50
via modern compressors with unbounded memory.

Delta compression. This technique was proposed to ef-
ficiently encode a given target file with respect to one, or
more, reference files. This can be viewed as compressing
only the difference between the two files. This scheme is
pretty natural in the context of (low bandwidth) remote
file synchronization and/or in (HTML) caching/proxy sce-
nario [51, 53]. When used on file collections the problem
boils down to find the best pairwise encodings, i.e. to find a
maximum branching of a complete directed graph in which
the nodes are the files and the edge-weights are the bene-
fit of compressing the target vertex wrt the source vertex.
Over large collections this approach is unaffordable because
of its quadratic complexity. Therefore heuristic approaches
for graph pruning have been proposed to scale it to larger
data sizes [46, 27, 24]. Overall, these heuristics are still very
sophisticated, depend on many difficult-to-trade parameters,
and eventually achieve the negligible improvement of 10%
wrt bzip (see Tables 1-3 in [24]) or 20% wrt gzip (see Table 6
in [46]). Conversely, the compressors we consider in this pa-
per achieve an improvement of up to 75% wrt bzip and 86%
wrt gzip. Furthermore, since in this paper we test lzma, a
gzip-like compressor able to detect redundancies far back in
the input file, we are implicitly using a sort of delta-encoding
with a very large number of reference files (shown in [19] to
achieve significant improvements).

Recent work (see e.g. [40] and refs therein) has improved
the delta-encoding scheme over long files by using sophis-
ticated techniques— like chunk-level duplicate [44, 52, 53]
or resemblance detection [42, 14]. The main idea consists
of partitioning the input file into chunks, which are either
fixed-size blocks (identified with possibly rolling checksums
as in rsync), or content-defined variable-sized blocks (see
e.g. SHA hashes or [48, 53]). These chunks are then com-
pared to logically remove the duplicate chunks, whereas the
near-duplicate chunks are delta encoded. The efficient iden-
tification of (near-)duplicate chunks is done via sophisti-
cate (super-)fingerprinting techniques [42, 14]. Remaining
chunks are compressed by any known data compressor. Rebl
[40] is one of the best systems to date that implements these
ideas: however, its performance depends on many parame-
ters and experiments on a Web collection showed that it is
worse than the combination of tar + gzip (Table 2 in [40]).

Another related tool is the one described in [20] where the
Bentley-McIlroy algorithm [6] is used to find, and squeeze
out, long repeated substrings at long distances. Then, a
variant of gzip is used to compress the remaining data tak-
ing advantage of “local” similarities (this is the same idea



underlying the Vcdiff standard1). The authors of [20] use
this simple, but effective, approach to store large Web col-
lections sorted by URL-addresses, and report the remarkable
compression ratio of 10% (cfr. 20% of gzip). Fine details
about this algorithm are missing in [20], their Web collection
is not accessible, and no comparison with other compressors
is provided at all. In the next sections, we propose an imple-
mentation of this promising approach and compare it with
all best known compressors over our two Web collections:
WebUK and GOV2 (see Sect. 2).

Page reordering. Instead of trying to capture repetitions
which are far away in the input, we can rearrange the Web
pages so that similar ones end up close one another in the in-
put file. The most well known re-ordering heuristics for Web
pages are the url-based one and the similarity-based one. The
former has been applied successfully to the compression of
Posting Lists [50, 58], Web Graphs [10] and, recently, also
to the compressibility of Web-page collections [20]. It ex-
ploits the fact that pages within the same domain typically
share a lot of intra-links, content, and possibly the same
page-template. The second approach is IR-inspired and it
is used by many Web-clustering tools. The main idea is to
compute a page clustering based on various features: syn-
tactic [15, 38, 46] (e.g. shingles and their derivatives [42,
14]), query-log [47], Web-link [43], or TF-IDF [56]. In all
cases the goal is to detect pages which are similar enough
that it is worth to compress them together. Although some
progress has been done to speed up the clustering process,
see e.g. [5], the url-based approach is so simple, time effi-
cient and compression effective, that it is a natural choice in
the Web-compression setting. Our experiments will quantify
and validate this common belief, and they will pave the way
for the investigation of other approaches (such as [9, 21]).

1.2 Our contribution
The main goal of this paper is to consider two main scenar-

ios for the compressed data-storage of large Web-collections.
In the first scenario the compressed pages are stored on
disk and we only need to support the fast scanning of large
parts of the compressed collection (such as for map-reduce
paradigms [26, 1]). In the second scenario we assume that we
also need to fast access individual pages of the compressed
collection in a random way (such as for Web search engines
and miners), so we assume that the compressed collection is
distributed among the RAMs of (possibly) many PCs.

In order to address both issues in a principled way we
proceed in this way. For the first scenario we test the ef-
fectiveness of all state-of-the-art compressors over two Web
collections: one drawn from the UK domain in 2006-07 [8]
(of about 2.1TB) and the classic GOV2 collection (of about
440GB). We take into account various issues such as pa-
rameter settings, working memory, html vs txt compression,
etc., and we investigate the impact on compressibility per-
formance of the re-ordering of the Web pages— i.e. random,
crawl-based, url-based, and similarity-based. Compression
(ratio/speed) figures are reported in Sect. 2: the overall con-
clusion is that UK-collection can be compressed to less than
3% of its original size and this corresponds to roughly one
seventh of the space used by gzip (a figure of 3.84% holds for
GOV2). This significant space reduction (without a signifi-
cant decompression slowdown wrt gzip) cannot be neglected

1See http://code.google.com/p/open-vcdiff/

given its impact on the energy/maintenance costs required
for a Web-storage system [2, 4].

As for InvertedList [58] and graph-compression [10], we
will show that url-based page reordering is effective and
may reduce the compression ratio of a factor up to 2.7, espe-
cially for small working memories (i.e. 10MB). Conversely,
similarity-based orderings are not advantageous in terms of
time and compression performance (as observed by [50] for
InvertedList-compression). Algorithmically we can conclude
that, whenever the sequential scanning of large portions of
Web data is requested, dictionary-based compressors (like
lzma and other variations) seem unbeatable because of their
cache-aware access to the internal memory of the PC, thus
confirming the choice made in [20].

As a cross-check for our UK-results we tested our best
compressors over the GOV2 collection, and found that GOV2
is less compressible than UK-full. More importantly, we
compare the compressed storage of InvertedLists built on
GOV2 vs the compressed storage of its raw pages, draw-
ing some surprising conclusions. The most interesting one
is that the storage of term-positions in ILs, which is use-
ful to implement phrase-queries or proximity-aware ranking
functions (see e.g. [57]), is larger than the space taken by
the compressed raw pages! This suggests the need of im-
proved integer-compression techniques for IL-postings which
use more information in addition to term frequencies and
their distributions within individual documents.

For the second scenario (for which we also need fast access
to compressed data), in addition to the data compression
tools, we consider the compressed self-indexes which are a
recent algorithmic technology supporting fast searches and
random accesses over highly compressed data (see [45] and
refs therein). The key idea underlying these indexes is to
combine bwt-compressed files with a sublinear amount of ad-
ditional information that allows to support fast searches and
accesses over the compressed data. These relevant theoreti-
cal achievements have been validated by several experimen-
tal results (see [31] and refs therein) which, however, have
been confined to small data collections (up to 200MB), and
involved only well-formed textual datasets (e.g. Wikipedia
and DBLP) that are very distant from the noisy but possibly
highly repetitive data available on the Web. We compared
(the fast) dictionary-based compressors, built over small
blocks of pages (less than 1MB), against the best compressed
(self-)index to date (namely CSA [31]) and found that the
combination between the bmi-preprocessor [6] and gzip, sug-
gested in [20], offers the best space/time trade-off. Com-
pressed self-indexes turn to be not yet competitive on Web
collections, but new engineering and theoretical results [12,
13] could change this scenario. In Sect. 3 we fully comment
on this issue and show that there are other contexts, such
as the storage of emails or logs, in which the records to be
individually extracted are shorter (typically few KBs in size,
vs 20KB of Web pages) and thus the algorithmic features of
compressed self-indexes could turn them to be competitive.

We believe that our wide set of experiments provides
a thorough comparison among state-of-the-art compressors
and compressed self-indexes indicating pros/cons of ad-
vanced solutions for disk-based and memory-based com-
pressed storage of large Web-collections. These contribu-
tions are novel in terms of the large spectrum of tested ap-
proaches and the size of processed datasets, and suggest a
non-trivial baseline for estimating the performance of newly



designed compressed-storage solutions for Web collections.
In addition, our results constitute a natural complement to
the recent figures drawn on Inverted-lists compression by
[58, 57] (see next sections for further comments). Overall,
we can conclude that Web collections are more compressible
than expected, and it has become necessary to reconsider
whether the choice of compressing them by using simple
tools, such as gzip, is the best one: before implementing
your next Web-application, consider also the open-source
tools lzma, bmi and CSA.

2. COMPRESSION FOR DISK STORAGE
In this section we describe our experimental study for

the first scenario depicted in the Introduction, namely the
one in which the compressed pages are stored on disk and
we only need to support the scanning/decoding of large
parts of the compressed collection (such as for map-reduce
paradigms [26, 1]). We thus assume that the collection is
compressed once and decompressed many times, so we will
favor algorithms with a higher decompression speed. In this
scenario we will address three main questions: How much
compressible is the textual content of the Web? Which are
the best algorithms for compressing a large collection of Web
pages and how much their performance depend on their pa-
rameters setting? How the ordering of the Web pages does
impact on their compression ratio?

Dataset. For our experiments we used a Web collection
crawled from the UK-domain in 2006-07 [8] consisting of
about 127 million pages for a total of 2.1TB.2 We call this
collection UK-full. In order to test the largest possible set of
compressors and compression options, we extracted a sam-
ple of this collection consisting of the initial 50GB (about 3
million pages), this is called UK50.3 We also tested our best
compressors over the classic GOV2 collection, consisting of
about 440GB and 25 million pages.

We run our experiments on six dedicated Linux machines;
the machine used for the timings is a dual-P4 at 3GHz, with
1MB cache and 2GB RAM.

Algorithms. Our experimental results refer to the follow-
ing suite of compressors:

• gzip and bzip. The classic compression tools with op-
tion -9 for maximum compression.

• gzip-sp. The algorithm gzip (again with option -9) ap-
plied to the single pages of the collection.

• lzma4. This is a dictionary-based algorithm, like gzip,
that can use a very large dictionary (up to 4GB) and
compactly stores pointers to previous strings using a
Markov-chain range-encoder. We tested the compres-
sion level“Ultra”(option -mx=9) with a dictionary size
of 128MB (option -md=128m).

• bzip*. This algorithm is analogous to bzip except that
it operates on the whole input instead of splitting it in
blocks of size 900KB [29]. bzip* computes the bwt of

2We merged the files law0-7 of [8], discarding the WARC
header and the pages whose gziped-file was corrupted.
3We repeated some experiments on a sample of 300GB,
without obtaining significant differences in compression
time/ratio performance. Even using the smaller UK50 col-
lection our experiments took more than 8 months!
4Available from http://www.7-zip.org/

its entire input and compresses it by applying Move-
to-Front, Rle, and Multi-table Huffman coding. This
algorithm is called MtfRleMth in [29]. We tested also
other bwt-based algorithms from [29]: bzip* was the
one with the best compression ratio/speed tradeoff.

• ppmd. This is the ppm encoder from [49], in which
we used the maximum-compression setting: 16th-order
model with cut-off and 256MB of working memory (op-
tions -r1 -o16 -m256).

• bmi+gzip, bmi+lzma. These compressors combine
Bentley-McIlroy’s algorithm [6] (shortly, bmi), for find-
ing long repeated substrings at large distances, with
gzip and lzma. We run the bmi tool5 with a chunk
of 50 chars, which was the setting providing the best
compression ratio on our datasets.

We point out that we tested many other compressors
and compression options in addition to the ones reported
above, but we obtained worse performance or slight varia-
tions that do not justify their reporting here. For exam-
ple we tested the powerful Paq8 and Durilca compressors,
but we found that they achieve very small improvements in
the compression ratio, at the prize of an unacceptably slow
compression/decompression speed (in accordance with the
results reported in [41]). We also tested the bit-optimal LZ-
compressor, recently proposed in [34], but its compression
ratio resulted slightly worse than lzma, the main reason be-
ing that the current implementation of this compressor uses
a poor encoder for the LZ-phrases. Hence improvement is
expected on this powerful tool by engineering its encoding
functions, this is left as a future research issue.

We also tested some compressors based on the differencing
approach (e.g. the Vcdiff standard): open-vcdiff6, xdelta7,
and vcodex 8. Since these are differencing algorithms which
encode an input (target) file given a (reference) dictionary
file, we used them by setting the dictionary to be empty,
and by enabling the option to copy from the input file itself.
Overall, we experienced on UK50 a compression ratio and a
(de)compression speed which was inferior to bmi+gzip.

A comment is in order on bmi+gzip. It tries to mimic the
approach suggested in [20] where the authors report that
using bmi and a variant of gzip they were able to reach the
impressive decompression speed of 400MB-1GB/secs. Our
bmi+gzip algorithm is not as fast; we do not know if this
depends on our machine (given that the classic gzip is also
significantly slower than those figures) or on the specialties
of their decompressor: in any case, the missing details of [20]
do not allow us to go deeper in this issue. We also tested
the rzip compressor9 (version 2.1, option -9 for maximum
compression), but we found it to be inferior than our bmi-
based algorithms, probably because ours use larger windows.
So we tested also the combination bmi + bzip* (bzip with
unbounded window), but it resulted worse than bmi+lzma
both in decompression speed and compression ratio.

Overall, our selection of algorithms provides a significant
sample of the options nowadays available for the compression
of Web collections: we have the top performers for the three

5Available from www.cs.dartmouth.edu/∼doug/source.html
6Available from http://code.google.com/p/open-vcdiff/.
7Available from http://code.google.com/p/xdelta/
8Thanks to P. Vo for his code
9Available from http://rzip.samba.org.



Compressor c/ratio c/speed d/speed

gzip-sp 21.75 9.70 34.08
gzip 20.35 8.26 69.15
bzip 17.64 2.90 10.38

bzip*-10 11.53 1.86 4.36
bzip*-50 7.30 1.45 3.57
bzip*-100 6.30 1.21 3.31
bzip*-200 5.62 1.03 2.95

ppmd-10 9.83 2.99 2.60
ppmd-50 7.21 1.79 1.67
ppmd-100 6.82 1.58 1.46
ppmd-200 6.65 1.42 1.35
ppmd-400 6.58 1.42 1.35
ppmd-1500 6.57 1.41 1.29

lzma-50 6.31 1.29 52.58
lzma-100 5.64 1.27 56.11
lzma-200 5.22 1.22 56.53
lzma-400 4.96 1.19 51.94
lzma-1500 4.85 1.18 38.36

bmi+gzip-50 8.62 4.01 23.41
bmi+gzip-400 7.14 2.62 23.30
bmi+lzma-50 6.31 1.28 19.05
bmi+lzma-400 4.91 1.63 19.31

Table 1: Compression of the UK50 collection. Com-
pression ratios are expressed as percentages with
respect to the original size. Compression and de-
compression speed are in MBs per second. Times
include the cost of reading/writing from/to disk.

families of compressors, namely dictionary-based (gzip, lzma
and their bmi-combinations), PPM-based (ppmd) and bwt-
based (bzip and bzip*).

Since many of the compression algorithms are not able to
handle GB-size files, we tested them by splitting the input in
blocks of different sizes. Therefore, in the following, we will
use the notation bzip*-N , ppmd-N , etc., to denote that the
input is split into blocks of (about) N MB each (individual
pages are not split), which are then compressed separately
by the given compressor. The maximum value of N was
chosen to give each compressor roughly the same amount of
working memory.

2.1 Crawl-based page ordering
The collection UK50 consists of a single file of about 50GB

in which pages have been appended by UbiCrawler [8] during
its BFS-visit of the UK-domain, starting from a seed set of
hosts. As soon as a new host is met, it is entirely BFS-
visited (possibly with bounds on the depth reached or on
the overall number of pages). For this reason we say that
pages are in crawl-based ordering. Compression results for
UK50 are summarized in Table 1.

We see that gzip-sp achieves about 20% compression, thus
confirming the folklore figure (mentioned at the beginning of
the paper) and showing that there is a significant intra-page
repetitiveness. gzip and bzip are only slightly better than
gzip-sp: hence, the inter-page repetitiveness is negligible at
small distances. Our choice of gzip as a reference compres-
sor is motivated by the fact that most open-source search
engines (like Lucene [23] and MG4J[8]) use the zlib library
which offers the same compression as gzip (note that Lucene
and MG4J do not have document compression as their main
objective). Hence, gzip ratios provide us with a simple, heav-
ily used, baseline for our following experiments.

Algorithms able to work on large blocks (10MB and more)
are significantly better than gzip and bzip. Blocks of 10MB
reduce the output size of gzip-sp by half; blocks of size
200MB or more get a saving of a factor from 3 to 4.5!
This proves that there is indeed also a significant inter-page
repetitiveness in the crawl-based order at medium distances
(which are within the capabilities of modern compressors).
In the next sections we will investigate to what extent the
inter-page repetitiveness is due to the page ordering. Here
we concentrate on the crawl-based page ordering. From Ta-
ble 1 we see that bzip* is better than ppmd for increasing
block sizes, both in terms of compression ratio and decom-
pression speed. This confirms on larger datasets the the-
oretical figures of [30]. However ppmd and bzip* are both
relatively slow: they are up to 6 times slower than gzip in
compression, and more than 30 times slower in decompres-
sion. It is particularly impressive the performance of the
dictionary-based compressor lzma, which is slightly better
than bzip* in compression ratio and speed, and it is sig-
nificantly better in decompression speed (up to 25 times).
Indeed it is almost as fast as gzip! Thus we have the first
important experimental result of this paper:

Dictionary-based compressors using sophisticated
phrase-encoders (like lzma) achieve a compression ra-
tio and a decompression speed which is superior to
the (theoretical) state-of-the-art compressors based on
bwt- or ppmd-approches.

This shows that dictionary-based compressors are very
competitive if well engineered in their phrase encoders, as
theoretically shown in [34]. At the same time, the appeal-
ing entropy-based results of [30] stress the need of further
engineering and research about bwt-based compressors.

As far as the preprocessor bmi is concerned, we notice
that it significantly improves the compression performance
of gzip, but not the one of lzma. Experiments show that bmi
alone reduces the input up to 19.31% of its original length,
suggesting that repetitions of chunks of 50-chars are surpris-
ingly frequent in UK50. Thus bmi+gzip achieves roughly the
compression ratio of bzip* and ppmd, but it is much faster
in decompression and much easier to code. Decompression
speed is actually much slower than the one claimed in [20]
(see our previous comments). Conversely, the combination
bmi+lzma seems not to pay off, because lzma already uses a
large window and dictionary.

bmi-preprocessing is an easy-to-code and effective com-
pression booster for gzip. Its current implementation
[6] is slow, but further tuning could probably lead it
to the performance claimed in [20].

At this point it is natural to ask how far we can get by
providing a compressor with unlimited memory resources, or
equivalently, how much repetitiveness does it exist at larger
and larger distances. Recall that applying the bwt to the en-
tire UK50 yields a compression ratio of 4.07% (see Sect. 1.1),
this is roughly 1% better than lzma’s performance. Hence
state-of-the-art compressors working over blocks of few hun-
dreds MB do a very good job by using reasonable time and
space resources; nonetheless, there is still some room for im-
proving their compression ratio.

Finally, we have tested the best compressors over the to-
tal UK-full collection by taking the largest block sizes that
can be dealt efficiently with our PC. Table 2 reports that



gzip bzip*-200 lzma-400 bmi+lzma-400
UK50 20.35 5.62 4.96 4.91
UK-full 17.51 3.62 3.06 2.83

UK50 txt 31.80 8.03 7.68 7.28
UK-full txt 25.97 6.36 5.63 5.37

Table 2: Testing the sample of 50GB and the full
UK-crawl, with or without the html-markup. Size
is given in GBs, and compression ratio in %. txt-
only collections are about 30% of the corresponding
html-ones.

the whole collection is more compressible than UK50 (about
2% better), reaching the impressive figure of 2.83%. Ta-
ble 2 also measures the influence of the html-structure of
the Web pages over their compressibility. This is interesting
because html-pages are needed by search engines to return
the cached-version of Web pages; whereas txt-only pages are
useful in the context of snippet retrieval or for some recently
proposed proximity-aware ranking functions (see [57] and
Sect. 3.1). Given that the txt-only collections are about
30% of the original ones, it is easy to calculate the com-
pression ratio obtained by bmi+lzma-400 over UK50 txt and
UK-full txt with respect to the total html-collections by di-
viding the figures reported in Table 2 by 3.3: so we get,
respectively, 2.21% and 1.63%. This means that the (com-
pressed) html-markup constitutes less than 40% of the total
compressed data.

The UK-full collection (html) can be compressed in
less than 3% of its original size, whereas its txt-only
version can be compressed up to 1.63%. Here, bmi
becomes an useful compression booster for lzma.

2.2 URL-based page ordering
Inspired by papers on compressing PostingLists [50, 58]

and WebGraphs [10], and following the approach proposed
in [20], we have permuted the (about) 3 million pages of
UK50 according to their url with the host-name reversed.
Results reported in Table 3 suggest three main considera-
tions: (1) compression ratios are impressive, better than the
collection-wide bwt (Sect. 1.1), and robust with respect to
the block size; (2) bzip* turns out to be surprisingly bet-
ter than lzma on small block sizes, but worse for larger
blocks; (3) in terms of speed/compression trade-off, lzma
is still the best choice. The effectiveness of the url-based
reordering strategy in bringing similar pages close one an-
other is confirmed by the fact that even using relatively small
blocks (10MB) we get the impressive compression ratio of
4.24% (bzip*). Interesting is also the increased decompres-
sion throughput of dictionary-based algorithms (i.e. lzma
and bmi-combinations), probably due to a reduction in the
number of phrases to be decoded (because of an increased
compression ratio).

The url-based ordering is fast to be computed, robust
over all compressors, and achieves over UK50 the result
of 3.78% with lzma-400.

We also tested the formation of variable-sized blocks
defined as groups of pages coming only from the same
host. With this blocking, bzip*-200 got less than 3.80%.
Hence we think that the so called Permuting-Partitioning-

Compressor c/ratio c/speed d/speed

ppmd-10 4.53 6.46 5.61
ppmd-400 4.28 3.02 4.03
bzip*-10 4.24 0.78 3.59
bzip*-200 3.82 0.48 2.71
lzma-10 4.25 1.94 60.65
lzma-100 3.86 1.79 66.32
lzma-200 3.80 1.78 68.90
lzma-400 3.78 1.76 71.46
bmi+gzip-10 5.32 2.81 24.96
bmi+lzma-10 4.26 2.12 21.17
bmi+gzip-200 5.02 2.36 25.23
bmi+lzma-200 3.83 1.85 22.03
bmi+lzma-400 3.79 1.76 21.56

Table 3: Compression of the UK50 collection when
URL-sorted. Compression and decompression speed
are given in MB per second.

Compressing paradigm investigated in [33] is worth of fur-
ther theoretical/experimental study (cfr [52]).

We finally observe that the impact of url-based ordering is
more significant for smaller blocks, reaching an improvement
of a factor 2.7 (bzip*-10), than on larger blocks (cfr Table 1).
So one might argue that the UK-collection has a quite for-
tunate ordering of the Web pages due to the BFS-strategy
of UbiCrawler [8]. To investigate this issue we have ran-
domly permuted the pages of UK50, and compressed them
via bzip*. It achieved a ratio between 9.14% (bzip*-100)
and 13.65% (bzip*-10). Since in the randomly permuted
file there is likely not much repetitiveness in the content of
nearby pages, we can estimate that this compression ratio
is mainly due to the html markup.

The best compressors on the randomly-permuted pages
of UK50 yet achieve a compression ratio of less than
10%, more than a factor 2 better than gzip.

2.3 Other page orderings
The next logical step is to consider other types of orderings

of the Web pages, namely the ones induced by their content.
Following a standard IR-practice [56], we have mapped the
(about) 3 million pages of UK50 to high-dimensional vectors,
considering three possible kinds of features for their terms–
bm25, tfidf, and bool (presence or not of a term).10 Then,
these high-dim points have been clustered via a distributed
k-means algorithm implemented over the Hadoop system
[1].11 We considered two values for k, namely k = 50 (coarse
clustering) and k = 500 (finer clustering). The larger value
of k ensures to fit every cluster into few blocks of 100MB, and
thus deploy the large compression windows of our compres-
sors. Finally, we have permuted the Web pages by taking
into account their cluster-ID, and in case of equality, their
url (host reversed). We found that bm25-features are better
than bool-features (both around 3.95% with bmi+lzma-400),
tfidf being the worst. The difference in performance is quite
small and worse than the result achievable with the url-based
ordering, but taking much longer time.

10We have one feature per (stemmed and alphanumeric) term
of a page. Stop words, too short terms (≤ 2 chars), and too
long terms (> 40 chars) are removed.

11We warmly thank Vassilis Plachouras for running the clus-
tering experiments on the Yahoo’s Hadoop system.



In Sect. 1.1 we commented about other approaches to
cluster-based compression, such as [46, 24]. Our analysis
and experiments subsume those approaches because they
deploy a shingle-based similarity measure among pages and
then apply an LSH-based clustering scheme [38]. The au-
thors of [46] admit the noisy behavior of their approach and
finally take shingle-size equal to 4 bytes/chars, saying that
larger shingles get similar (or worse) results. In our case we
have parsed the textual part of a page into words (of avg
length 5 ≥ shingle-length 4). Our k-means clustering is also
more flexible than the LSH-clustering suggested in [46] be-
cause we have properly set k in order to fit all pages of a
cluster into the internal memory of the PC, and thus com-
press all of them together.12 Our approach can be looked at
as a differencing-algorithm with a large number of source-
files, which is exactly what [46, 24] suggested as ”future re-
search” given that they used no more than 2 reference files
and argued that more than that would have induced a better
compression.

2.4 Some further comments
It is clear that our results are far to establish the ul-

timate compression for large Web collections. They have
simply shown what can be done by using state-of-the-art
compressors. Nevertheless, the figures reported in this pa-
per show that the easy-to-code approach using gzip which
is at the base of many open-source search engines and data
miners (such as Lucene and MG4J) may be more than seven
times worse in compression ratio than what state-of-the-
art solutions can achieve. Recent open source compressors
like lzma cannot be neglected: they are well tested and
engineered, and they have better performance than bwt-
based and ppmd-based compressors that were considered
the best ones in practice. This suggests that further study
is needed for dictionary-based compressors about the com-
bination between bit-optimal parsers (like [34]) and better
phrase-encoding strategies (like the ones used in lzma).

Our results validate the choices made in [20] (see also Sect.
3). Our current implementation of bmi+gzip seems to be
slower but more compression effective than what they report
in their paper (10% on an unknown Web-collection of few
TB). Given that [20] does not report the details of their
implementation, and their dataset and code are unavailable,
we cannot draw any conclusion. On our dataset the more
sophisticated lzma resulted more effective and efficient than
bmi+gzip, thus turning to be a valid sparring partner for the
design of Web-page storage systems (see Sect. 3).

We notice that our figures can be taken as a non-trivial
baseline for estimating the performance of new compressors
which will be proposed in the future. These compressors
could either aim at better encodings for LZ-phrases (see
e.g. [34], and lzma) and/or propose novel clustering ap-
proaches for the pages based on other features– such as
query-log [47], Web-links [43, 9, 21], html-structure [39], or
still the raw content by using more sophisticated fingerprint-
ing and content-based chunking methods (see e.g. [53, 48,
37]). It goes without saying that the trade-off between com-

12We have also tried an LSH-ordering, derived by taking the
projections onto a random line in k-dim of the points having
as coordinates the distances of the pages from the pivots of
the k clusters. The random line was ”drawn” according to a
p-stable distribution [25]. The results were worse and thus
are not reported here.

Compressor GOV2 GOV2-sort GOV2 GOV2-sort
txt-only txt-only

gzip 18.69 10.41 23.93 13.46
bzip*-200 6.45 3.96 10.49 7.07
lzma-400 6.15 3.84 9.90 6.54
bmi+lzma-400 6.05 3.89 9.70 5.28

IL [58] 1.52–1.90 0.85–1.30 — —
docIDs + freq

Table 4: Compression ratios and indexing space for
the GOV2 collection. Since the txt-only collection is
about 50% the original GOV2, one can compute the
compression ratio wrt the whole html-based collec-
tion dividing by 2. Of course, there is no difference
in the IL-space of html and txt collections.

pression ratio and (de)compression speed has to be taken
into account here, because Web miners and search engines,
sooner or later, have to access those compressed data. Last,
we point out that our experimental figures might be also
used for evaluating the efficacy of clustering methods at the
Web-scale in an Information-Theoretic sense: take the com-
pression ratio that the clustering method allows to achieve!

As a cross-check for our UK-results we tested our best
compressors onto the GOV2 collection. Table 4 reports our
experimental results for four cases: the original dataset and
the URL-sorted dataset, with or without the html-markup.
We notice that GOV2 is less compressible than UK-full with
the gap shrinking when GOV2 is url-sorted (probably this
depends on its crawl-based ordering). The url-based order-
ing reduces by roughly 1.6 times the compression ratio of
every algorithm; and the best compressors are up to 3 times
better than gzip both on crawl-based and sort-based GOV2.

In addition, the last line of Table 4 reports the space-usage
of the best known compressed InvertedList [58]. This allows
us to compare compressed IL-storage vs compressed docu-
ment storage, drawing some interesting conclusions. First,
we notice that url-based page ordering is similarly effective
on IL-compression as it is on document-compression: in both
cases the improvement is roughly a factor 1.6. More impor-
tantly, if we compare compressed-pages vs compressed-ILs
we find that the former are a factor 3.54 larger than the lat-
ter over the crawl-based ordering, and a factor 3.62 larger
over the url-based ordering. These factors are not as big as
common belief typically assumes! A more surprising result
comes out if we consider the storage of term-positions in ILs,
which is useful to implement phrase-queries or proximity-
aware ranking functions [57]. Term-positions are usually as-
sumed to take a factor 3-4 more than docIDs (cfr. [3, 17]); in
accordance with this estimate, the MG4J search engine takes
7.21% for encoding the term positions of GOV2 [55]. These
figures are larger than the space taken by the compressed
raw pages (6.05% on GOV2 and 3.84% on GOV2-sort), so
contradicting another common belief!

Although documents are more informative than the
corresponding IL storing term-pos + docIDs + freq

info, they may be stored compressed in less space!

This suggests the need of improved compression techniques
for IL-postings which use more information in addition to
term frequencies and their distributions within documents.



Approach block size c/ratio avg d/speed (min/max)

gzip 0.2 13.31 178.95 (43/358)
gzip 0.5 12.70 185.36 (54/347)
gzip 1 12.39 187.07 (61/324)

lzma 0.2 8.14 82.29 (7/299)
lzma 0.5 6.25 110.76 (7/314)
lzma 1 5.47 130.27 (7/313)
lzma 2 4.98 144.52 (7/313)

bmi+gzip 0.2 8.69 127.61 (41/555)
bmi+gzip 0.5 7.01 131.48 (42/262)
bmi+gzip 1 6.52 140.90 (40/210)
bmi+gzip 2 6.04 145.38 (44/202)
bmi+gzip 4 5.68 148.37 (46/200)

CSA-32 200 42.66 2.12 (1.50/2.42)
CSA-64 200 30.16 1.93 (1.14/2.37)
CSA-256 200 20.60 1.50 (0.5/2.1)
CSA-1024 200 23.46 0.69 (0.5/2.1)

Table 5: Performance on page decoding in inter-
nal memory over UK50 collection when URL-sorted.
Decompression speed is given in MB per second.
Min/max decompression speed are rounded, for
readability, to the closest integer except for CSA
where two decimal digits are preserved for details.

3. FAST ACCESS TO COMPRESSED DATA
Let us now turn our attention to the second scenario: a

Web-storage system distributed among the internal memory
of (possibly) many PCs [2, 4] that must guarantee not only
compression efficacy, but also support the fast decompres-
sion of individual Web pages. We can devise two solutions.

The classic solution (e.g. Lucene [23] and MG4J [11]) con-
sists of using a compressor over small blocks of pages so that,
once a page is requested, its block (residing in-memory) is
fully decompressed and the requested page is then extracted.
This induces an obvious trade-off between the size of the
block and the time to decompress one single page belonging
to that block: the larger is the block, the better should be
the compression ratio, but the slower is the throughput in
terms of (retrieved) pages/sec. Given our previous results,
we choose as compressors: gzip (Lucene and MG4J), lzma (our
top performer), and bmi+gzip (because of [20]).

A modern solution, mostly unexplored at the Web-scale,
consists of using the compressed self-indexes as a storage-
format that achieves (in theory) space-occupancy close to
the kth order entropy of the indexed data and cost of ex-
tracting arbitrary portions of compressed data independent
of the overall size of the index [45]. So we assume to build
one compressed self-index per PC, and fit it in its internal
memory. This way we may use much larger blocks, thus
possibly catching more repetitiveness in the data than the
classic scheme. Compressed self-indexes need to set some pa-
rameters that control the trade-off between the space occu-
pancy of the index and its decompression throughput. Some
recent experimental studies [31] have investigated this trade-
off on small and well-formed textual datasets (e.g. Wikipedia
and DBLP), that are hence very distant from the noisy but
possibly highly repetitive data available on the Web. This
is exactly what we aim at testing in this section by con-
sidering the best known compressed-index over English and
XML files, namely CSA (according to [31]), and compare
it against the compressed-storage schemes offering the best
time/space trade-offs in Tables 1–3.

In Tables 5–6 we report the results of our experiments
where we estimated the extraction throughput of all four
approaches over two collections: one is URL-sorted, and the
other is randomly permuted. The former collection aims at
investigating a scenario in which repetitiveness is forced to
occur at small distances, thus giving an advantage to the
dictionary-based approaches that need to use small blocks;
the latter collection aims at addressing a scenario in which
repetitiveness is not expected to occur at small distances
thus penalizing the dictionary-based approaches and high-
lighting the robustness of compressed self-indexes which use
larger blocks.

Let us start from Table 5. For dictionary-based compres-
sors we consider small blocks (up to few MBs), because the
retrieval of a single Web-page needs the decoding of its en-
tire block. We stop the testing when increasing the block
size is not advantageous: namely, there is an un-significant
change in decompression throughput and compression ra-
tio. We note that (in-memory) decoding is very fast for
dictionary-based compressors, being gzip about 0.77-2 times
faster than lzma, but at the cost of a significantly worse
compression performance. It is interesting to notice a large
variance in decompression speed, which actually depends on
the compressibility of the underlying block: the better is the
block compression, the smaller is the number of produced
phrases, and thus the smaller is the computational cost in-
curred in decoding them (these are mainly cache misses).
Importantly, bmi+gzip turns out to be slightly worse than
lzma in storage, but faster and more robust in decompression
performance. The URL-based sorting of the Web pages allows
to use very-small blocks still guaranteeing an effective com-
pression ratio. This validates [20] as a good choice also when
data has to fit into the internal-memory of the PC. As in
Sect. 2.1, we argue that a careful engineering of dictionary-
phrase encodings and cache deployment in gzip- and bmi-
implementations may be crucial to achieve the throughput
of few GB/sec claimed in [20].13

On url-ordered pages stored in memory, grouped
in small blocks, bmi+gzip offers the best space/time
trade-off. There is large room for performance im-
provement, in the light of [20]’s results.

As far as CSA is concerned, we considered blocks of 200MB
because this is the largest indexable block according to the
software distributed in [32], and we experienced no signif-
icant variations in decompression speed for smaller blocks.
We tested the CSA-performance by varying the parameter
that controls the trade-off between the extraction speed from
compressed data and index’s space-occupancy (option -p).
The larger is this parameter, the smaller is CSA’s space oc-
cupancy, but the slower is its decoding speed. To deploy at
the best the random-access to compressed data offered by
CSA, we stored an explicit pointer to the starting byte of
each page (i.e. a row number in the BWT-matrix [45]).

On url-ordered pages, the compression ratio of CSA
may be up to 8 times worse than lzma; its decoding
speed is stable but much slower than dictionary-based
compressors— i.e. up to two order of magnitudes.

13bmi+gzip-0.2 achieves peaks of 555 MB/sec in decompres-
sion on our PC. bmi+gzip-0.4 is not able to achieve the same
throughput probably because of cache-misses.



Approach block size c/ratio avg d/speed (min/max)

gzip 0.2 20.87 126.48 (56/357)
gzip 0.5 20.69 126.02 (60/329)

lzma 0.2 18.28 33.32 (7/500)
lzma 0.5 17.28 34.87 (6/313)
lzma 1 16.50 36.68 (8/208)

bmi+gzip 0.2 20.43 73.28 (31/202)
bmi+gzip 0.5 20.09 73.74 (35/179)
bmi+gzip 1 19.71 74.41 (35/177)

CSA-32 200 47.68 2.25 (1.6/2.5)
CSA-64 200 35.18 2.02 (1.6/2.2)
CSA-128 200 28.93 1.69 (1.6/1.9)
CSA-256 200 25.80 1.29 (1.1/1.4)
CSA-1024 200 18.43 0.81 (0.2/1.4)

Table 6: Performance on page decoding in inter-
nal memory over UK50 collection when randomly per-
muted. Decompression speed is given in MB per sec-
ond. Min/max decompression speed are rounded,
for readability, to the closest integer except for CSA
where two decimal digits are preserved for details.

This seems to be a very negative result for this algorithmic
technology! But, let us compare the space occupancy of
bzip*-200 in Table 3 with CSA in Table 5: there is indeed
a large difference. Given that compressed-indexes are bwt-
based and still in their infancy, we expect a large room for
space/time improvement. Our experimental results should
stimulate further research in this setting, starting from [31]
and/or the promising word-based approaches in [12, 13].

We repeated our experiments on UK50 with its pages ran-
domly permuted. Table 6 reports the main figures of our ex-
periments where we notice a few crucial things. Dictionary-
based compressors get significantly worse both in compres-
sion ratio and decompression speed. As expected, bmi is
no longer effective on small blocks because of the random
page-permuting. This impacts also on the speed because of
the increased number of parsed phrases to be decoded, and
thus an increased number of cache misses in the decompres-
sion process. Conversely CSA performance is robust, and its
compression ratio approaches the one of the other tools.

On randomly-permuted pages, bmi is no longer an ef-
fective compression booster. Dictionary-based com-
pressors get significantly worse both in compression
ratio and decompression speed. Conversely, the
compression ratio of CSA is stable and its gap in
decompression-speed with the other approaches is re-
duced, but still large.

3.1 Some further comments
A superficial analysis of these experimental results could

lead a reader to drop the use of compressed self-indexes
from the Web-scale scenario. We rise two objections to
this conclusion: (1) Compressed self-indexes are still in
their infancy [12, 13, 31]: theoretical/engineering improve-
ments might reduce the performance gap significantly; (2)
Dictionary-based compressors need to decompress the en-
tire block that includes the page to be decoded, whereas
CSA can decode just that page. To see the consequences
of (2) we proceed with a “back of the envelop” calculation
relating decompression speed and block size.

Compressor block size GOV2 GOV2-sort

gzip 1 18.72 10.63
lzma 1 12.45 5.48
bmi+gzip 1 15.38 6.97
CSA-256 200 23.27 20.20

IL: docIDs + freq [58] 1.52–1.90 0.85–1.30

Table 7: Compression ratios and indexing space for
the GOV2 collection, when considering random ac-
cess to individual pages in internal memory.

Let B be the block-size of a dictionary-based compres-
sor, P be the average page size in the Web collection14,
and dA the decompression throughput of compressor A in
bytes/sec. A dictionary-based compressor is faster than CSA

whenever its decoding speed is larger than B∗dCSA
P

. Since cur-
rently dCSA ≈ 2MB/sec this is indeed the case for our Web-
collections, but new engineered solutions for compressed self-
indexes could change this conclusion. More importantly,
the previous formula suggests that for a collection of small
records, such as email and log-collections, for which P � B,
CSA could be the winning choice in terms of speed.

It is interesting to consider also the point of view of a
search engine that needs to sustain q queries/sec, each re-
turning s snippets (typically s = 10). From Tables 5–6
(where we take B = 1MB), we derive that dictionary-based
compressors could sustain up to 15 query/sec and CSA up
to 12.5 query/sec (per server). So, pretty much the same
given our approximations! However, this would be one or-
der of magnitude less than the throughput guaranteed by
compressed-IL [58] (namely, hundreds queries/sec). To sus-
tain that throughput one would need a page-storage scheme
with an order of magnitude faster decompression (actually,
what it is claimed in [20], but without giving details on their
implementation). Hence, more algorithmic engineering is re-
quired on the open-source softwares available all around the
net to achieve this performance.

Finally, as we did at the end of Sect. 2.4, we repeated
some experiments on the GOV2 collection. Table 7 shows
that compression ratios are similar to what we got for the
url-sorted UK50 (cfr. Table 5). Decompression speeds agree
with the ones reported in Table 5 and thus are not reported.
As in Sect. 2.4, we compare the compressed storage of raw
pages with lzma against the compressed storage of ILs [58],
now assuming that everything fits in the internal memory of
(possibly many) PCs. Because of the smaller block, we find
a larger gap than before: about 7.28 for GOV2 and 5.10 for
GOV2-sort. As in Sect. 2.4 we note that for GOV2-sort the
space used for the compressed pages (5.48%) is less than the
space required for the term-positions (7.21%) by MG4J [55].

For space reasons we cannot provide the results of
many other experiments we conducted over the two Web-
collections UK-full and GOV2. It goes without saying that
changes to the options of the tested compressors, or other
combinations of them, might (slightly) change some results,
but the overall picture would not be very different. So we
can safely conclude that it has become necessary to recon-
sider whether the choice of compressing Web collections us-
ing simple tools, such as gzip, is the best one: for future Web
applications the open-source tools lzma and bmi and com-
pressed self-indexes [31] are certainly worth considering.

14It is P = 16 KB in UK-collection and P = 18KB in GOV2.
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E. Rodŕıguez. Self-indexing natural language. SPIRE, LNCS
5280, 2008.

[14] A. Broder. Identifying and filtering near-duplicate documents.
CPM, LNCS 1848, 2000.

[15] A. Broder, S. Glassman, M. Manasse, and G. Zweig. Syntactic
clustering of the web. Computer Networks, 29(8-13), 1997.

[16] G. Buehrer and K. Chellapilla. A scalable pattern mining
approach to web graph compression with communities. WSDM,
95–106, 2008.
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[31] P. Ferragina, R. González, G. Navarro, and R. Venturini.
Compressed text indexes: From theory to practice. ACM
Journal of Experimental Algorithmics, 13, 2008.

[32] P. Ferragina and G. Navarro. Pizza&Chili corpus home page.
http://pizzachili.di.unipi.it/.

[33] P. Ferragina, I. Nitto, and R. Venturini. On optimally
partitioning a text to improve its compression. ESA, LNCS
5757, 420–431, 2009.

[34] P. Ferragina, I. Nitto, and R. Venturini. On the bit-complexity
of Lempel-Ziv compression. ACM-SIAM SODA, 2009.

[35] P. Ferragina and R. Venturini. Compressed permuterm index.
ACM SIGIR, 535–542, 2007.

[36] D. Geer. Reducing the storage burden via data deduplication.
Computer, 41(12):15–17, 2008.

[37] O.A. Hamid, B. Behzadi, S. Christoph, and M.R. Henzinger.
Detecting the origin of text segments efficiently. WWW, 61–70,
2009.

[38] T. Haveliwala, A. Gionis, and P. Indyk. Scalable techniques for
clustering the web. WebDB, 129–134, 2000.

[39] J. Kieffer and E.-H. Yang. Grammar-based codes: A new class
of universal lossless source codes. IEEE Trans. Info. Theory,
46(3):737–754, 2000.

[40] P. Kulkarni, F. Douglis, J. LaVoie, and J. Tracey. Redundancy
elimination within large collections of files. USENIX, 2004.

[41] M. Mahoney. Large text compression benchmark.
http://www.cs.fit.edu/ mmahoney/compression/text.html.

[42] U. Manber. Finding similar files in a large file system.
USENIX, 1–10, 1994.

[43] F. Menczer. Lexical and semantic clustering by web links.
Journal of the American Society for Information Science and
Technology, 55(14):1261–1269, 2004.

[44] J. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy.
Potential benefits of delta encoding and data compression for
HTTP. ACM SIGCOMM, 181–194, 1997.
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