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Probabilistic counting

A sketch S(A) is a compressed form of representation for a given
set A providing the following operations:

INIT (S5(A)) How a sketch S(A) for A is initialized.

UPDATE (S(A), u) How a sketch S(A) for A modifies when an
element u is added to A.

UNION (S(A),S(B)) Given two sketches for A and B, provide a
sketch for AU B.

SIZE (S5(A)) Estimate the number of distinct elements of A.
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Properties

o Given two sketches S(A) and S(B) for any two sets A and B,
S(AU B) can be computed just by looking at S(A) and S(B),
i.e.. C=UNION (S(A),S(B)) = (INIT (C); for u e AU B,
UPDATE (C, u) ; RETURN C )

o If we call UPDATE (S(A), u) and we already did UPDATE
(5(A), u) with the same u the sketch does not modify, e.g.
the operation SIZE (S(A)) return the same value.

[m} = =
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k-min approach (Cohen 1994)

A k-min sketch includes the item of smallest rank in each of k
independent permutations.
@ In this case a sketch S(A) is a sequence of exactly k entries,
ai,...,ak, where each entry can be an element of A or L.
@ Let ri,rm,...,rg beranks r; : U — {1/n,2/n,3/n,...,1},
setting r(L) = oc.
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k-min approach

INIT (S5(A)): a; = L for any i.

UPDATE (S(A), u): for every i, with 1 < i < k, if rj(a;) > ri(u), a;
is replaced with w.

UNION (S5(A),S(B)): return {c1,...,ck} such that
ci = argmin{r(a;), r(bi)}.

SIZE (S(A)): return k/>_, csa) r(ai) — 1

Choosing k = ©(e~2log n) the relative error is bounded by ¢ w.h.p.
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[4 Edith Cohen: Estimating the Size of the Transitive Closure in
Linear Time. FOCS 1994: 190-200

[4 Edith Cohen: Size-Estimation Framework with Applications to
Transitive Closure and Reachability. J. Comput. Syst. Sci.
55(3): 441-453 (1997)
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bottom-k approach (Cohen & Kaplan 2007)

Given
@ a ranking (i.e., a bijective function) r : U — {1/n,2/n,...,1}
@ and a subset A of U
we denote as
@ Hi(A) the first k elements of A according to r and
@ with ks, (A) the rank of the k-th element of A according to r

A bottom-k sketch includes the k items with smallest rank in a
single permutation, that is, Hx(A).
In this case a sketch is simply a subset of the set.
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bottom-k approach

Given arank r: U — {1/n,2/n,3/n,...,1}:

INIT (5(A)): S(A) is the empty set.

UPDATE (S(A), u): If |S(A)| < k, add u to S(A). Otherwise, if
r(max(S(A))) > r(u), replace max(S(A)) with u.

UNION (S5(A),S(B)): the first k elements of the set S(A) U S(B),
that is Hx(S(A) U S(B))

SIZE (S(A)): return (k — 1)/ken(S(A))
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[4 Edith Cohen, Haim Kaplan: Summarizing data using bottom-k
sketches. PODC 2007: 225-234

[4 Edith Cohen, Haim Kaplan: Bottom-k sketches: better and
more efficient estimation of aggregates. SIGMETRICS 2007:
353-354

[4 Edith Cohen, Haim Kaplan: Tighter estimation using bottom
k sketches. PVLDB 1(1): 213-224 (2008)
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LoglLog counters (Flajolet & Martin 1985)

@ In this case a sketch S(A) is a sequence of exactly k entries,
ai,...,ak, where each entry is a sequence of m bits.

e Given k partition functions p; : U — {1,2,..., m}, for each j,
with 1 < j < m the bit a; j = 1 if there exists an element in A
that is mapped to j according to p;, O otherwise.

@ Each partition function is such that randomly 1/2 of the
elements are mapped to 1, 1/4 of the elements are mapped to
2, ..., 1/2" of the elements are mapped to i.
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Loglog counters

INIT (S(A)): a;j =0 for any /,j.
UPDATE (S(A), u): for any i, let pi(u) = j, set a;j to 1.

UNION (S(A),S(B)): return {ci, ..., ck} where ¢; is the OR
between a; and b;.

SIZE (S(A)): let b the average position of the least zero bits in
ai,...,ak, return 2°/.77351.
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ANF (Palmer et al. 2002)

Palmer, Gibbons, and Faloutsos (KDD 2002) applied this paradigm
in the distance distribution context.

// Set M(z,0) = {z}
FOR each node x DO
M (z,0) = concatenation of k bitmasks v
each with 1 bit set (P(bit i) = .57+1)
FOR each distance h starting with 1 DO
FOR each node x DO M(z,h) = M(z,h — 1)
// Update M(z, h) by addmg one step
FOR each edge (z,y) D
M(z,h) = (M(x h) BITWISE-OR M (y, h — 1))
// Compute the estimates for this h
FOR each node x DO N
Individual estimate I'N (x,h) = (2°)/.77351
where b is the average position of the least zero bits
in the k bitmasks

The estimate is: N(h) = 31 « IN(z,h)

Figure 2: Introduction to the basic ANF algorithm

z | M(z,0) | M(1) IN(z,1) | M(z,2) N(z,3)
0 | 100100001 | 110110 101 1.1 110111101 5.2
1 [ 010100100 | 110101101 3.25 110111101 5.2
2 | 100001100 | 110101100  3.25 110111101 5.2
31100100100 | 100111 100 4.1 110111101 5.2
4 | 100010100 | 100110101 3.25 110111101 5.2

Figure 3: Simple example of basic ANF
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HyperLoglLog (Flajolet et al. 2007) and HyperANF (Boldi
et al. 2011)

Let & be a tixed domain and A : % — 2 be a hash function mapping each element of % into
an infinite binary sequence. The function is fixed with the only assumption that “bits of hashed
values are assumed to be independent and to have each probability 4 of occurring” [FFGMOT].
For a given o € 2%, let hy(z) denote the sequence made by the leftmost ¢ bits of A(z), and
h(x) be the sequence of remaining bits of x; h; is identified with its corresponding integer value in
the range {0,1, ! —1}. Moreover, given a binary sequence w, we let p* (w) be the number of
leading zeroes in w plus one® (e.g., p*(00101) = 3). Unless otherwise specified, all logarithms are

Algorithm 1 The Hyperloglog counter as described in [FFGMO07]: it allows one to count (approx-
imately) the number of distinct elements in a stream. a,, is a constant whose value depends on m
and is provided in [FFGMO07]. Some technical details have been simplified.

0 h:Z — 2, ahash function from the domain of items
1 M[-] the counter, an array of m = 2" registers
2 (indexed from 0) and set to —oo

3

4 function add(M: counter,z: item)

5 begin

6 i« hy(2);

7 Mi] + max{M][i], p* (h*(x)) }

8 end; // function add

9

10 function size(M: counter)

11 begin

2z (T 2*“’”1)71;

13 return E = a,,m%Z

14 end; // function size

15

16 foreach item x seen in the stream begin

17 add(M,x)

18 end;

19  print size(M)

Andrea Marino Probabilistic Counting



Flajolet, P.; Nigel Martin, G. (1985). Probabilistic counting algorithms for
data base applications. Journal of Computer and System Sciences 31 (2):
182.

Philippe Flajolet, Eric Fusy, Olivier Gandouet, Frederic Meunier (2007).
Hyperloglog: The analysis of a near-optimal cardinality estimation
algorithm. Discrete Mathematics and Theoretical Computer Science:
127146

Christopher R. Palmer, Phillip B. Gibbons, Christos Faloutsos: ANF: a fast
and scalable tool for data mining in massive graphs. KDD 2002: 81-90

Kane, D. M.; Nelson, J.; Woodruff, D. P. (2010). An optimal algorithm
for the distinct elements problem. Proceedings of the twenty-ninth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems
of data - PODS '10. p. 41.

Paolo Boldi, Marco Rosa, Sebastiano Vigna: HyperANF: approximating
the neighbourhood function of very large graphs on a budget. WWW
2011: 625-634

Lars Backstrom, Paolo Boldi, Marco Rosa, Johan Ugander, Sebastiano
Vigna: Four degrees of separation. WebSci 2012: 33-42

Andrea Marino Probabilistic Counting



a
u]
v
a
v
a
it
v
a
it
v
il

Hac



Min-Hash sketches are a family of statistical technique to
represent approximately in little space a subset of items of a
universe U.

Cohen (2014) systematizes the description of Min-Hash
sketches dividing them in three classes, k-min, bottom-k,
k-partition, where the parameter k determines the sketch size.
Some of these techniques were devised to count the distinct
elements of a stream, exploiting the property that by merging
the sketches of two streams we can obtain an estimate of
their concatenation.

Some others, like k-min (Broder 1998) were focused on the
estimation of the Jaccard index.
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Jaccard coefficient

Given two sets A and B, their Jaccard index (also called Jaccard
similarity coefficient) is defined as

|AN B
J(A, B) = AUB|

@ It is a very commonly used measure of similarity, ranging from
0 (for disjoint sets) to 1 (for identical sets).

@ The previous techniques can be used or adapted to estimate
Jaccard similarity.

@ It has a number of applications, for example in information
retrieval to estimate document similarity (Broder 1997).

[4 A. Broder. On the Resemblance and Containment of
Documents. SEQUENCES '97 Proceedings of the Compression
and Complexity of Sequences 1997.
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Notations and Operations

Given:
@ a ranking (i.e., a bijective function) r : U — {1,2,...,n}
@ and a subset A of U,

we denote

e with Hy(A) the first k elements of A according to r (all the
elements of A, if |A| < k), and

e with k¢ (A) the ranking of the k-th element of A (kw(A) = n,
if |JA| < k), and

@ with max(A) the element having maximum rank in A.
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For each method we will revise and specify:
INIT (S(A)) How a sketch S(A) for A is initialized.

UPDATE (S(A), u) How a sketch S(A) for A modifies when an
element v is added to A.

ESTIMATE (S(A),S(B)) given two sketches, S(A) and S(B), how
the Jaccard Index is estimated.
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Threshold Sampling

Given
e arank r: U—{1,...,n} and
@ a threshold t € [1, n],
the sketch is the set of all the elements a € A satisfying r(a) < t.
@ The size of the sketch cannot predicted in advance; for this
reason, the other sketches are usually preferred in the
applications.
INIT (S(A)): S(A) is the empty set.
UPDATE (S(A), u): If r(u) < t add u to S(A).
ESTIMATE (S(A), S(B)): The estimate is J(S(A), S(B)).
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bottom-k approach (Cohen & Kaplan 2007)

@ A bottom-k sketch includes the k items with smallest rank in
a single permutation, that is, Hx(A).

@ lIts application in the context of Jaccard estimation similarity
using hash has been studied by Thorup (STOC 2013).

@ In this case a sketch is simply a subset of the set.
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bottom-k approach

Given a rank r: U — {1,2,...,n} (a bijection):

INIT (S(A)): S(A) is the empty set.

UPDATE (S(A), u): If |[S(A)| < k, add u to S(A). Otherwise, if
r(max(S(A))) > r(u), replace max(S(A)) with u.

ESTIMATE (S(A), S(B)): The estimate is

|H (AU B) N Hk(A) N Hi(B)]
k
_ |H(5(A) U 5(B)) N S(A) N 5(B))|
p .
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A similar process with balls and bins

Balls and Bins with R red, W white, and B bicolor. Let N be
R+ W + B.

Sample k balls without replacement.

Let X be the number of balls bicolor sampled

Approximate the quantity R+75/+B as %

Theorem
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Hypergeometric Distribution

@ Distribution that describes the probability of h successes in n
draws, without replacement, from a finite population of size N
containing exactly H successes.

@ In contrast, the binomial distribution describes the probability
of k successes in n draws with replacement.

b ] <:')(<NNH):,:’>

The meanisn-H/N

[m} = =
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Edith Cohen, Haim Kaplan: Summarizing data using bottom-k
sketches. PODC 2007: 225-234

Edith Cohen, Haim Kaplan: Bottom-k sketches: better and
more efficient estimation of aggregates. SIGMETRICS 2007:
353-354

Edith Cohen, Haim Kaplan: Tighter estimation using bottom
k sketches. PVLDB 1(1): 213-224 (2008)

Edith Cohen, Haim Kaplan: Leveraging discarded samples for
tighter estimation of multiple-set aggregates.
SIGMETRICS/Performance 2009: 251-262

Mikkel Thorup: Bottom-k and priority sampling, set similarity
and subset sums with minimal independence. STOC 2013:
371-380
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k-min approach (Broder 1997)

@ A k-min sketch includes the item of smallest rank in each of k
independent permutations.

@ In this case a sketch S(A) is a sequence of exactly k entries,
ai,...,ak, where each entry can be an element of A or L.
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Introduced for cardinality estimation in (Cohen 1994). Applied for
Jaccard similarity estimation by (Broder 1997) and studied in
(Broder et al. 1998).

[4 Edith Cohen: Estimating the Size of the Transitive Closure in
Linear Time. FOCS 1994: 190-200
[4 Edith Cohen: Size-Estimation Framework with Applications to

Transitive Closure and Reachability. J. Comput. Syst. Sci.
55(3): 441-453 (1997)

[ A. Broder. On the Resemblance and Containment of
Documents. Proceeding SEQUENCES '97 Proceedings of the
Compression and Complexity of Sequences 1997.

[4 Andrei Z. Broder, Moses Charikar, Alan M. Frieze, Michael
Mitzenmacher: Min-Wise Independent Permutations
(Extended Abstract). STOC 1998: 327-336
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k-min approach

Let ri,ra, ..., rx beranks rj : U — {1/n,2/n,3/n,... 1}, setting

r(L) = occ.

INIT (S(A)): aj = L for any i.

UPDATE (S(A), u): for every i, with 1 < i < k, if rj(a;) > ri(u), a;
is replaced with w.

ESTIMATE (S(A),S(B)): the estimate is |{j | a; = b;}|/k.
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k-min can be seen as k independent bottom-1 sketches defined
with respect to k independent permutations.

J

@ k-min corresponds to sampling with replacement.
@ bottom-k corresponds to sampling without replacement.

— bottom-k has less variance than k-min.
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k-partition (Ping Li et al. 2012)

A k-partition sketch first maps items uniformly at random to k
buckets and then it includes the item with smallest rank in each
bucket.
@ Similar to the Flajolet-Martin paradigm, reused in the context
of Jaccard estimation similarity in (Li et al. 2012).

@ A sketch S(A) is a sequence of exactly k entries, ag, ..., a,
where each entry can be an element of A or L.
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k-partition

Given a partition function p: U — {1,2,..., k} and a ranking

r:U—{1,2,...,n}, setting r(L) = oc:

INIT (S(A)): aj = L for any i.

UPDATE (S(A), u): if r(u) < r(ap)), then a,,) is replaced by v in
S(A).

ESTIMATE (S(A),S(B)): ratio between |{j | a; = b; # L}| and
k=1Ula= b= L}
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[4 Ping Li and Arnd Christian Konig. b-bit minwise hashing. In
WWW, pages 671-680, 2010.

[4 Ping Li, Art B. Owen, and Cun-Hui Zhang. One permutation
hashing. In NIPS, pages 3122-3130, 2012.
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[ Michael Mitzenmacher, Rasmus Pagh, and Ninh Pham.
Efficient estimation for high similarities using odd sketches. In
WWW, pages 109-118, 2014.

[4 Edith Cohen. All-distances sketches, revisited: Hip estimators
for massive graphs analysis. PODC, 2014.
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Applications for Local Triangle Counting

Given an edge u, v the number of triangles involving this edge is
N(u) N N(v).
The number of triangles involving a node u is

>IN N N(v)|

veN(u)
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Since

_|AnB| _ AN B
AA.B)= IAUB| ~ |Al+|B|—|AN B
hen
t V() 1 ()| = L)+ d(v)) - JN(u), Nv))

J(N(u),N(v))+1
Becchetti et al. (TKDD 2010) estimate J(N(u), N(v)) by using
k-min and use the formula above to approximate |N(u) N N(v)|.

[ Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides
Gionis. Efficient algorithms for large-scale local triangle
counting. TKDD, 4(3), 2010.
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Current line of research

Approximating Cardinality of Set Intersection

[4 Rasmus Pagh, Morten Stoockel, and David P. Woodruff. Is
Min-Wise Hashing Optimal for Summarizing Set Intersection?.
PODS 2014.
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