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Probabilistic counting

A sketch S(A) is a compressed form of representation for a given
set A providing the following operations:

INIT (S(A)) How a sketch S(A) for A is initialized.

UPDATE (S(A), u) How a sketch S(A) for A modifies when an
element u is added to A.

UNION (S(A),S(B)) Given two sketches for A and B, provide a
sketch for A ∪ B.

SIZE (S(A)) Estimate the number of distinct elements of A.
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Properties

Given two sketches S(A) and S(B) for any two sets A and B,
S(A ∪ B) can be computed just by looking at S(A) and S(B),
i.e.: C=UNION (S(A), S(B)) ≡ (INIT (C ); for u ∈ A ∪ B,
UPDATE (C , u) ; RETURN C )

If we call UPDATE (S(A), u) and we already did UPDATE

(S(A), u) with the same u the sketch does not modify, e.g.
the operation SIZE (S(A)) return the same value.
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k-min approach (Cohen 1994)

A k-min sketch includes the item of smallest rank in each of k
independent permutations.

In this case a sketch S(A) is a sequence of exactly k entries,
a1, . . . , ak , where each entry can be an element of A or ⊥.

Let r1, r2, . . . , rk be ranks ri : U → {1/n, 2/n, 3/n, . . . , 1},
setting r(⊥) =∞.
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k-min approach

INIT (S(A)): ai = ⊥ for any i .

UPDATE (S(A), u): for every i , with 1 ≤ i ≤ k, if ri (ai ) > ri (u), ai
is replaced with u.

UNION (S(A),S(B)): return {c1, . . . , ck} such that
ci = argmin{r(ai ), r(bi )}.

SIZE (S(A)): return k/
∑

ai∈S(A) r(ai )− 1

Choosing k = Θ(ε−2 log n) the relative error is bounded by ε w.h.p.
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Edith Cohen: Estimating the Size of the Transitive Closure in
Linear Time. FOCS 1994: 190-200

Edith Cohen: Size-Estimation Framework with Applications to
Transitive Closure and Reachability. J. Comput. Syst. Sci.
55(3): 441-453 (1997)

Andrea Marino Probabilistic Counting



bottom-k approach (Cohen & Kaplan 2007)

Given

a ranking (i.e., a bijective function) r : U → {1/n, 2/n, . . . , 1}
and a subset A of U

we denote as

Hk(A) the first k elements of A according to r and

with kth(A) the rank of the k-th element of A according to r

A bottom-k sketch includes the k items with smallest rank in a
single permutation, that is, Hk(A).
In this case a sketch is simply a subset of the set.
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bottom-k approach

Given a rank r : U → {1/n, 2/n, 3/n, . . . , 1}:
INIT (S(A)): S(A) is the empty set.

UPDATE (S(A), u): If |S(A)| < k , add u to S(A). Otherwise, if
r(max(S(A))) > r(u), replace max(S(A)) with u.

UNION (S(A),S(B)): the first k elements of the set S(A) ∪ S(B),
that is Hk(S(A) ∪ S(B))

SIZE (S(A)): return (k − 1)/kth(S(A))
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Edith Cohen, Haim Kaplan: Summarizing data using bottom-k
sketches. PODC 2007: 225-234

Edith Cohen, Haim Kaplan: Bottom-k sketches: better and
more efficient estimation of aggregates. SIGMETRICS 2007:
353-354

Edith Cohen, Haim Kaplan: Tighter estimation using bottom
k sketches. PVLDB 1(1): 213-224 (2008)
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LogLog counters (Flajolet & Martin 1985)

In this case a sketch S(A) is a sequence of exactly k entries,
a1, . . . , ak , where each entry is a sequence of m bits.

Given k partition functions pi : U → {1, 2, . . . ,m}, for each j ,
with 1 ≤ j ≤ m the bit ai ,j = 1 if there exists an element in A
that is mapped to j according to pi , 0 otherwise.

Each partition function is such that randomly 1/2 of the
elements are mapped to 1, 1/4 of the elements are mapped to
2, . . ., 1/2i of the elements are mapped to i .
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LogLog counters

INIT (S(A)): ai ,j = 0 for any i , j .

UPDATE (S(A), u): for any i , let pi (u) = j , set ai ,j to 1.

UNION (S(A),S(B)): return {c1, . . . , ck} where ci is the OR
between ai and bi .

SIZE (S(A)): let b the average position of the least zero bits in
a1, . . . , ak , return 2b/.77351.
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ANF (Palmer et al. 2002)

Palmer, Gibbons, and Faloutsos (KDD 2002) applied this paradigm
in the distance distribution context.

// Set M(x,0) = {x}
FOR each node x DO

M(x,0) = concatenation of k bitmasks
each with 1 bit set (P (bit i) = .5i+1)

FOR each distance h starting with 1 DO
FOR each node x DO M(x,h) = M(x,h − 1)
// Update M(x, h) by adding one step
FOR each edge (x, y) DO

M(x,h) = (M(x,h) BITWISE-OR M(y, h − 1))
// Compute the estimates for this h
FOR each node x DO

Individual estimate ˆIN(x,h) = (2b)/.77351
where b is the average position of the least zero bits
in the k bitmasks

The estimate is: N̂(h) = all x
ˆIN(x,h)

Figure 2: Introduction to the basic ANF algorithm

the data structure to disk and to create an algorithm that
meets all of our requirements. Finally, we will extend this
algorithm with bit compression to further increase its speed.

3.1 Basic ANF Algorithm (ANF-0)
A graph traversal effectively accesses the edge file in random
order. Thus, if our algorithm is going to be efficient on a
graph that does not fit in memory, we cannot perform any
graph traversals. Instead, we are going to build up the nodes
reachable from x within h steps by first finding out which
nodes its neighbours can reach in h − 1 steps. Slightly more
formally, let M(x, h) be the set of nodes within distance h
of x. Clearly, M(x, 0) = {x}, since the only node within
distance 0 of x is x itself. To compute M(x,h) we note that
x can still reach in h or fewer steps the nodes it could reach
in h − 1 or fewer steps. But, x can also reach the nodes in
M(y, h − 1) if there is an edge from x to y. That is:

M(x, 0) = {x} for all x ∈ V
FOR each distance h DO

M(x, h) = M(x, h − 1) for all x ∈ V
FOR each edge (x, y) DO

M(x,h) = M(x, h) ∪ M(y, h − 1)

This iterates over the edge set instead of performing a traver-
sal. The trick will be to efficiently compute the number of
distinct elements in M(x, h). One possibility is to use a dic-
tionary data structure (e.g., a B-tree) to represent the sets
M(x, h). However, this approach needs O(n2 log n) time
and space, which is prohibitive. An approach that people,
particularly C hackers, often employ is to use bits to mark
membership. That is, each node is given one of n bits and
a set is a bit string of length n. To add a node to the set,
we mark its bit. The union of two sets is the bitwise-OR of
the bitmasks. Unfortunately, this approach still uses O(n2)
memory, which will be prohibitive for large graphs.

Instead, we’re going to use a clever probabilistic counting al-
gorithm [9] to approximate the sizes of the sets using shorter
bit strings (log n+r bits, for some small constant r). We re-
fer to the bit string that approximates M(x,h) as M(x, h).
Instead of giving each node its own bit, we are going to give
about half the nodes bit 0, a quarter of them bit 1, and
so on (give a node bit i with probability 1/2i+1). We still
mark a node by setting its bit and use bitwise-OR for the
set-union. Estimating the size of the set from the small bit
string is done based on the following intuition. If we expect
25% of the nodes to be assigned to bit 1 and we haven’t seen

x M(x,0) M(x,1) ˆIN(x,1) M(x,2) ˆIN(x, 3)
0 100 100 001 110 110 101 4.1 110 111 101 5.2
1 010 100 100 110 101 101 3.25 110 111 101 5.2
2 100 001 100 110 101 100 3.25 110 111 101 5.2
3 100 100 100 100 111 100 4.1 110 111 101 5.2
4 100 010 100 100 110 101 3.25 110 111 101 5.2

Figure 3: Simple example of basic ANF

FOR each node x DO
IF x ∈ C THEN

Mcur(x) = concatenation of k bitmasks each
with 1 bit set (P (bit i) = .5i+1)

FOR each distance h starting with 1 DO
FOR each node x DO Mlast(x) = Mcur(x)
FOR each edge (x, y) DO

Mcur(x) = (Mcur(x) BITWISE-OR Mlast(y))
FOR each node x DO

ˆIN
+

(x,h, C) = (2b)/.77351, where b is the average
position of the least zero bit in the k bitmasks

N̂+(h, S, C) = x∈S
ˆIN(x,h, C)

Figure 4: ANF-0: In-core ANF

any of them (bit 1 is not set), then we probably saw about
4 or less nodes. So, the approximation of the size of the set
M(x, h) is proportional to 2b, where b is the least bit num-
ber in M(x, h) that has not been set. We refer the reader
to [9] for a derivation of the constant of proportionality and
a proof that this estimate has good error bounds.

A single approximation is obviously not very robust. We
do k parallel approximations by treating M(x, h) as a bit-
string of length k(log n+r) bits. Figure 2 shows the complete
algorithm implementing the edge-scan based ANF.

Example. Figure 3 shows the bitmasks and approxima-
tions for a simple example of our most basic ANF algorithm.
The purpose is to clarify the concatenation of the bitmasks
and to illustrate the computation. The input is a 5 node
undirected cycle and we used parameters k = 3 and r = 0.
The first FOR loop of the algorithms generates the table of
random bitmasks M(x, 0). That is, using an exponential
distribution, we randomly set one bit in each of the three
concatenated bitmasks. (In the figure, bit 0 is the leftmost
bit in each 3-bit mask.) Then, each iteration uses the OR

operation to combine the nodes that it could reach in h − 1
steps plus the ones that its neighbours could reach in h − 1
steps. For example, M(2, 1) is just M(1, 1) OR M(2, 1) OR

M(3, 1), because nodes 1 and 3 are the neighbors of node

2. The estimates, for example ˆIN(2, 1), are computed from
the average of the least zero bit positions (2, 1, 1 = 4

3
, and

24/3/.77359 = 3.25).

The algorithm in Figure 2 uses an excessive amount of mem-
ory and does not estimate the more general forms of the
neighbourhood function. Figure 4 depicts the same algo-
rithm, with the following improvements:

• M(x, h) uses M(y, h− 1) but never M(y, h− 2). Thus
we use Mcur(x) to hold M(x, h) and Mlast(y) to hold
M(y, h − 1) during iteration h.

• The starting nodes, S, just changes the estimate by
summing over x ∈ S instead of x ∈ V . In terms of
implementation, this can be done by extending Mcur
to hold a marked bit indicating membership in S.

// Set M(x,0) = {x}
FOR each node x DO
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each with 1 bit set (P (bit i) = .5i+1)
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4 or less nodes. So, the approximation of the size of the set
M(x, h) is proportional to 2b, where b is the least bit num-
ber in M(x, h) that has not been set. We refer the reader
to [9] for a derivation of the constant of proportionality and
a proof that this estimate has good error bounds.

A single approximation is obviously not very robust. We
do k parallel approximations by treating M(x, h) as a bit-
string of length k(log n+r) bits. Figure 2 shows the complete
algorithm implementing the edge-scan based ANF.

Example. Figure 3 shows the bitmasks and approxima-
tions for a simple example of our most basic ANF algorithm.
The purpose is to clarify the concatenation of the bitmasks
and to illustrate the computation. The input is a 5 node
undirected cycle and we used parameters k = 3 and r = 0.
The first FOR loop of the algorithms generates the table of
random bitmasks M(x, 0). That is, using an exponential
distribution, we randomly set one bit in each of the three
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bit in each 3-bit mask.) Then, each iteration uses the OR
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24/3/.77359 = 3.25).

The algorithm in Figure 2 uses an excessive amount of mem-
ory and does not estimate the more general forms of the
neighbourhood function. Figure 4 depicts the same algo-
rithm, with the following improvements:

• M(x, h) uses M(y, h− 1) but never M(y, h− 2). Thus
we use Mcur(x) to hold M(x, h) and Mlast(y) to hold
M(y, h − 1) during iteration h.

• The starting nodes, S, just changes the estimate by
summing over x ∈ S instead of x ∈ V . In terms of
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HyperLogLog (Flajolet et al. 2007) and HyperANF (Boldi
et al. 2011)

workstation with 128 GB of RAM. Our algorithms are implement in a tool distributed as free
software within the WebGraph framework.1

Armed with our tool, we study several datasets, spanning from small social networks to very
large web graphs. We isolate a statistically defined feature, the index of dispersion of the distance
distribution, and show that it is able to tell “proper” social networks from web graphs in a natural
way.

2 Related work

HyperANF is an evolution of ANF [PGF02], which is implemented by the tool snap. We will give
some timing comparison with snap, but we can only do it for relatively small networks, as the large
memory footprint of snap precludes application to large graphs.

Recently, a MapReduce-based distributed implementation of ANF called HADI [KTA+10] has
been presented. HADI runs on one of the fifty largest supercomputers—the Hadoop cluster M45.
The only published data about HADI’s performance is the computation of the neighbourhood
function of a Kronecker graph with 2 billion links, which required half an hour using 90 machines.
HyperANF can compute the same function in less than fifteen minutes on a laptop.

The rather complete survey of related literature in [KTA+10] shows that essentially no data
mining tool was able before ANF to approximate the neighbourhood function of very large graphs
reliably. A remarkable exception is Cohen’s work [Coh97], which provides strong theoretical guar-
antees but experimentally turns out to be not as scalable as the ANF approach; it is worth noting,
though, that one of the proposed applications of [Coh97] (On-line estimation of weights of growing
sets) is structurally identical to ANF.

All other results published before ANF relied on a small number of breadth-first visits on
uniformly sampled nodes—a process that has no provable statistical accuracy or precision. Thus,
in the rest of the paper we will compare experimental data with snap and with the published data
about HADI.

3 HyperANF

In this section, we present the HyperANF algorithm for computing an approximation of the neigh-
bourhood function of a graph; we start by recalling from [FFGM07] the notion of HyperLogLog
counter upon which our algorithm relies. We then describe the algorithm, discuss how it can be
implemented to be run quickly using broadword programming and task decomposition, and give
results about its memory requirements and precision.

3.1 HyperLogLog counters

HyperLogLog counters, as described in [FFGM07] (which is based on [DF03]), are used to count
approximately the number of distinct elements in a stream. For the purposes of the present paper,
we need to recall briefly their behaviour. Essentially, these probabilistic counters are a sort of
approximate set representation to which, however, we are only allowed to pose questions about the
(approximate) size of the set.2

Let D be a fixed domain and h : D ! 21 be a hash function mapping each element of D into
an infinite binary sequence. The function is fixed with the only assumption that “bits of hashed
values are assumed to be independent and to have each probability 1

2 of occurring” [FFGM07].
For a given x 2 21, let ht(x) denote the sequence made by the leftmost t bits of h(x), and

ht(x) be the sequence of remaining bits of x; ht is identified with its corresponding integer value in
the range { 0, 1, . . . , 2t � 1 }. Moreover, given a binary sequence w, we let ⇢+(w) be the number of
leading zeroes in w plus one3 (e.g., ⇢+(00101) = 3). Unless otherwise specified, all logarithms are

1See [BV04]. http://webgraph.dsi.unimi.it/.
2We remark that in principle O(log n) bits are necessary to estimate the number of unique elements in a

stream [AMS99]. HyperLogLog is a practical counter that starts from the assumption that a hash function can
be used to turn a stream into an idealised multiset (see [FFGM07]).

3We remark that in the original HyperLogLog papers ⇢ is used to denote ⇢+, but ⇢ is a somewhat standard
notation for the ruler function [Knu07].

2

in base 2.

Algorithm 1 The Hyperloglog counter as described in [FFGM07]: it allows one to count (approx-
imately) the number of distinct elements in a stream. ↵m is a constant whose value depends on m
and is provided in [FFGM07]. Some technical details have been simplified.

0 h : D ! 21, a hash function from the domain of items
1 M [�] the counter, an array of m = 2b registers
2 (indexed from 0) and set to �1
3
4 function add(M : counter, x: item)
5 begin
6 i hb(x);
7 M [i] max

�
M [i], ⇢+

�
hb(x)

� 

8 end; // function add
9
10 function size(M : counter)
11 begin

12 Z  
⇣Pm�1

j=0 2�M [j]
⌘�1

;

13 return E = ↵mm2Z
14 end; // function size
15
16 foreach item x seen in the stream begin
17 add(M ,x)
18 end;
19 print size(M)

The value E printed by Algorithm 1 is [FFGM07][Theorem 1] an asymptotically almost unbiased
estimator for the number n of distinct elements in the stream; for n ! 1, the relative standard
deviation (that is, the ratio between the standard deviation of E and n) is at most �m/

p
m 

1.06/
p

m, where �m is a suitable constant (given in [FFGM07]). Moreover [DF03] even if the size
of the registers (and of the hash function) used by the algorithm is unbounded, one can limit it to
log log(n/m) + !(n) bits obtaining almost certainly the same output (!(n) is a function going to
infinity arbitrarily slowly); overall, the algorithm requires (1 + o(1)) · m log log(n/m) bits of space
(this is the reason why these counters are called HyperLogLog). Here and in the rest of the paper
we tacitly assume that m � 64 and that registers are made of dlog log ne bits.

3.2 The HyperANF algorithm

The approximate neighbourhood function algorithm described in [PGF02] is based on the observa-
tion that B(x, r), the ball of radius r around node x, satisfies

B(x, r) =
[

x!y

B(y, r � 1).

Since B(x, 0) = { x }, we can compute each B(x, r) incrementally using sequential scans of the graph
(i.e., scans in which we go in turn through the successor list of each node). The obvious problem is
that during the scan we need to access randomly the sets B(x, r � 1) (the sets B(x, r) can be just
saved on disk on a update file and reloaded later). Here probabilistic counters come into play; to
be able to use them, though, we need to endow counters with a primitive for the union. Union can
be implemented provided that the counter associated to the stream of data AB can be computed
from the counters associated to A and B; in the case of HyperLogLog counters, this is easily seen
to correspond to maximising the two counters, register by register.

3
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Part II

More about Sketches
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Min-Hash sketches are a family of statistical technique to
represent approximately in little space a subset of items of a
universe U.

Cohen (2014) systematizes the description of Min-Hash
sketches dividing them in three classes, k-min, bottom-k ,
k-partition, where the parameter k determines the sketch size.

Some of these techniques were devised to count the distinct
elements of a stream, exploiting the property that by merging
the sketches of two streams we can obtain an estimate of
their concatenation.

Some others, like k-min (Broder 1998) were focused on the
estimation of the Jaccard index.
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Jaccard coefficient

Given two sets A and B, their Jaccard index (also called Jaccard
similarity coefficient) is defined as

J(A,B) =
|A ∩ B|
|A ∪ B| .

It is a very commonly used measure of similarity, ranging from
0 (for disjoint sets) to 1 (for identical sets).

The previous techniques can be used or adapted to estimate
Jaccard similarity.

It has a number of applications, for example in information
retrieval to estimate document similarity (Broder 1997).

A. Broder. On the Resemblance and Containment of
Documents. SEQUENCES ’97 Proceedings of the Compression
and Complexity of Sequences 1997.

Andrea Marino Probabilistic Counting



Notations and Operations

Given:

a ranking (i.e., a bijective function) r : U → {1, 2, . . . , n}
and a subset A of U,

we denote

with Hk(A) the first k elements of A according to r (all the
elements of A, if |A| < k), and

with kth(A) the ranking of the k-th element of A (kth(A) = n,
if |A| < k), and

with max(A) the element having maximum rank in A.
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For each method we will revise and specify:

INIT (S(A)) How a sketch S(A) for A is initialized.

UPDATE (S(A), u) How a sketch S(A) for A modifies when an
element u is added to A.

ESTIMATE (S(A), S(B)) given two sketches, S(A) and S(B), how
the Jaccard Index is estimated.
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Threshold Sampling

Given

a rank r : U → {1, . . . , n} and

a threshold t ∈ [1, n],

the sketch is the set of all the elements a ∈ A satisfying r(a) < t.

The size of the sketch cannot predicted in advance; for this
reason, the other sketches are usually preferred in the
applications.

INIT (S(A)): S(A) is the empty set.

UPDATE (S(A), u): If r(u) < t add u to S(A).

ESTIMATE (S(A), S(B)): The estimate is J(S(A), S(B)).
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bottom-k approach (Cohen & Kaplan 2007)

A bottom-k sketch includes the k items with smallest rank in
a single permutation, that is, Hk(A).

Its application in the context of Jaccard estimation similarity
using hash has been studied by Thorup (STOC 2013).

In this case a sketch is simply a subset of the set.
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bottom-k approach

Given a rank r : U → {1, 2, . . . , n} (a bijection):

INIT (S(A)): S(A) is the empty set.

UPDATE (S(A), u): If |S(A)| < k , add u to S(A). Otherwise, if
r(max(S(A))) > r(u), replace max(S(A)) with u.

ESTIMATE (S(A), S(B)): The estimate is

|Hk(A ∪ B) ∩ Hk(A) ∩ Hk(B)|
k

=
|Hk(S(A) ∪ S(B)) ∩ S(A) ∩ S(B)|

k
.
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A similar process with balls and bins

Balls and Bins with R red, W white, and B bicolor. Let N be
R + W + B.

Sample k balls without replacement.

Let X be the number of balls bicolor sampled

Approximate the quantity B
R+W+B as X

k .

Theorem

E

[
X

k

]
=

B

R + W + B
=

B

N
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Hypergeometric Distribution

Distribution that describes the probability of h successes in n
draws, without replacement, from a finite population of size N
containing exactly H successes.

In contrast, the binomial distribution describes the probability
of k successes in n draws with replacement.

Pr [X = h] =

(H
h

)(N−H
n−h

)
(N
n

)

The mean is n · H/N
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k-min approach (Broder 1997)

A k-min sketch includes the item of smallest rank in each of k
independent permutations.

In this case a sketch S(A) is a sequence of exactly k entries,
a1, . . . , ak , where each entry can be an element of A or ⊥.
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Introduced for cardinality estimation in (Cohen 1994). Applied for
Jaccard similarity estimation by (Broder 1997) and studied in
(Broder et al. 1998).

Edith Cohen: Estimating the Size of the Transitive Closure in
Linear Time. FOCS 1994: 190-200

Edith Cohen: Size-Estimation Framework with Applications to
Transitive Closure and Reachability. J. Comput. Syst. Sci.
55(3): 441-453 (1997)

A. Broder. On the Resemblance and Containment of
Documents. Proceeding SEQUENCES ’97 Proceedings of the
Compression and Complexity of Sequences 1997.

Andrei Z. Broder, Moses Charikar, Alan M. Frieze, Michael
Mitzenmacher: Min-Wise Independent Permutations
(Extended Abstract). STOC 1998: 327-336
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k-min approach

Let r1, r2, . . . , rk be ranks ri : U → {1/n, 2/n, 3/n, . . . , 1}, setting
r(⊥) =∞.

INIT (S(A)): ai = ⊥ for any i .

UPDATE (S(A), u): for every i , with 1 ≤ i ≤ k, if ri (ai ) > ri (u), ai
is replaced with u.

ESTIMATE (S(A), S(B)): the estimate is |{j | aj = bj}|/k .
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k-min can be seen as k independent bottom-1 sketches defined
with respect to k independent permutations.

k-min corresponds to sampling with replacement.

bottom-k corresponds to sampling without replacement.

=⇒ bottom-k has less variance than k-min.
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k-partition (Ping Li et al. 2012)

A k-partition sketch first maps items uniformly at random to k
buckets and then it includes the item with smallest rank in each
bucket.

Similar to the Flajolet-Martin paradigm, reused in the context
of Jaccard estimation similarity in (Li et al. 2012).

A sketch S(A) is a sequence of exactly k entries, a1, . . . , ak ,
where each entry can be an element of A or ⊥.
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k-partition

Given a partition function p : U → {1, 2, . . . , k} and a ranking
r : U → {1, 2, . . . , n}, setting r(⊥) =∞:

INIT (S(A)): ai = ⊥ for any i .

UPDATE (S(A), u): if r(u) < r(ap(u)), then ap(u) is replaced by u in
S(A).

ESTIMATE (S(A), S(B)): ratio between |{j | aj = bj 6= ⊥}| and
k − |{j | aj = bj = ⊥}|.
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Ping Li and Arnd Christian Konig. b-bit minwise hashing. In
WWW, pages 671-680, 2010.

Ping Li, Art B. Owen, and Cun-Hui Zhang. One permutation
hashing. In NIPS, pages 3122-3130, 2012.

Andrea Marino Probabilistic Counting



Michael Mitzenmacher, Rasmus Pagh, and Ninh Pham.
Efficient estimation for high similarities using odd sketches. In
WWW, pages 109-118, 2014.

Edith Cohen. All-distances sketches, revisited: Hip estimators
for massive graphs analysis. PODC, 2014.
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Part III

Applications for Local Triangle Counting

Andrea Marino Probabilistic Counting



Applications for Local Triangle Counting

Given an edge u, v the number of triangles involving this edge is
N(u) ∩ N(v).
The number of triangles involving a node u is

∑

v∈N(u)

|N(u) ∩ N(v)|
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Since

J(A,B) =
|A ∩ B|
|A ∪ B| =

|A ∩ B|
|A|+ |B| − |A ∩ B|

then

|N(u) ∩ N(v)| =
(d(u) + d(v)) · J(N(u),N(v))

J(N(u),N(v)) + 1

Becchetti et al. (TKDD 2010) estimate J(N(u),N(v)) by using
k-min and use the formula above to approximate |N(u) ∩ N(v)|.

Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides
Gionis. Efficient algorithms for large-scale local triangle
counting. TKDD, 4(3), 2010.
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Current line of research

Approximating Cardinality of Set Intersection

Rasmus Pagh, Morten Stoockel, and David P. Woodruff. Is
Min-Wise Hashing Optimal for Summarizing Set Intersection?.
PODS 2014.
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