In this lecture we will be interested in solving the following problem, known as full-text searching or substring searching.

The substring-search problem. Given a text string $T[1,n]$, drawn from an alphabet of size σ, retrieve (or just count) all text positions where a query pattern $P[1,p]$ occurs as a substring of T.

It is evident that this problem can be solved by brute-forcedly comparing P against every substring of T, thus taking $O(np)$ time in the worst case. But it is equivalently evident that this scan-based approach is unacceptably slow when applied to massive text collections subject to a massive number of queries, which is the scenario involving genomic databases or search engines. This suggests the usage of a so called indexing data structure which is built over T before that searches start. A setup cost is required for this construction, but this cost is amortized over the subsequent pattern searches, thus resulting convenient in a quasi-static environment in which T is changed very rarely.

In this lecture we will describe two main approaches to substring searching, one based on arrays and another one based on trees, that mimic what we have done for the prefix-search problem. The two approaches hinge on the use of two fundamental data structures: the suffix array (shortly SA) and the suffix tree (shortly ST). We will describe in much detail those data structures because their use goes far beyond the context of full-text search.

8.1 Notation and terminology

We assume that text T ends with a special character $T[n] = \$, which is smaller than any other alphabet character. This ensures that text suffixes are prefix-free and thus no one is a prefix of another suffix. We use suff_i to denote the i-th suffix of text T, namely the substring $T[i,n]$. The following observation is crucial:

> If $P = T[i, i+p-1]$, then the pattern occurs at text position i and thus we can state that P is a prefix of the i-th text suffix, namely P is a prefix of the string suff_i.

© Paolo Ferragina, 2009-2012
As an example, if \(P = \text{“siss”} \) and \(T = \text{“mississippi$”} \), then \(P \) occurs at text position 4 and indeed it prefixes the suffix \(\text{suff}_{4} = T[4, 12] = \text{“sissippi$”} \). For simplicity of exposition, and for historical reasons, we will use this text as running example; nevertheless we point out that a text may be an arbitrary sequence of characters, hence not necessarily a single word.

Given the above observation, we can form with all text suffixes the dictionary \(\text{SUF}(T) \) and state that searching for \(P \) as a substring of \(T \) boils down to searching for \(P \) as a prefix of some string in \(\text{SUF}(T) \). In addition, since there is a bijective correspondence among the text suffixes prefixed by \(P \) and the pattern occurrences in \(T \), then

1. the suffixes prefixed by \(P \) occur contiguously into the lexicographically sorted \(\text{SUF}(T) \),
2. the lexicographic position of \(P \) in \(\text{SUF}(T) \) immediately precedes the block of suffixes prefixed by \(P \).

An attentive reader may have noticed that these are the properties we deployed to efficiently support prefix searches. And indeed the solutions known in the literature for efficiently solving the substring-search problem hinge either on array-based data structures (i.e. the Suffix Array) or on trie-based data structures (i.e. the Suffix Tree). So the use of these data structures in pattern searching is pretty immediate. What is challenging is the efficient construction of these data structures and their mapping onto disk to achieve efficient I/O-performance. These will be the main issues dealt with in this lecture.

<table>
<thead>
<tr>
<th>Text suffixes</th>
<th>Indexes</th>
<th>Sorted Suffixes</th>
<th>SA</th>
<th>Lcp</th>
</tr>
</thead>
<tbody>
<tr>
<td>mississippi$</td>
<td>1</td>
<td>$</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>ississippi$</td>
<td>2</td>
<td>i$</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>ssissippi$</td>
<td>3</td>
<td>ippi$</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>sissippi$</td>
<td>4</td>
<td>issippi$</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>issippi$</td>
<td>5</td>
<td>ississippi$</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>sippi$</td>
<td>6</td>
<td>mississippi$</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>sippi$</td>
<td>7</td>
<td>pipi$</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>ippi$</td>
<td>8</td>
<td>ppi$</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>ppi$</td>
<td>9</td>
<td>sippi$</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>pi$</td>
<td>10</td>
<td>ssissippi$</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>i$</td>
<td>11</td>
<td>ssippi$</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>$</td>
<td>12</td>
<td>ssissippi$</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>

FIGURE 8.1: SA and lcp array for the string \(T = \text{“mississippi$”} \).

8.2 The Suffix Array

The suffix array for a text \(T \) is the array of pointers to all text suffixes ordered lexicographically. We use the notation \(SA(T) \) to denote the suffix array built over \(T \), or just \(SA \) if the indexed text is clear from the context. Because of the lexicographic ordering, \(SA[i] \) is the \(i \)-th smallest text suffix, so we have that \(\text{suff}_{SA[1]} < \text{suff}_{SA[2]} < \cdots < \text{suff}_{SA[n]} \), where \(<\) is the lexicographical order between strings. For space reasons, each suffix is represented by its starting position in \(T \) (i.e. an integer). \(SA \) consists of \(n \) integers in the range \([1, n]\) and hence it occupies \(O(n \log n) \) bits.
Another useful concept is the longest common prefix between two consecutive suffixes $s_{SA[i]}$ and $s_{SA[i+1]}$. We use lcp to denote the array of integers representing the lengths of those lcps. Array lcp consists of $n-1$ entries containing values smaller than n. There is an optimal and non-obvious linear-time algorithm to build the lcp-array which will be detailed in Section 8.2.3. The interest in lcp rests in its usefulness to design efficient/optimal algorithms to solve various search and mining problems over strings.

8.2.1 The substring-search problem

We observed that this problem can be reduced to a prefix search over the string dictionary $SUF(T)$, so it can be solved by means of a binary search for P over the array of text suffixes ordered lexicographically, hence $SA(T)$. Figure 8.1 shows the pseudo-code which coincides with the classic binary-search algorithm specialized to compare strings rather than numbers.

Algorithm 8.1 SubstringSearch($P, SA(T)$)

1: $L = 1, R = n$
2: while ($L \neq R$) do
3: $M = [(L + R)/2]$;
4: if $(strcmp(P, suff_M) > 0)$ then
5: $L = M + 1$;
6: else
7: $R = M$
8: end if
9: end while
10: return $(strcmp(P, suff_L) == 0)$;

A binary search in SA requires $O(\log n)$ string comparisons, each taking $O(p)$ time in the worst case.

Lemma 8.1 Given the text $T[1, n]$ and its suffix array, we can count the occurrences of a pattern $P[1, p]$ in the text taking $O(p \log n)$ time and $O(\log n)$ memory accesses in the worst case. Retrieving the positions of these occ occurrences takes additional $O(occ)$ time. The total required space is $n(\log n + \log \sigma)$ bits, where the first term accounts for the suffix array and the second term for the text.

Figure 8.2 shows a running example, which highlights an interesting property: the comparison between P and $suff_a$ does not need to start from their initial character. In fact one could exploit the lexicographic sorting of the suffixes and skip the characters comparisons that have already been carried out in previous iterations. This can be done with the help of three arrays:

- the $lcp[1, n-1]$ array;
- two other arrays $Llcp[1, n-1]$ and $Rlcp[1, n-1]$ which are defined for every triple (L, M, R) that may arise in the inner loop of a binary search. We define $Llcp[M] = lcp(suff_{SA[L]}, suff_{SA[M]})$ and $Rlcp[M] = lcp(suff_{SA[M]}, suff_{SA[R]})$, namely $Llcp[M]$ accounts for the prefix shared by the leftmost suffix $suff_{SA[L]}$ and the middle suffix $suff_{SA[M]}$ of the range currently explored by the binary search; $Rlcp[M]$ accounts for the prefix shared by the rightmost suffix $suff_{SA[R]}$ and the middle suffix $suff_{SA[M]}$ of that range.
We notice that each triple \((L, M, R)\) is uniquely identified by its midpoint \(M\) because the execution of a binary search defines actually a hierarchical partition of the array \(SA\) into smaller and smaller sub-arrays delimited by \((L, R)\) and thus centered in \(M\). Hence we have \(O(n)\) triples overall, and these three arrays occupy \(O(n)\) space in total.

We can build arrays \(Llcp\) and \(Rlcp\) in linear time by exploiting two different approaches. We can deploy the observation that the \(1cp[i, j]\) between the two suffixes \(suff_{SA[i]}\) and \(suff_{SA[j]}\) can be computed as the minimum of a range of \(1cp\)-values, namely \(1cp[i, j] = \min_{k=i-\ldots,j-1}1cp[k]\). By associativity of the min we can split the computation as \(1cp[i, j] = \min[1cp[i, k], 1cp[k, j]]\) where \(k\) is any index in the range \([i, j]\), so in particular we can set \(1cp[L, R] = \min[1cp[L, M], 1cp[M, R]]\). This implies that the arrays \(Llcp\) and \(Rlcp\) can be computed via a bottom-up traversal of the triplets \((L, M, R)\) in \(O(n)\) time. Another way to deploy the previous observation is to compute \(1cp[i, j]\) on-the-fly via a Range-Minimum Data structure built over the array \(1cp\) (see Section 8.4.1). All of these approaches take \(O(n)\) time and space, and thus they are optimal.

We are left with showing how the binary search can be speeded up by using these arrays. Consider a binary-search iteration on the sub-array \(SA[L, R]\), and let \(M\) be the midpoint of this range (hence \(M = (L + R)/2\)). A lexicographic comparison between \(P\) and \(suff_{SA[M]}\) has to be made in order to choose the next search-range between \(SA[L, M]\) and \(SA[M, R]\). The goal is to compare \(P\) and \(suff_{SA[M]}\) without starting necessarily from their first character, but taking advantage of the previous binary-search steps in order to infer, hopefully in constant time, their lexicographic comparison.

Surprisingly enough this is possible and requires to know, in addition to \(Llcp\) and \(Rlcp\), the values \(l = 1cp(P, suff_{SA[i]}\) and \(r = 1cp(P, suff_{SA[j]}\) which denote the number of characters the pattern \(P\) shares with the strings at the extremes of the range currently explored by the binary search. At the first step, in which \(L = 1\) and \(R = n\), these two values can be computed in \(O(p)\) time by comparing character-by-character the involved strings. At a generic step, we assume that \(l\) and \(r\) are known inductively, and show below how the binary-search step can preserve their knowledge after that we move onto \(SA[L, M]\) or \(SA[M, R]\).

So let us detail the implementation of a generic binary-search step. We know that \(P\) lies between \(suff_{SA[i]}\) and \(suff_{SA[j]}\), so \(P\) surely shares \(1cp[L, R]\) characters with these suffixes given that any string (and specifically, all suffixes) in this range must share this number of characters (given that they are lexicographically sorted). Therefore the two values \(l\) and \(r\) are larger (or equal) than \(k\), as well as it is larger (or equal) to \(k\) the number of characters \(m\) that the pattern \(P\) shares with \(suff_{SA[M]}\).
Searching Strings by Substring

8-5

We could then take advantage of this last inequality to compare \(P \) with \(\text{suff}_{SA[M]} \) starting from their \((k + 1)\)-th character. But actually we can do better because we know \(r \) and \(l \), and these values can be significantly larger than \(k \), thus more characters of \(P \) have been already involved in previous comparisons and so they are known.

We distinguish two main cases. If \(l = r \) then all suffixes in the range \([L, R]\) share (at least) \(l \) characters (hence \(\text{suff}_{SA[M]} \) too) which are equal to \(P[1, l] \). So the comparison between \(P \) and \(\text{suff}_{SA[M]} \) can start from their \((l + 1)\)-th character, which means that we are advancing in the scanning of \(P \). Otherwise (i.e. \(l \neq r \)), a more complicated test has to be done. Consider the case where \(l > r \) (the other being symmetric). Here \(P \) shares more characters (i.e. \(l > r \)) with \(\text{suff}_{SA[L]} \) than with \(\text{suff}_{SA[R]} \); moreover, it is surely \(r = k \) because \(P[1, r] \) is shared by both \(\text{suff}_{SA[L]} \) and \(\text{suff}_{SA[R]} \) and \(k \) is the longest shared prefix by these two suffixes, by definition.

So, given that \(l > r \) and we do not want to re-scan characters of \(P \) that have been already seen (namely characters in \(P[1, l] \)), we define our algorithm in such a way that the order between \(P \) and \(\text{suff}_{SA[M]} \) can be inferred either comparing characters in \(P[l + 1, n] \), or comparing the values \(l \) and \(\text{Llcp}[M] \) (which give us information about \(P[1, l] \)). We can thus distinguish three cases:

- If \(l < \text{Llcp}[M] \), then \(P \) is greater than \(\text{suff}_{SA[M]} \) and we can set \(m = l \). In fact, by induction, \(P > \text{suff}_{SA[L]} \) and their mismatch character lies at position \(l + 1 \). By definition of \(\text{Llcp}[M] \) and the hypothesis, we have that \(\text{suff}_{SA[L]} \) shares more than \(l \) characters with \(\text{suff}_{SA[M]} \).

So the mismatch between \(P \) and \(\text{suff}_{SA[M]} \) is the same as it is between \(P \) and \(\text{suff}_{SA[L]} \), hence their comparison gives the same answer—i.e. \(P > \text{suff}_{SA[M]} \) — and the search can thus continue in the subrange \(SA[L, M] \). We remark that this case does not induce any character comparison.

- If \(l > \text{Llcp}[M] \), this case is similar as the previous one. We can conclude that \(P \) is smaller than \(\text{suff}_{SA[M]} \) and it is \(m = \text{Llcp}[M] \). So the search continues in the subrange \(SA[L, M] \), without additional character comparisons.

- If \(l = \text{Llcp}[M] \), then \(P \) shares \(l \) characters with \(\text{suff}_{SA[L]} \) and \(\text{suff}_{SA[M]} \). So the comparison between \(P \) and \(\text{suff}_{SA[M]} \) can start from their \((l + 1)\)-th character. Eventually we determine \(m \) and their lexicographic order. Here some character comparisons are executed, but the knowledge about \(P \)’s characters advanced too.

It is clear that every binary-search step either advances the comparison of \(P \)’s characters, or it does not compare any character but halves the range \([L, R]\). The first case can occur at most \(p \) times, the second case can occur \(O(\log n) \) times. We have therefore proved the following.

Lemma 8.2 Given the three arrays \(1cp \), \(\text{Llcp} \) and \(\text{Rlcp} \) built over a text \(T[1, n] \), we can count the occurrences of a pattern \(P[1, p] \) in the text taking \(O(p + \log n) \) time in the worst case. Retrieving the positions of these \(occ \) occurrences takes additional \(O(occ) \) time. The total required space is \(O(n) \).

Proof We remind that searching for all strings having the pattern \(P \) as a prefix requires two lexicographic searches: one for \(P \) and the other for \(P\# \), where \(\# \) is a special character larger than any other alphabet character. So \(O(p + \log n) \) character comparisons are enough to delimit the range \(SA[i, j] \) of suffixes having \(P \) as a prefix. It is then easy to count the pattern occurrences in constant time, as \(occ = j - i + 1 \), or print all of them in \(O(occ) \) time. ■
8.2.2 The LCP-array and its construction

Surprisingly enough the longest common prefix array \(lcp[1, n-1] \) can be derived from the input string \(T \) and its suffix array \(SA[1, n] \) in optimal linear time.\(^1\) This time bound cannot be obtained by the simple approach that compares character-by-character the \(n-1 \) contiguous pairs of text suffixes in \(SA \); as this takes \(\Theta(n^2) \) time in the worst case. The optimal \(O(n) \) time needs to avoid the re-scanning of the text characters, so some property of the input text has to be proved and deployed in the design of an algorithm that achieves this complexity. This is exactly what Kasai \(et al \) did in 2001 [8], their algorithm is elegant, deceptively simple, and optimal in time and space.

\[
\begin{array}{c|c|c}
\text{Sorted Suffixes} & SA & SA \text{ positions} \\
\hline
abc\ldots & j-1 & p-1 \\
abch\ldots & i-1 & p \\
\ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots \\
bcde\ldots & j & \ldots \\
\ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots \\
bch\ldots & k & q-1 \\
bhci\ldots & i & q \\
\end{array}
\]

FIGURE 8.3: Relation between suffixes and \(lcp \) values in the Kasai’s algorithm. Suffixes are shown only with their starting characters, the rest is indicated with ... for simplicity.

For the sake of presentation we will refer to Figure 8.3 which illustrates clearly the main algorithmic idea. Let us concentrate on two consecutive suffixes in the text \(T \), say \(suffix_{p-1} \) and \(suffix_p \), which occur at positions \(p \) and \(q \) in the suffix array \(SA \). And assume that we know inductively the value of \(lcp[p-1] \), storing the longest common prefix between \(SA[p-1] = suffix_{p-1} \) and the next suffix \(SA[p] = suffix_p \) in the lexicographic order. Our goal is to show that \(lcp[q-1] \) storing the longest common prefix between suffix \(SA[q-1] = suffix_k \) and the next ordered suffix \(SA[q] = suffix_i \), which interests us, can be computed without re-scanning these suffixes from their first character but can start where the comparison between \(SA[p-1] \) and \(SA[p] \) ended. This will ensure that re-scanning of text characters is avoided, precisely it is avoided the re-scanning of \(suffix_{p-1} \), and as a result we will get a linear time complexity.

We need the following property that we already mentioned when dealing with prefix search, and that we restate here in the context of suffix arrays.

FACT 8.1 For any position \(x < y \) it holds \(lcp(suffix_{SA[x-1]}, suffix_{SA[y]}) \geq lcp(suffix_{SA[x]}, suffix_{SA[y]}) \).

Proof This property derives from the observation that suffixes in \(SA \) are ordered lexicographically, so that, as we go farther from \(SA[y] \) we reduce the length of the shared prefix.

\(^{1}\)Recall that \(lcp[i] = lcp(suffix_{SA[i]}, suffix_{SA[i+1]}) \) for \(i < n \).
Let us now refer to Figure 8.3, concentrate on the pair of suffixes \(\text{suffix}_j \) and \(\text{suffix}_{j-1} \), and take their next suffixes \(\text{suffix}_j \) and \(\text{suffix}_{j-1} \) in \(T \). There are two possible cases: Either they share some characters in their prefix, i.e. \(\text{lcp}[p - 1] > 0 \), or they do not. In the former case we can conclude that, since lexicographically \(\text{suffix}_{j-1} < \text{suffix}_j \), the next suffixes preserve that lexicographic order, so \(\text{suffix}_j < \text{suffix}_{j-1} \), and moreover \(\text{lcp}(\text{suffix}_j, \text{suffix}_{j-1}) = \text{lcp}[p - 1] - 1 \). In fact, the first shared character is dropped, given the step ahead from \(j - 1 \) (resp. \(i - 1 \)) to \(j \) (resp. \(i \)) in the starting positions of the suffixes, but the next \(\text{lcp}[p - 1] - 1 \) shared characters (possibly none) remain, as well as remain their mismatch characters that drives the lexicographic order. In the Figure above, we have \(\text{lcp}[p - 1] = 3 \) and the shared prefix is \(\text{abc} \), so when we consider the next suffixes their lcp is \(\text{bc} \) of length 2, their order is preserved (as indeed \(\text{suffix}_j \) occurs before \(\text{suffix}_{j-1} \)), and now they lie not adjacent in \(SA \).

FACT 8.2 If \(\text{lcp}(\text{suffix}_{SA[i-1]}, \text{suffix}_{SA[i+1]}) > 0 \) then:

\[
\text{lcp}(\text{suffix}_{SA[i-1]}, \text{suffix}_{SA[i+1]}) = \text{lcp}(\text{suffix}_{SA[i-1]}, \text{suffix}_{SA[i+1]}) - 1
\]

By Fact 8.1 and Fact 8.2, we can conclude the key property deployed by Kasai’s algorithm: \(\text{lcp}[q - 1] \geq \max\{\text{lcp}[p - 1] - 1, 0\} \). This algorithmically shows that the computation of \(\text{lcp}[q - 1] \) can take full advantage of what we compared for the computation of \(\text{lcp}[p - 1] \). By adding to this the fact that we are processing the text suffixes rightward, we can conclude that the characters involved in the suffix comparisons move themselves rightward and, since re-scanning is avoided, their total number is \(O(n) \). A sketch of the Kasai’s algorithm is shown in Figure 8.2, where we make use of the inverse suffix array, denoted by \(SA^{-1} \), which returns for every suffix its position in \(SA \).

Referring to Figure 8.3, we have that \(SA^{-1}[i] = p \).

Algorithm 8.2 LCP-BUILD(char *T, int n, char **SA)

1: \(h = 0; \)
2: \textbf{for} \((i = 1; i \leq n, i++) \) \textbf{do}
3: \(q = SA^{-1}[i]; \)
4: \textbf{if} \((q > 1) \) \textbf{then}
5: \(k = SA[q - 1]; \)
6: \textbf{if} \((h > 0) \) \textbf{then}
7: \(h = -; \)
8: \textbf{end if}
9: \textbf{while} \((T[k + h] == T[i + h]) \) \textbf{do}
10: \(h++; \)
11: \textbf{end while}
12: \(\text{lcp}[q - 1] = h; \)
13: \textbf{end if}
14: \textbf{end for}

Step 4 checks whether \(\text{suffix}_q \) occupies the first position of the suffix array, in which case the \(\text{lcp} \) with the previous suffix is undefined. The \textbf{for}-loop then scans the text suffixes \(\text{suffix}_i \) from left to right, and for each of them it first retrieves the position of \(\text{suffix}_i \) in \(SA \), namely \(i = SA[q] \), and its preceding suffix in \(SA \), namely \(k = SA[q - 1] \). Then it extends their longest common prefix starting from the offset \(h \) determined for \(\text{suffix}_{i-1} \) via character-by-character comparison. This is the algorithmic application of the above observations.

As far as the time complexity is concerned, we notice that \(h \) is decreased at most \(n \) times (once per iteration of the \textbf{for}-loop), and it cannot move outside \(T \) (within each iteration of the \textbf{for}-loop),

\[
\begin{align*}
\text{Algorithm 8.2 LCP-BUILD(char *T, int n, char **SA)} & \\
1: & h = 0; \\
2: & \textbf{for} (i = 1; i \leq n, i++ \textbf{do}) \\
3: & \quad q = SA^{-1}[i]; \\
4: & \quad \textbf{if} (q > 1) \textbf{then} \\
5: & \quad \quad k = SA[q - 1]; \\
6: & \quad \quad \textbf{if} \ (h > 0) \textbf{then} \\
7: & \quad \quad \quad h = -; \\
8: & \quad \quad \textbf{end if} \\
9: & \quad \textbf{while} \ (T[k + h] == T[i + h]) \textbf{do} \\
10: & \quad \quad h++; \\
11: & \quad \textbf{end while} \\
12: & \quad \text{lcp}[q - 1] = h; \\
13: & \textbf{end if} \\
14: & \textbf{end for}
\end{align*}
\]
so $h \leq n$. This implies that h can be increased at most $2n$ times and this is the upper bound to the number of character comparisons executed by the Kasai’s algorithm. The total time complexity is therefore $O(n)$.

We conclude this section by noticing that an I/O-efficient algorithm to compute the lcp-array is still missing in the literature, some heuristics are known to reduce the number of I/Os incurred by the above computation but an optimal $O(n/B)$ I/O-bound is yet to come, if possible.

8.2.3 Suffix-array construction

Given that the suffix array is a sorted sequence of items, the most intuitive way to construct SA is to use an efficient comparison-based sorting algorithm and specialize the comparison-function in such a way that it computes the lexicographic order between strings. Algorithm 8.3 implements this idea in C-style using the built-in procedure `qsort` as sorter and a properly-defined subroutine `Suffix_cmp` for comparing suffixes:

```
Suffix_cmp(char **p, char **q) { return strcmp(*p, *q); }
```

Notice that the suffix array is initialized with the pointers to the real starting positions in memory of the suffixes to be sorted, and not the integer offsets from 1 to n as stated in the formal description of SA of the previous pages. The reason is that in this way `Suffix_cmp` does not need to know T’s position in memory (which would have needed a global parameter) because its actual parameters passed during an invocation provide the starting positions in memory of the suffixes to be compared. Moreover, the suffix array SA has indexes starting from 0 as it is typical of C-language.

```
Algorithm 8.3 COMPARISON_BASED_CONSTRUCTION(char *T, int n, char **SA)
1: for (i = 0; i < n; i++) do
2:     SA[i] = T + i;
3: end for
4: qsort(SA, n, sizeof(char *), Suffix_cmp);
```

A major drawback of this simple approach is that it is not I/O-efficient for two main reasons: the optimal number $O(n \log n)$ of comparisons involves now variable-length strings which may consists of up to $\Theta(n)$ characters; locality in SA does not translate into locality in suffix comparisons because of the fact that sorting permutes the string pointers rather than their pointed strings. Both these issues elicit I/Os, and turn this simple algorithm into a slow one.

Theorem 8.1 In the worst case the use of a comparison-based sorter to construct the suffix array of a given string $T[1..n]$ requires $O((\frac{1}{2}n\log n)$ I/Os, and $O(n \log n)$ bits of working space.

In Section 8.2.3 we describe a Divide-and-Conquer algorithm— the Skew algorithm proposed by Kärkkäinen and Sanders [7]— which is elegant, easy to code, and flexible enough to achieve the optimal I/O-bound in various models of computations. In Section 8.2.3 we describe another algorithm—the Scan-based algorithm proposed by Baeza-Yates, Gonnet and Sniders [6]— which is also simple, but incurs in a larger number of I/Os; we nonetheless introduce this algorithm because it offers the positive feature of processing the input data in passes (streaming-like) thus forces prefetching, allows compression and hence it turns to be suitable for slow disks.
The Skew Algorithm

In 2003 Kärkkäinen and Sanders [7] showed that the problem of constructing suffix-arrays can be reduced to the problem of sorting a set of triplets whose components are integers in the range $[1, O(n)]$. Surprisingly this reduction takes linear time and space thus turning the complexity of suffix-array construction into the complexity of sorting atomic items, a problem about which we discussed deeply in the previous chapters and for which we know optimal algorithms for hierarchical memories and multiple disks. More than this, since the items to be sorted are integers bounded in value by $O(n)$, the sorting of the triplets takes $O(n)$ time in the RAM model, so this is the optimal time complexity of suffix-array construction in RAM. Really impressive!

This algorithm is named Skew in the literature, and it works in every model of computation for which an efficient sorting primitive is available: disk, distributed, parallel. The algorithm hinges on a divide&conquer approach that executes a $\frac{2}{3}: \frac{1}{3}$ split, crucial to make the final merge-step easy to implement. Previous approaches used the more natural $\frac{1}{2}: \frac{1}{2}$ split (such as [2]) but were forced to use a more sophisticated merge-step which needed the use of the suffix-tree data structure.

For the sake of presentation we use $T[1, n] = t_1 t_2 \ldots t_n$ to denote the input string and we assume that the characters are drawn from an integer alphabet of size $\sigma = O(n)$. Otherwise we can sort the characters of T and rename them with integers in $O(n)$, taking overall $O(n \log \sigma)$ time in the worst-case. So T is a text of integers, taking $O(\log n)$ bits each; this will be the case for all texts created during the suffix-array construction process. Furthermore we assume that $t_n = \$, a special symbol smaller than any other alphabet character, and logically pad T with an infinite number of occurrences of $\$.

Given this notation, we can sketch the three main steps of the Skew algorithm:

Step 1. Construct the suffix array $SA^{2.0}$ limited to the suffixes starting at positions $P_{2.0} = \{i : i \mod 3 = 2, \text{ or } i \mod 3 = 0\}$:

- Build a special string $T^{2.0}$ of length $(2/3)n$ which compactly encodes all suffixes of T starting at positions $P_{2.0}$.
- Build recursively the suffix-array SA' of $T^{2.0}$.
- Derive the suffix-array $SA^{2.0}$ from SA'.

Step 2 Construct the suffix array SA^1 of the remaining text suffixes starting at positions $P_1 = \{i : i \mod 3 = 1\}$:

- For every $i \in P_1$, represent suffix $T[i, n]$ with a pair $(T[i], \text{pos}(i + 1))$, where it is $i + 1 \in P_{2.0}$.
- Assume to have pre-computed the array \text{pos}[$i + 1$] which provides the position of the $(i + 1)$-th text suffix $T[i + 1, n]$ in $SA^{2.0}$.
- Radix-sort the above $O(n)$ pairs.

Step 3. Merge the two suffix arrays into one:

- This is done by deploying the decomposition $\frac{2}{3} : \frac{1}{3}$ which ensures a constant-time lexicographic comparison between any pair of suffixes (see details below).

The execution of the algorithm is illustrated over the input string $T[1, 12] =$“mississippi$” whose suffix array is $SA = (12, 11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3)$. In this example we have: $P_{2.0} = (2, 3, 5, 6, 8, 9, 11, 12)$ and $P_1 = (1, 4, 7, 10)$.

Step 1. The first step is the most involved one and constitutes the backbone of the entire recursive process. It lexicographically sorts the suffixes starting at the text positions $P_{2.0}$. The resulting
array is denoted by $SA^{2,0}$ and represents a sampled version of the final suffix array SA because it is restricted to the suffixes starting at positions $P_{2,0}$.

To efficiently obtain $SA^{2,0}$, we reduce the problem to the construction of the suffix array for a string $T^{2,0}$ of length about $3n$. This text consists of "characters" which are integers smaller than n. Since we are again in the presence of a text of integers, of length proportionally smaller than n, we can construct its suffix array by invoking recursively the construction procedure.

The key difficulty is how to define $T^{2,0}$ so that its suffix array may be used to derive easily $SA^{2,0}$, namely the sorted sequence of text suffixes starting at positions in $P_{2,0}$. The elegant solution consists of considering the two text suffixes $T[2,n]$ and $T[3,n]$, pad them with the special symbol $\$$ in order to have multiple-of-three length, and then decompose the resulting strings into triplets of characters $T[2,\cdot] = [t_2, t_3, t_4][t_5, t_6, t_7][t_8, t_9, t_{10}]\ldots$ and $T[3,\cdot] = [t_3, t_4, t_5][t_6, t_7, t_8][t_9, t_{10}, t_{11}]\ldots$. The dot expresses the fact that we are considering the smallest integer, larger than n, that allows those strings to have length which is a multiple of three.

With reference to the previous example, we have:

$$T[2,\cdot] = [i \ s \ s][i \ s \ s][i \ p \ p][i \ S \ S]$$

$$T[3,\cdot] = [s \ s \ i][s \ s \ i][p \ p \ i][\$$ $$\$$ $$\$$ $$]$$

We then construct the string $R = T[2,\cdot] \bullet T[3,\cdot]$, and thus we obtain:

$$R = [i \ s \ s][i \ s \ s][i \ p \ p][i \ S \ S][s \ s \ i][s \ s \ i][p \ p \ i][\$$ $$\$$ $$\$$ $$]$$

The key property on which the first step of the Skew algorithm hinges on, is the following:

Property 8.2 Every suffix $T[i,n]$ starting at a position $i \in P_{2,0}$, can be put in correspondence with a suffix of R consisting of an integral sequence of triplets. Specifically, if $i \mod 3 = 0$ then the text suffix coincides exactly with a suffix of R; if $i \mod 3 = 2$, then the text suffix prefixes a suffix of R which nevertheless terminates with special symbol $\$$.

The correctness of this property can be inferred easily by observing that any suffix $T[i,n]$ starting at a position in $P_{2,0}$ is clearly a suffix of either $T[2,\cdot]$ or $T[3,\cdot]$, given that $i > 0$, and $i \mod 3$ is either 0 or 2. Moreover, since $i \in P_{2,0}$, it has the form $i = 3 + 3k$ or $i = 2 + 3k$, for some $k \geq 0$, and thus $T[i,n]$ occurs within R aligned to the beginning of some triplet.

By the previous running example, take $i = 6 = 0 \mod 3$, the suffix $T[6,12] = ssippiSS$ occurs at the second triplet of $T[3,\cdot]$, which is the sixth triplet of R. Similarly, take $i = 8 = 2 \mod 3$, the suffix $T[8,12] = pppiSS$ occurs at the third triplet of $T[2,\cdot]$, which is the third triplet of R. Notice that, even if $T[8,12]$ is not a full suffix of R, we have that $T[8,12]$ ends with two $\$$, which will constitute sort of end-delimiters.

The final operation is then to encode those triplets via integers, and thus squeeze R into a string $T^{2,0}$ of $\frac{3n}{2}$ integer-symbols, thus realizing the reduction in length we were aiming for above. This encoding must be implemented in a way that the lexicographic comparison between two triplets can be obtained by comparing those integers. In the literature this is called lexicographic naming and can be easily obtained by radix sorting the triplets in R and associating to each distinct triplet its rank in the lexicographic order. Since we have $O(n)$ triplets, each consisting of symbols in a range $[0,n]$, their radix sort takes $O(n)$ time.

In our example, the sorted triplets are labeled with the following ranks:

$$[s \ s \ s][i \ s \ s][i \ p \ p][i \ s \ s][i \ s \ s][p \ p \ i][s \ s \ i][s \ s \ i]$$

sorted triplets

$$0 \ 1 \ 2 \ 3 \ 3 \ 4 \ 5 \ 5$$

sorted ranks

$$R = [i \ s \ s][i \ s \ s][i \ p \ p][i \ S \ S][s \ s \ i][s \ s \ i][p \ p \ i][\$$ $$\$$ $$\$$ $$]$$

triplets

$$3 \ 3 \ 2 \ 1 \ 5 \ 5 \ 4 \ 0$$

$T^{2,0}$ (string of ranks)
As a result of the naming of the triplets in R, we get the new text \(T^{2.0} = 33215540 \) whose length is \(\frac{2n}{3} \). The crucial observation here is that we have a text \(T^{2.0} \) which is again a text of integers as \(T \), taking \(O(\log n) \) bits per integer (as before), but \(T^{2.0} \) has length shorter than \(T \), so that we can invoke recursively the suffix-array construction procedure over it.

It is evident from the discussion above that, since the ranks are assigned in the same order as the lexicographic order of their triplets, the lexicographic comparison between suffixes of \(R \) (aligned to the triplets) equals the lexicographic comparison between suffixes of \(T^{2.0} \).

Here Property 8.2 comes into play, because it defines a bijection between suffixes of \(R \) aligned to triplet beginnings, hence suffixes of \(T^{2.0} \), with text suffixes starting in \(P_{2\beta} \). This correspondence is then deployed to derive \(SA^{2.0} \) from the suffix array of \(T^{2.0} \).

In our running example \(T^{2.0} = 33215540 \), the suffix-array construction algorithm is applied recursively thus deriving the suffix-array \((8, 4, 3, 2, 1, 7, 6, 5)\). We can turn this suffix array into \(SA^{2.0} \) by turning the positions in \(T^{2.0} \) into positions in \(T \). This can be done via simple arithmetic operations, given the layout of the triplets in \(T^{2.0} \), and obtains in our running example the suffix array \(SA^{2.0} = (12, 11, 8, 5, 2, 9, 6, 3) \).

Before concluding the description of step 1, we add two notes. The first one is that, if all symbols in \(T^{2.0} \) are different, then we do not need to recurse because suffixes can be sorted by looking just at their first characters. The second observation is for programmers that should be careful in turning the suffix-positions in \(T^{2.0} \) into the suffix positions in \(T \) to get the final \(SA^{2.0} \), because they must take into account the layout of the triplets of \(R \).

Step 2. Once the suffix array \(SA^{2.0} \) has been built (recursively), it is possible to sort lexicographically the remaining suffixes of \(T \), namely the ones starting at the text positions \(i \mod 3 = 1 \), in a simple way. We decompose a suffix \(T[i, n] \) as composed by its first character \(T[i] \) and its remaining suffix \(T[i + 1, n] \). Since \(i \in P_1 \), the next position \(i + 1 \in P_{2\beta} \), and thus the suffix \(T[i + 1, n] \) occurs in \(SA^{2.0} \). We can then encode the suffix \(T[i, n] \) with a pair of integers \((T[i], \text{pos}(i + 1))\), where \(\text{pos}(i + 1) \) denotes the lexicographic rank in \(SA^{2.0} \) of the suffix \(T[i + 1, n] \). If \(i + 1 = n + 1 \) then we set \(\text{pos}(n + 1) = 0 \) given that the character $ is assumed to be smaller than any other alphabet character.

Given this observation, two text suffixes starting at positions in \(P_1 \) can then be compared in constant time by comparing their corresponding pairs. Therefore \(SA^1 \) can be computed in \(O(n) \) time by radix-sorting the \(O(n) \) pairs encoding its suffixes.

In our example, this boils down to radix-sort the pairs:

<table>
<thead>
<tr>
<th>Pairs/suffixes:</th>
<th>(\langle m, 4 \rangle)</th>
<th>(\langle s, 3 \rangle)</th>
<th>(\langle s, 2 \rangle)</th>
<th>(\langle p, 1 \rangle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>starting positions in (P_1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sorted pairs/suffixes:</th>
<th>(\langle m, 4 \rangle)</th>
<th>(\langle p, 1 \rangle)</th>
<th>(\langle s, 2 \rangle)</th>
<th>(\langle s, 3 \rangle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>(SA^1)</td>
</tr>
</tbody>
</table>

Step 3. The final step merges the two sorted arrays \(SA^1 \) and \(SA^{2.0} \) in linear \(O(n) \) time by sorting an interesting observation which motivates the split \(\frac{4}{3} : \frac{1}{3} \). Let us take two suffixes \(T[i, n] \in SA^1 \) and \(T[j, n] \in SA^{2.0} \), which we wish to lexicographically compare for implementing the merge-step. They belong to two different suffix arrays so we have no lexicographic relation known for them, and we cannot compare them character-by-character because this would incur in a very high cost. We deploy a decomposition idea similar to the one exploited in Step 2 above, which consists of looking at a suffix as composed by one or two characters plus the lexicographic rank of its remaining suffix. This decomposition becomes effective if the remaining suffixes of the compared ones lie in the same suffix array, so that their rank is enough to get their order in constant time. Elegantly enough this is possible with the split \(\frac{4}{3} : \frac{1}{3} \), but it could not be possible with the split \(\frac{4}{7} : \frac{1}{7} \). This observation is implemented as follows:
1. if \(j \mod 3 = 2 \) then we compare \(T[j, n] = T[j]T[j+1, n] \) against \(T[i, n] = T[i]T[i+1, n] \). Both suffixes \(T[j+1, n] \) and \(T[i+1, n] \) occur in \(SA^{2,0} \) (given that their starting positions are congruent 0 or \(2 \mod 3 \), respectively), so we can derive the above lexicographic comparison by comparing the pairs \((T[i], \text{pos}(i+1))\) and \((T[j], \text{pos}(j+1))\). This comparison takes \(O(1) \) time, provided that the array pos is available.\(^2\)

2. if \(j \mod 3 = 0 \) then we compare \(T[j, n] = T[j]T[j+1]T[j+2, n] \) against \(T[i, n] = T[i]T[i+1]T[i+2, n] \). Both the suffixes \(T[j+2, n] \) and \(T[i+2, n] \) occur in \(SA^{2,0} \) (given that their starting positions are congruent 0 or \(2 \mod 3 \), respectively), so we can derive the above lexicographic comparison by comparing the triples \((T[i], T[i+1], \text{pos}(i+2))\) and \((T[j], T[j+1], \text{pos}(j+2))\). This comparison takes \(O(1) \) time, provided that the array pos is available.

In our running example we have that \(T[8,11] < T[10,11] \), and in fact \((i, 5) < (p, 1)\). Also we have that \(T[7,11] < T[6,11] \) and in fact \((s, i, 5) < (s, s, 2)\). In the following figure we depict all possible pairs of triples which may be involved in a comparison, where \((\star \star)\) and \((\star \star \star)\) denote the pairs for rule 1 and 2 above, respectively. Conversely \((\star)\) denotes the starting position in \(T \) of the suffix. Notice that, since we do not know which suffix of \(SA^{2,0} \) will be compared with a suffix of \(SA^1 \) during the merging process, for each of the latter suffixes we need to compute both representations \((\star \star)\) and \((\star \star \star)\), hence as a pair and as a triplet.\(^3\)

\[
\begin{array}{cccccccc}
\text{SA}^1 & \text{SA}^{2,0} \\
\hline
1 & 10 & 7 & 4 & 12 & 11 & 8 & 5 & 2 & 9 & 6 & 3 \\
(m, 4) & (p, 1) & (s, 2) & (s, 3) & (s, s, -1) & (1, 0) & (1, 5) & (1, 6) & (1, 7) & (p, p, 1) & (s, s, 2) & (s, s, 3) \\
(m, 1, 7) & (p, 1, 0) & (s, 1, 5) & (s, 1, 6) & (p, p, 1) & (s, s, 2) & (s, s, 3) \\
\end{array}
\]

At the end of the merge step we obtain the final suffix array: \(SA = (11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3) \).

From the discussion above it is clear that every step can be implemented via the \textit{sorting} or the scanning of a set of \(n \) atomic items, which are possibly triplets of integers, taking each triplet \(O(\log n) \) bits, so one memory word. Therefore the proposed method can be seen as a \textit{algorithmic reduction} of the suffix-array construction problem to the classic problem of sorting \(n \)-items. This problem has been solved optimally in several models of computation, for the case of the two-level memory model see Chapter 5.

For what concerns the RAM model, the time complexity of the Skew algorithm can be modeled by the recurrence \(T(n) = T(\frac{2n}{3}) + O(n) \), because Steps 2 and 3 cost \(O(n) \) and the recursive call is executed over the string \(T^{2,0} \) whose length is \((2/3)n \). This recurrence has solution \(T(n) = O(n) \), which is clearly optimal. For what concerns the two-level memory model, the Skew algorithm can be implemented in \(O(\frac{n}{B} \log_{B/M/B} \frac{n}{B}) \) I/Os, that is the I/O-complexity of sorting \(n \) atomic items.

THEOREM 8.3 The Skew algorithm builds the suffix array of a text string \(T[1, n] \) in \(O(Sort(n)) \) I/Os and \(O(n/B) \) disk pages. If the alphabet \(\Sigma \) has size polynomial in \(n \), the CPU time is \(O(n) \).

The Scan-based Algorithm\(^4\)

Before the introduction of the Skew algorithm, the best known disk-based algorithm was the one proposed by Baeza-Yates, Gonnet and Sniders in 1992 [6]. It is also a divide\&conquer algorithm.

\(\star\star\star\)

\(^2\)Of course, the array pos can be derived from \(SA^{2,0} \) in linear time, since it is its inverse.

\(^3\)Recall that \(\text{pos}(n) = 0 \), and for the sake of the lexicographic order, we can set \(\text{pos}(j) = -1 \), for all \(j > n \).
Searching Strings by Substring

whose divide step is strongly unbalanced, thus it executes a quadratic number of suffix comparisons which induce a cubic time complexity. Nevertheless the algorithm is fast in practice because it processes the data into passes thus deploying the high throughput of modern disks.

Let \(\ell < 1 \) be a positive constant, properly fixed to build the suffix array of a text piece of \(m = \ell M \) characters in internal memory. Then assume that the text \(T[1,n] \) is logically divided into pieces of \(m \) characters each, numbered rightward: namely \(T = T_1 T_2 \cdots T_{n/m} \) where \(T_h = T[hm+1,(h+1)m] \) for \(h = 0,1,\ldots \). The algorithm computes incrementally the suffix array of \(T \) in \(\Theta(n/M) \) stages, rather than the logarithmic number of stages of the Skew algorithm. At the beginning of stage \(h \), we assume to have on disk the array \(SA^h \) that contains the sorted sequence of the first \(hm \) suffixes of \(T \). Initially \(h = 0 \) and thus \(SA^0 \) is the empty array. In the generic \(h \)-th stage, the algorithm loads the next text piece \(T^{h+1} \) in internal memory, builds \(SA' \) as the sorted sequence of suffixes starting in \(T^{h+1} \), and then computes the new \(SA^{h+1} \) by merging the two sorted sequences \(SA^h \) and \(SA' \).

There are two main issues when detailing this algorithmic idea in a running code: how to efficiently construct \(SA' \), since its suffixes start in \(T^{h+1} \) but may extend outside that block of characters up to the end of \(T \); and how to efficiently merge the two sorted sequences \(SA^h \) and \(SA' \), since they involve suffixes whose length may be up to \(\Theta(n) \) characters. For the first issue the algorithm does not implement any special trick, it just compares pairs of suffixes character-by-character in \(O(n) \) time and \(O(n/B) \) I/Os. This means that over the total execution of the \(O(n/M) \) stages, the algorithm takes \(O(\frac{n}{B} m \log m) = O(\frac{\ell \cdot m}{B} \log m) \) I/Os to construct \(SA' \).

For the second issue, we note the merge between \(SA' \) with \(SA^h \) is executed in a smart way by resorting the use of an auxiliary array \(C[1,m+1] \) which counts in \(C[j] \) the number of suffixes of \(SA^h \) that are lexicographically greater than the \(SA'[j-1] \)-th text suffix and smaller than the \(SA'[j] \)-th text suffix. Two special cases occur if \(j = 1, m+1 \): in the former case we assume that \(SA'[0] \) is the empty suffix, in the latter case we assume that \(SA'[m+1] \) is a special suffix larger than any string. Since \(SA^h \) is longer and longer, we process it streaming-like by devising a method that scans rightward the text \(T \) (from its beginning) and then searches each of its suffixes by binary-search in \(SA' \). If the lexicographic position of the searched suffix is \(j \), then the entry \(C[j] \) is incremented. The binary search may involve a part of a suffix which lies outside the block \(T^{h+1} \) currently in internal memory, thus taking \(O(n/B) \) I/Os per binary-search step. Over all the \(n/M \) stages, this binary search takes \(O(\sum_{m=0}^{n/M} \frac{n}{B}(hm) \log m) = O(\frac{\ell \cdot m}{M} \log M) \) I/Os.

Array \(C \) is then exploited in the next substep to quickly merge the two arrays \(SA' \) (residing in internal memory) and \(SA^h \) (residing on disk): \(C[j] \) indicates how many consecutive suffixes of \(SA^h \) lexicographically lie after \(SA'[j-1] \) and before \(SA'[j] \). Hence a disk scan of \(SA^h \) suffices to perform the merging process in \(O(n/B) \) I/Os.

THEOREM 8.4 The Scan-based algorithm builds the suffix array of a text string \(T[1,n] \) in \(O(\frac{\ell \cdot m}{M} \log M) \) I/Os and \(O(n/B) \) disk pages.

Since the worst-case number of total I/Os is cubic, a purely theoretical analysis would classify this algorithm as not interesting. However, in practical situations it is very reasonable to assume that each suffix comparison finds in internal memory all the characters used to compare the two involved suffixes. And indeed the practical behavior of this algorithm is better described by the formula \(O(\frac{\ell \cdot m}{M}) \) I/Os. Additionally, all I/Os in this analysis are sequential and the actual number of random seeks is only \(O(n/M) \) (i.e., at most a constant number per stage). Consequently, the algorithm takes fully advantage of the large bandwidth of modern disks and of the high speed of current CPUs. As a final notice we remark that the suffix arrays \(SA^h \) and the text \(T \) are scanned sequentially, so some form of compression can be adopted to reduce the I/O-volume and thus further speed-up the underlying algorithm.
Before detailing a significant improvement to the previous approach, let us concentrate on the same running example used in the previous section to sketch the Skew algorithm.

\[
T[1,12] = \begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\text{mississippi}
\end{array}
\]

Suppose that \(m = 3 \) and that, at the beginning of stage \(h = 1 \), the algorithm has already processed the text block \(T^0 = T[1,3] = \text{mis} \) and thus stored on disk the array \(SA^1 = (2,1,3) \) which corresponds to the lexicographic order of the text suffixes which start in that block: namely, \text{mississippi\$}, \text{ississippi\$} and \text{ssissippi\$}. During the stage \(h = 1 \), the algorithm loads in internal memory the next block \(T^1 = T[4,6] = \text{sis} \) and lexicographically sorts the text suffixes which start in positions \([4,6]\) and extend to the end of \(T \), see figure 8.4.

<table>
<thead>
<tr>
<th>Text suffixes</th>
<th>sissippi$</th>
<th>ississippi$</th>
<th>ssissippi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorted suffixes</td>
<td>ississippi$</td>
<td>ississippi$</td>
<td>ssissippi$</td>
</tr>
<tr>
<td>(SA')</td>
<td>5</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

FIGURE 8.4: Stage 1, step 1, of the Scan-based algorithm.

The figure shows that the comparison between the text suffixes: \(T[4,12] = \text{sissippi\$} \) and \(T[6,12] = \text{ssissippi\$} \) involves characters that lie outside the text piece \(T[4,6] \) loaded in internal memory, so that their comparison induces some I/Os.

The final step merges \(SA^1 = (2,1,3) \) with \(SA' = (5,4,6) \), in order to compute \(SA^2 \). This step uses the information of the counter array \(C \). In this specific running example, see Figure 8.5, it is \(C[1] = 2 \) because two suffixes \(T[1,12] = \text{mississippi\$} \) and \(T[2,12] = \text{ississippi\$} \) are between the \(SA'[0]-\text{th suffix} \text{ississippi\$} \) and the \(SA'[1]-\text{th suffix} \text{ississippi\$} \).

\[
\begin{array}{c|c}
\text{Suffix Arrays} & \frac{SA'}{= (5,4,6)} \quad \frac{SA^1}{= (2,1,3)} \\
\text{Merge via } C & \frac{\downarrow}{C \in \{0,2,0,1\}} \\
\text{SA}^2 & \frac{= [5,2,1,4,6,3]}{\text{FIGURE 8.5: Stage 1, step 3, of the Scan-based algorithm.}}
\end{array}
\]

The second stage is summarized in Figure 8.6 where the text substring \(T^2 = T[7,9] = \text{sip} \) is loaded in memory and the suffix array \(SA' \) for the suffixes starting at positions \([7,9]\) is built. Then, the suffix array \(SA' \) is merged with the suffix array \(SA^2 \) residing on disk and containing the suffixes which start in \(T[1,6] \).

The third and last stage is summarized in Figure 8.7 where the substring \(T^3 = T[10,12] = \text{pi\$} \) is loaded in memory and the suffix array \(SA' \) for the suffixes starting at positions \([10,12]\) is built.
Searching Strings by Substring

Stage 2:

1. Load into internal memory $T^2 = T[7, 9] = sipi$.

2. Build SA' for the suffixes starting in [7, 9]:

<table>
<thead>
<tr>
<th>Text suffixes</th>
<th>sipi</th>
<th>ippi</th>
<th>ppi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorted suffixes</td>
<td>pipi</td>
<td>ppi</td>
<td>sipi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lexicographic ordering</th>
</tr>
</thead>
<tbody>
<tr>
<td>pipi</td>
</tr>
</tbody>
</table>

$SA' = \{8, 9, 7\}$

3. Merge SA' with SA^2 exploiting C:

<table>
<thead>
<tr>
<th>Suffix Arrays</th>
<th>$SA' = [8, 9, 7]$</th>
<th>$SA^2 = [5, 2, 1, 4, 6, 3]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merge via C</td>
<td>[C = {0, 3, 0, 3}]</td>
<td>$SA^3 = [8, 5, 2, 1, 9, 7, 4, 6, 3]$</td>
</tr>
</tbody>
</table>

FIGURE 8.6: Stage 2 of the Scan-based algorithm.

Then, the suffix array SA' is merged with the suffix array on disk SA^3 containing the suffixes which start in $T[1, 9]$.

The performance of this algorithm can be improved via a simple observation [4]. Assume that, at the beginning of stage h, in addition to the SA^h we have on disk a bit array, called g^h, such that $g^h[i] = 1$ if and only if the suffix $T[(hm + 1) + i, n]$ is greater than the suffix $T[(hm + 1), n]$. The computation of g^h can occur efficiently, but this technicality is left to the original paper [4] and not detailed here.

During the h-th stage the algorithm loads into internal memory the substring $T[1, 2m] = T^h T^{h+1}$ (so this is double in size with respect to the previous proposal) and the binary array $g^h_{[m+1, 1, m - 1]}$ (so it refers to the second block of text loaded in internal memory). The key observation is that we can build SA' by deploying the two arrays above without performing any I/Os, other than the ones needed to load $T[1, 2m]$ and $g^h_{[m+1, 1, m - 1]}$. This seems surprising, but it descends from the fact that any two text suffixes starting at positions i and j within T^h, with $i < j$, can be compared lexicographically by looking first at their characters in the substring T, namely at the strings $T[i, m]$ and $T[j, j + m - i]$. These two strings have the same length and are completely in $T[1, 2m]$, hence in internal memory. If these strings differ, their order is determined and we are done; otherwise, the order between these two suffixes is determined by the order of the remaining suffixes starting at the characters $T[m + 1]$ and $T[j + m - i + 1]$. This order is given by the bit stored in $g^h_{m+1, [j - i]}$, also available in internal memory.

This argument shows that the two arrays T and g^h_{m+1} contain all the information we need to build SA^{h+1} working in internal memory, and thus without performing any I/Os.

THEOREM 8.5
The new variant of the Scan-based algorithm builds the suffix array of a string $T[1, n]$ in $O\left(\frac{m}{\text{word size}}\right)$ I/Os and $O(nB)$ disk pages.

As an example consider stage $h = 1$ and thus load in memory the text substring $t = T^h T^{h+1} =$.
Stage 3:

1. Load into internal memory $T^3 = T[10, 12] = \text{pi}$.

2. Build SA' for the suffixes starting in $[10, 12]$:

<table>
<thead>
<tr>
<th>Text suffixes</th>
<th>pi$</th>
<th>i$</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lexicographic ordering</td>
<td>\downarrow</td>
<td>\downarrow</td>
<td></td>
</tr>
<tr>
<td>Sorted suffixes</td>
<td>$ $</td>
<td>i$</td>
<td>pi$</td>
</tr>
<tr>
<td>SA'</td>
<td>12</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

3. Merge SA' with SA^3 exploiting C:

<table>
<thead>
<tr>
<th>Suffix Arrays</th>
<th>$SA' = [12, 11, 10]$</th>
<th>$SA^3 = [8, 5, 2, 1, 9, 7, 4, 6, 3]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merge via C</td>
<td>[C = (0.0, 0.5)]</td>
<td>$SA^4 = [12, 11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3]$</td>
</tr>
</tbody>
</table>

FIGURE 8.7: Stage 3 of the Scan-based algorithm.

$T[4, 9] = \text{sissip}$ and the array $gt_3 = (1, 0)$. Now consider the positions $i = 1$ and $j = 3$ in t, we can compare the text suffixes starting at these positions by first taking the substrings $t[1, 3] = T[4, 6] = \text{sis}$ with $t[3, 5] = T[6, 9] \text{ssi}$. The strings are different so we obtain their order without accessing the disk. Now consider the positions $i = 3$ and $j = 4$ in t, they would not be taken into account by the algorithm since the block has size 3, but let us consider them for the sake of explanation. We can compare the text suffixes starting at these positions by first taking the substrings $t[3, 3] = s$ with $t[4, 4] = s$. The strings are not different so we use $gt_3[j - i] = gt_3[1] = 1$, hence the remaining suffix $T[4, n]$ is lexicographically greater than $T[5, n]$ and this can be determined again without any I/Os.

8.3 The Suffix Tree

The suffix tree is a fundamental data structure used in many algorithms processing strings [5]. In its essence it is a compacted trie that stores all suffixes of an input string, each suffix is represented by a (unique) path from the root of the trie to one of its leaves. We already discussed compacted tries in the previous chapter, now we specialize the description in the context of suffix trees and point out some issues, and their efficient solutions, that arise when the dictionary of indexed strings is composed by suffixes of one single string.

Let us denote the suffix tree built over an input string $T[1, n]$ as ST_T (or just ST when the input is clear from the context) and assume, as done for suffix arrays, that the last character of T is the special symbol $\$ which is smaller than any other alphabet character. The suffix tree has the following properties:

1. Each suffix of T is represented by a unique path descending from root of ST to one of its leaves. So there are n leaves, one per text suffix, and each leaf is labeled with the starting position in T of its corresponding suffix.
2. Each internal node of ST has at least two outgoing edges. So there are less than n internal nodes and less than $2n − 1$ edges. Every internal node u spells out a text substring, denoted by $s[u]$, which prefixes everyone of the suffixes descending from u in the suffix tree. Typically the value $|s[u]|$ is stored as satellite information of node u, and we use $\text{occ}[u]$ to indicate the number of leaves descending from u.

3. The edge labels are non-empty substrings of T. The labels of the edges spurring from any internal node start with different characters, called branching characters. Edges are assumed to be ordered alphabetically according to their branching characters. So every node has at most σ outgoing edges.\(^4\)

In Figure 8.8 we show the suffix tree built over our exemplar text $T[1,12] = \text{mississippi}$$. The presence of the special symbol $T[12] = $ ensures that no suffix is a prefix of another suffix of T and thus every pair of suffixes differs in some character. So the paths from the root to the leaves of two different suffixes coincide up to their common longest prefix, which ends up in an internal node of ST.

![Figure 8.8: The suffix tree of the string mississippi$](image)

It is evident that we cannot store explicitly the substrings labeling the edges because this would end up in a total space complexity of $\Theta(n^2)$. You can convince yourself by building the suffix tree for the string consisting of all distinct characters, and observe that the suffix tree consists of one root connected to n leaves with edges representing all suffixes. We can circumvent this space explosion by encoding the edge labels with pairs of integers which represent the starting position of the labeling substring and its length. With reference to Figure 8.8 we have that the label of the edge leading to leaf 5, namely the substring $T[9,12] = \text{ppi}$, can be encoded with the integer pair $(9,4)$, where 9 is the offset in T and 4 is the length of the label. Other obvious encodings could be possible — say the pair $(9,12)$ indicating the starting and ending position of the label —, but we will not detail them here. Anyway, whichever is the edge encoding adopted, it uses $O(1)$ space, and thus the storage of all edge labels takes $O(n)$ space, independently of the indexed string.

\(^4\)The special character $\text{\$}$ is included in the alphabet Σ.
FACT 8.3 The suffix tree of a string $T[1, n]$ consists of n leaves, at most $n - 1$ internal nodes and at most $2n - 2$ edges. Its space occupancy is $O(n)$, provided that a proper edge-label encoding is adopted.

As a final notation, we call locus of a text substring t the node v whose spelled string is exactly t, hence $s[v] = t$. We call extended locus of t' the locus of its shortest extension that has defined locus in ST. In other words, the path spelling the string t' in ST ends within an edge label, say the label of the edge (u, v). This way $s[u]$ prefixes t' which in turn prefixes $s[v]$. Therefore v is the extended locus of t'. Of course if t' has a locus in ST then this coincides with its extended locus. As an example, the node z of the suffix tree in Figure 8.8 is the locus of the substring $sssi$ and the extended locus of the substring ss.

There are few important properties that the suffix-tree data structure satisfies, they pervade most algorithms which hinge on this powerful data structure. We summarize few of them:

Property 8.6 Let α be a substring of the text T, then there exists an internal node u such that $s[u] = \alpha$ (hence u is the locus of α) iff they do exist at least two occurrences of α in T followed by distinct characters.

As an example, take node x in Figure 8.8, the substring $s[x] = issi$ occurs twice in T at positions 2 and 5, followed by characters i and p, respectively.

Property 8.7 Let α be a substring of the text T that has extended locus in the suffix tree. Then every occurrence of α is followed by the same character in T.

As an example, take the substring iss that has node x as extended locus in Figure 8.8. This substring occurs twice in T at positions 2 and 5, followed always by character i.

Property 8.8 Every internal node u spells out a substring $s[u]$ of T which occurs at the positions $occ[u]$ and is maximal, in the sense that it cannot be extended by one character and yet occur at these positions.

Now we introduce the notion of lowest common ancestor (shortly, lca) in trees, which is defined for every pair of leaves and denotes the deepest node being ancestor of both leaves in input. As an example in Figure 8.8, we have that u is the lca of leaf 8 and 2. Now we turn lca between leaves into lcp between their corresponding suffixes.

Property 8.9 Given two suffixes $T[i, n]$ and $T[j, n]$, say ℓ is the length of the longest common prefix between them. This value can be identified by computing the lowest common ancestor $a(i, j)$ between the leaves in the suffix tree corresponding to those two suffixes. Therefore, we have $s[a(i, j)] = 1cp(T[i, n], T[j, n]).$

As an example, take the suffixes $T[11, 12] = iss$ and $T[5, 12] = issippi$, their 1cp is the single character i and the lca between their leaves is the node u, which indeed spells out the string $s[u] = i$.

8.3.1 The substring-search problem

The search for a pattern $P[1, p]$ as a substring of the text $T[1, n]$, with the help of the suffix tree ST, consists of a tree traversal which starts from its root and proceeds downward as pattern characters are matched against characters labeling the tree edges (see Figure 8.9). Note that, since the first character of the edges outgoing from each traversed node is distinct, the matching of P can follow only one downward path. If the traversal determines a mismatch character, the pattern P does not
Searching Strings by Substring

occur in \(T \); otherwise the pattern is fully matched, the extended locus of \(P \) is found, and all leaves of \(ST \) descending from this node identify all text suffixes which are prefixed by \(P \). The text positions associated to these descending leaves are the positions of the \(\text{occ} \) occurrences of the pattern \(P \) in \(T \). These positions can be retrieved in \(O(\text{occ}) \) time by visiting the subtree that descends from the extended locus of \(P \). In fact this subtree has size \(\Theta(\text{occ}) \) because its internal nodes have (at least) binary fan-out and consists of \(\text{occ} \) leaves.

![Suffix tree example](image)

FIGURE 8.9: Two examples of substring searches over the suffix tree built for the text `banana$`. The search for the pattern \(P = \text{anas} \) fails, the other for the pattern \(P = \text{na} \) is successful.

In the running example of Figure 8.9, the pattern \(P = \text{na} \) occurs twice in \(T \) and in fact the traversal of \(ST \) fully matches \(P \) and stops at the node \(z \), from which descend two leaves labeled 3 and 5. And indeed the pattern \(P \) occurs at positions 3 and 5 of \(T \), since it prefixes the two suffixes \(T[3, 12] \) and \(T[5, 12] \). The cost of pattern searching is \(O(p + \text{occ}) \) time in the worst case, where \(t_\sigma \) is the time to branch out of a node during the tree traversal. This cost depends on the alphabet size \(\sigma \) and the kind of data structure used to store the branching characters of the edges spurring from each node. We discussed this issue in the previous Chapter, when solving the prefix-search problem via compacted tries. There we observed that \(t_\sigma = O(1) \) if we use a perfect-hash table indexed by the branching characters; it is \(t_\sigma = O(\log \sigma) \) if we use a plain array and the branching is implemented by a binary search. In both cases the space occupancy is optimal, in that it is linear in the number of branching edges, and thus \(O(n) \) overall.

FACT 8.4 The \(\text{occ} \) occurrences of a pattern \(P[1, p] \) in a text \(T[1, n] \) can be found in \(O(p + \text{occ}) \) time and \(O(n) \) space by using a suffix tree built on the input text \(T \), in which the branching characters at each node are indexed via a perfect hash table.

8.3.2 Construction from Suffix Arrays and vice versa

It is not difficult to observe that the suffix array \(SA \) of the text \(T \) can be obtained from its suffix tree \(ST \) by performing an in-order visit: each time a leaf is encountered, the suffix-index stored in this leaf is written into the suffix array \(SA \); each time an internal node \(u \) is encountered, its associated value is written into the array \(1cp \).
FACT 8.5 Given the suffix tree of a string $T[1,n]$, we can derive in $O(n)$ time and space the corresponding suffix array SA and the longest-common-prefix array lcp.

Vice versa, we can derive the suffix tree ST from the two arrays SA and lcp in $O(n)$ time as follows. The algorithm constructs incrementally ST starting from a tree, say ST_1, that contains a root node denoting the empty string and one leaf labeled $SA[1]$, denoting the first suffix of T and thus this entire string. At step $i > 1$, we have inductively constructed the partial suffix tree ST_{i-1} which contains all the $(i-1)$-smallest suffixes of T, hence the suffixes in $SA[1..i-1]$. During step i, the algorithm inserts in ST_{i-1} the i-th smallest suffix $SA[i]$. This requires the addition of one leaf labeled $SA[i]$ and, as we will prove next, at most one single internal node which becomes the father of the inserted leaf. After n steps, the final tree ST_n will be the suffix tree of the string $T[1,n]$.

The key issue here is to show how to insert the leaf $SA[i]$ into ST_{i-1} in constant amortized time. This will be enough to ensure a total time complexity of $O(n)$ for the overall construction process. The main difficulty consists in the detection of the node u father of the leaf $SA[i]$. This node u may already exist in ST_{i-1}, in this case $SA[i]$ is attached to u; otherwise, u must be created by splitting an edge of ST_{i-1}. Whether u exists or not is discovered by percolating ST_{i-1} upward (and not downward!), starting from the leaf $SA[i-1]$, which is the rightmost one in ST_{i-1} because of the lexicographic order, and stopping when a node x is reached such that $lcp[i] \leq |s[x]|$. Recall that $lcp[i]$ is the number of characters that the text suffix $suff_{SA[i]}$ shares with next suffix $suff_{SA[i+1]}$ in the lexicographic order. The leaves corresponding to these two suffixes are of course consecutive in the in-order visit of ST. At this point if $lcp[i] = |s[x]|$, the node x is the parent of the leaf labeled $SA[i]$, we connect them and the new ST_i is obtained. If instead $lcp[i] < |s[x]|$, the edge leading to x has to be split by inserting a node u that has two children: the left child is x and the right child is the leaf $SA[i]$ (because it is lexicographically larger than $SA[i-1]$). This node is associated with the value $lcp[i]$. The reader can run this algorithm over the string $T[1,12] = \text{mississippi}$ and convince herself that the final suffix tree ST_{12} is exactly the one showed in Figure 8.8.

The time complexity of the algorithm derives from an accounting argument which involves the edges traversed by the upward percolation of ST. Since the suffix $suff_{SA[i]}$ is lexicographically greater than the suffix $suff_{SA[i-1]}$, the leaf labeled $SA[i]$ lies to the right of the leaf $SA[i-1]$. So every time we traverse an edge, we either discard it from the next traversals and proceed upward, or we split it and a new leaf is inserted. In particular all edges from $SA[i-1]$ to x are never traversed again because they lie to the left of the newly inserted edge $(u,SA[i])$. The total number of these edges is bounded by the total number of edges in ST, which is $O(n)$ from Fact 8.3. The total number of edge-splits equals the number of inserted leaves, which is again $O(n)$.

FACT 8.6 Given the suffix array and the longest-common-prefix array of a string $T[1,n]$, we can derive the corresponding suffix tree in $O(n)$ time and space.

8.3.3 McCreight’s algorithm

A naïve algorithm for constructing the suffix tree of an input string $T[1,n]$ could start with an empty trie and then iteratively insert text suffixes, one after the other. The algorithm maintains the property by which each intermediate trie is indeed a compacted trie of the suffixes inserted so far. In the worst case, the algorithm costs up to $O(n^2)$ time, take e.g. the highly repetitive string $T[1,n] = d^{n-1}$. The reason for this poor behavior is due to the re-scanning of parts of the text T that have been already examined during the insertion of previous suffixes. Interestingly enough do exist algorithms that construct the suffix tree directly, and thus without passing through the suffix- and lcp-arrays, and still take $O(n)$ time. Nowadays the space succinctness of suffix arrays and the existence of the Skew algorithm, drive the programmers to build suffix trees passing through suffix arrays (as explained in
the previous section). However, if the average lcp among the text suffixes is small then the direct construction of the suffix tree may be advantageous both in internal memory and on disk. We refer the interested reader to [3] for a deeper analysis of these issues.

In what follows we present the classic McCreight’s algorithm [11], introduced in 1976. It is based on a nice technique that adds some special pointers to the suffix tree that allow to avoid the rescanning mentioned before. These special pointers are called suffix links and are defined as follows. The suffix link $S L(z)$ connects the node z to the node $z’$ such that $s[z] = as[z’]$. So $z’$ spells out a string that is obtained by dropping the first character from $s[z]$. The existence of $z’$ in ST is not at all clear: Of course $s[z’]$ is a substring of T, given that $s[z]$ is, and thus there exists a path in ST that ends up into the extended locus of $s[z’]$; but nothing seems to ensure that $s[z’]$ has indeed a locus in ST, and thus that $z’$ exists. This property is derived by observing that the existence of z implies the existence of at least 2 suffixes, say suf_i and suf_j that have the node z as their lowest common ancestor in ST, and thus $s[z]$ is their longest common prefix (see Property 8.9). Looking at Figure 8.8, we can take for node z the suffixes suf_5 and suf_6 (which are actually children of z). Now take the two suffixes following those ones, namely suf_{i+1} and suf_{j+1} (i.e. suf_4 and suf_5 in the figure). They will share $s[z’]$ as their longest common prefix, given that we dropped just their first character, and thus they will have $z’$ as their lowest common ancestor. In Figure 8.8, $s[z] = ssx$, $s[z’] = sx$ and the node $z’$ does exist and is indicated with y. In conclusion every node z has one suffix link correctly defined; more subtle is to observe that all suffix links form a tree rooted in the root of ST: just observe that $|s[z’]| < |s[z]|$ so they cannot induce cycles and eventually end up in the root of the suffix tree (spelling out the empty string).

McCreight’s algorithm works in n steps, it starts with the suffix tree ST_1 which consists of a root node, denoting the empty string, and one leaf labeled $suf_1 = T[1,n]$ (namely the entire text). In a generic step $i > 1$, the current suffix tree ST_{i-1} is the compacted trie built over all text suffixes suf_j such that $j = 1,2,\ldots,i−1$. Hence suffixes are inserted in ST from the longest to the shortest one, and at any step ST_{i-1} indexes the $(i−1)$ longest suffixes of T.

To ease the description of the algorithm we need to introduce the notation $head_i$ which denotes the longest prefix of suffix suf_j which occurs in $ST_{i−1}$. Given that ST_{i-1} is a partial suffix tree, $head_i$ is the longest common prefix between suf_j and any of its previous suffixes in T, namely $suf_{j’}$ with $j’ = 1,2,\ldots,i−1$. Given $head_i$ we denote by h_i the (extended) locus of that string in the current suffix tree: actually h_i is the extended locus in ST_{i-1} because suf_j has not yet been inserted. After its insertion, we will have that $head_i = s[h_i]$ in ST_i, and indeed h_i is set as the parent of the leaf associated to the suffix suf_j. As an example, consider the suffix $suf_j = byab2S$ in the partial suffix trees of Figure 8.10. We have that this suffix shares only the character b with the previous four suffixes of T, so $head_4 = b$ in ST_4, and $head_5$ has extended locus in ST_4, which is the leaf 2. But, after its insertion, we get the suffix tree ST_5 in which $h_5 = v$ in ST_5.

Now we are ready to describe the McCreight’s algorithm in detail. To produce ST_i, we must locate in ST_{i-1} the (extended) locus h_{i} of $head_i$. If it is an extended locus, then the edge incident in this node is split by inserting an internal node, which corresponds to h_{i}, and spells out $head_i$, to which the leaf for suf_i is attached. In the naive algorithm, $head_i$ and h_{i} were found tracing a downward path in ST_{i-1} matching suf_i character-by-character. However this induced a quadratic time complexity in the worst case. Instead McCreight’s algorithm determines $head_i$ and h_{i} by using the information inductively available for string $head_{i-1}$, and its locus h_{i-1}, and the suffix links which are already available in ST_{i-1}.

FACT 8.7 In ST_{i-1} the suffix link $S L(u)$ is defined for all nodes $u \neq h_{i-1}$. It may be the case that $S L(h_{i-1})$ is defined too, because that node was already present in ST_{i-1} before the insertion of suf_{i-1}.
FIGURE 8.10: Several steps of the McCreight’s algorithm for the string $T = \text{abxabyabz}$.

Proof Since head_{i-1} prefixes suff_{i-1}, the second suffix of head_{i-1} starts at position i and thus prefixes the suffix suff_i. We denote this second suffix with head'_{i-1}. By definition head_i is the longest prefix shared between suff_i and anyone of the previous text suffixes, so that $|\text{head}_i| \geq |\text{head}_{i-1}| - 1$ and the string head_{i-1} prefixes head_i.

McCreight’s algorithm starts with ST_1 that consists of two nodes: the root and the leaf for suff_1. At step 1 we have that head_1 is the empty string, h_1 is the root, and $SL(\text{root})$ points to the root itself. At a generic step $i > 1$, we know head_{i-1} and h_{i-1} (i.e. the parent of suff_{i-1}), and we wish to determine head_i and h_i, in order to insert the leaf for suff_i as a child of h_i. These data are found via the following three sub-steps:

1. if $SL(\text{head}_{i-1})$ is defined, we set $w = SL(\text{head}_{i-1})$ and we go to step 3;
2. Otherwise we need to perform a **rescanning** whose goal is to find/create the locus w of head_{i-1} and consequently set the suffix link $SL(h_{i-1}) = w$. This is implemented by taking the parent f of head_{i-1}, jumping via its suffix link $f' = SL(f)$ (which is defined according to Fact 8.7), and then tracing a downward path from f' starting from the $(|s[f']| + 1)$-th character of suff_i. Since we know that head_{i-1} occurs in T and it prefixes suff_i, this downward tracing to find w can be implemented by comparing only the branching characters of the traversed edges with head_{i-1}. If the landing node of this traversal is the locus of head_{i-1}, then this landing node is the searched w; otherwise the landing node is the extended locus of head_{i-1}, so we split the last traversed edge and insert the node w such that $s[w] = \text{head}_{i-1}$. In all cases we set $SL(h_{i-1}) = w$;
3. Finally, we locate head_i starting from w and **scanning** the rest of suff_i. If the locus of head_i does exist, then we set it to h_i; otherwise the scanning of head_i stopped within some edge, and so we split it by inserting h_i as the locus of head_i. We conclude the
process by installing the leaf for $suff_i$ as a child of h_i.

Figure 8.10 shows an example of the advantage induced by suffix links. As step 8 we have the partial suffix tree ST_7, $head_7 = ab$, its locus $h_7 = u$, and we need to insert the suffix $suff_8 = bz$s. Using McCreight’s algorithm, we find that $SL(h_7)$ is defined and equal to v, so we reach that node following the suffix link (without rescanning $head_{i-1}$). Subsequently, we scan the rest of $suff_i$, namely zs, searching for the locus of $head_b$, but we find that actually $head_b = head_7$, so $h_b = v$ and we can attach there the leaf 8.

From the point of view of time complexity, we observe that the rescanning and the scanning steps perform two different types of traversals: the former traverses edges by comparing only the branching characters, since it is rescanning the string $head_{i-1}$ which is already known from the previous step $i - 1$; the latter traverses edges by comparing their labels in their entirety because it has to determine $head_i$. This last type of traversal always advances in T so the cost of the scanning phase is $O(n)$. The difficulty is to evaluate that the cost of rescanning is $O(n)$ too. The proof comes from an observation on the structure of suffix links and suffix trees: if $SL(a) = v$ then all ancestors of a point to a distinct ancestor of v. This comes from Fact 8.7 (all these suffix links do exist), and from the definition of suffix links (which ensures ancestorship). Hence the tree-depth of $v = SL(a)$, say $d[v]$, is larger than $d[a] - 1$ (where -1 is due to the dropping of the first character). Therefore, the execution of rescanning can decrease the current depth at most by 2 (i.e., one for reaching the father of h_{i-1}, one for crossing $SL(h_{i-1})$). Since the depth of ST is most n, and we loose at most two levels per SL-jump, then the number of edges traversed by rescanning is $O(n)$, and each edge traversal takes $O(1)$ time because only the branching character is matched.

The last issue to be considered regards the cost of branching out of a node during the re-scanning and the scanning steps. Previously we stated that this costs $O(1)$ by using perfect hash-tables built over the branching characters of each internal node of ST. In the context of suffix-tree construction the tree is dynamic and thus we should adopt dynamic perfect hash-tables, which is a pretty involved solution. A simpler approach consists of keeping the branching characters and their associated edges within a binary-search tree thus supporting the branching in $O(\log \sigma)$ time. Practically, programmers relax the requirement of worst-case complexity and use either hash tables with chaining, or dictionary data structures for integer values (such as the Van Emde-Boas tree, whose search complexity is $O(\log \log \sigma)$ time) because characters can be looked at as sequences of bits and hence integers.

THEOREM 8.10 McCreight’s algorithm builds the suffix tree of a string $T[1,n]$ in $O(n \log \sigma)$ time and $O(n)$ space.

This algorithm is inefficient in an external-memory setting because it may elicit one I/O per each tree-edge traversal. Nevertheless, as we observed before, of the distribution of the lcps is skewed towards small values, then this construction might be I/O-efficient in that the top part of the suffix tree could be cached in the internal memory, and thus do not elicit any I/Os during the scanning and re-scanning steps. We refer the reader to [3] for details on this issue.

8.4 Some interesting problems

8.4.1 Approximate pattern matching

The problem of approximate pattern matching can be formulated as: finding all substrings of a text $T[1,n]$ that match a pattern $P[1,p]$ with at most k errors. In this section we restrict our discussion to the simplest type of errors, the ones called mismatches or substitutions (see Figure 8.11). This way the text substrings which "k-mismatch" the searched pattern P have length p and coincide with
the pattern in all but at most \(k \) characters. The following figure provides an example by considering two DNA strings formed over the alphabet of four nucleotide bases \(\{A, T, G, C\} \). The reason for this kind of strings is that Bio-informatics is the context which spurred interest around the approximate pattern-matching problem.

\[
\begin{array}{cccccccc}
C & C & G & T & A & C & G & T & A \\
C & C & G & A & A & C & T \\
\end{array}
\]

\[
\implies \implies
\]

FIGURE 8.11: An example of matching between \(T \) (top) and \(P \) (bottom) with \(k = 2 \) mismatches.

The naïve solution to this problem consists of trying to match \(P \) with every possible substring of \(T \), having length \(p \), counting the mismatches and returning the positions were their number is at most \(k \). This would take \(O(pn) \) time, independently of \(k \). The inefficiency comes from the fact that each pattern-substring comparison starts from the beginning of \(P \), thus taking \(O(p) \) time. In what follows we describe a sophisticated solution which hinges on an elegant data structure that solves an apparently un-related problem formulated over an array of integers, and called \textit{Range Minimum Query} (shortly, RMQ). This data structure is the backbone of many other algorithmic solutions in problems arising in Data Mining, Information Retrieval, and so on.

The following Algorithm 8.4 solves the \(k \)-mismatches problem in \(O(nk) \) time by making the following basic observation. If \(P \) occurs in \(T \) with \(j \leq k \) mismatches, then we can align the pattern \(P \) with a substring of \(T \) so that \(j \) or \(j - 1 \) substrings coincide and \(j \) characters mismatch. Actually equal substrings and mismatches interleave each other. As an example consider again Figure 8.11, the pattern occurs at position 1 in the text \(T \) with 2 mismatches, and in fact two substrings of \(P \) match their corresponding substrings of \(T \). This means that if we could compare pattern and text substrings for equality in constant time, then we could execute the naïve-approach taking \(O(nk) \) time, instead of \(O(np) \) time. To be operational, this observation can be rephrased as follows: if \(T[i, i + \ell] = P[j, j + \ell] \) is one of these matching substrings, then \(\ell \) is the longest common prefix between the pattern and the text suffixes starting at the matching positions \(i \) and \(j \). Algorithm 8.4 deploys this rephrasing to code a solution which takes \(O(nk) \) time provided that \(lcp \)-computations take \(O(1) \) time.

If we run the Algorithm 8.4 over the strings showed in Figure 8.11, we perform two \(lcp \)-computations and find that \(P \) occurs at text position 1 with 2-mismatches:

- \(lcp(T[1, 14], P[1, 7]) = lcp(CCGTACGATCAGTA, CCATCG) = CCG \).
- \(lcp(T[5, 14], P[5, 7]) = lcp(ACGATCAGTA, ACG) = AC \).

How do we compute \(lcp(T[i + j - 1, n], P[j, p]) \) in constant time? We know that suffix trees and suffix arrays have built-in some \(lcp \)-information, but we similarly recall that these data structures were built on one single string, namely the text \(T \). Here we are talking of suffixes of \(P \) and \(T \) together. Nonetheless we can easily circumvent this difficulty by constructing the suffix array, or the suffix tree, over the string \(X = T\#P \), where \(\# \) is a new character not occurring elsewhere. This way each computation of the form \(lcp(T[i + j - 1, n], P[j, p]) \) can now be turned into an \(lcp \)-computation between suffixes of \(X \), precisely \(lcp(T[i + j - 1, n], P[n + 1 + j, n + 1 + p]) \). We are therefore left with showing how these \(lcp \)-computations can be performed in constant time, whichever is the pair of compared suffixes. This is the topic of the next subsection.
Searching Strings by Substring

Algorithm 8.4 Approximate-pattern matching based on LCP-computations

matches = {} for i = 1 to n do
 m = 0, j = 1;
 while m ≤ k and j ≤ p do
 ℓ = lcp(T[i + j - 1, n], P[j, p]);
 j = j + ℓ;
 if j ≤ p then
 m = m + 1; j = j + 1;
 end if
 end while
 if m ≤ k then
 matches = matches ∪ {T[i, i + p - 1]};
 end if
end for
return matches;

Lowest Common Ancestor, Range Minimum Query and Cartesian Tree

Let us start from an example, by considering the suffix tree ST_X and the suffix array SA_X built on the string $X = CCGTACGATCAGTA$. This string is not in the form $X = T\#P$ because we wish to stress the fact that the considerations and the algorithmic solutions proposed in this section apply to any string X, not necessarily the ones arising from the Approximate Pattern-Matching problem.

The key observation, whose correctness spurs immediately from Figure 8.12, is that there is a strong relation between the lcp-problem over X’s suffixes and the computation of lowest common ancestors (lca) in the suffix tree ST_X. Consider the problem of finding the longest common prefix between suffixes $X[i, x]$ and $X[j, x]$ where $x = |X|$. It is not difficult to convince yourself that the node $u = lca(X[i, x], X[j, x])$ in the suffix tree ST_X spells out their lcp, and thus the value $|s[u]|$ stored in node u is exactly the lcp-value we are searching for. Notice that this property holds independently of the lexicographic sortedness of the edge labels, and thus of the suffix tree leaves.

Equivalently, the same value can be derived by looking at the suffix array SA_X. In particular take the lexicographic positions i_p and j_p where those two suffixes occur in SA_X, say $SA_X[i_p] = i$ and $SA_X[j_p] = j$ (we are assuming for simplicity that $i_p < j_p$). It is not difficult to convince yourself that the minimum value in the sub-array $lcp[i_p, j - 1]$\(^5\) is exactly equal to $|s[u]|$ since the values contained in that sub-array are the values stored in the suffix-tree nodes of the subtree that descends from u. Actually the order of these values is the one given by the in-order visit of u’s descendants. Anyway, this order is not important for our computation which actually takes the smallest value, because it is interested in the shallowest node (namely the root u) of that subtree.

Figure 8.12 provides a running example which clearly shows these two strong properties, which actually do not depend on the order of the children of suffix-tree nodes. As a result, we have two approaches to compute lcp in constant time, either through lca-computations over ST_X or through RMQ-computations over lcp$_X$. For the sake of presentation we introduce an elegant solution for the latter, which actually induces in turn an elegant solution for the former, given that they are strongly related.

\(^5\)Recall that lcp$_X$ stores the length of the longest common prefix between suffix SA[i] and its next suffix SA[i + 1].
FIGURE 8.12: An example of suffix tree (unordered), suffix array, lcp-array for the string $X = \text{CCGTACGATCAGTA}$. The figure highlights that the computation of $\text{lcp}(X[2, 16], X[10, 16])$ boils down to finding the depth of the 1ca-node in ST_X between the leaf 2 and the leaf 10, as well as to solve a range minimum query on the sub-array $\text{lcp}[6, 8]$ since $SA_X[6] = 10$ and $SA_X[9] = 2$.

In general terms the RMQ problem can be stated as follows:

The range-minimum-query problem. Given an array $A[1..n]$ of elements drawn from an ordered universe, build a data structure RMQ_A that is able to compute efficiently the position of a smallest element in $A[i..j]$, for any given queried range (i, j). We say "a smallest" because the array may contain many minimum elements.

We underline that this problem asks for the position of a minimum element in the queried sub-array, rather than its value. This is more general because the value of the minimum can be obviously retrieved from its position in A by accessing this array, which is available.

In this lecture we aim for constant-time queries [1]. The simplest solution achieves this goal via a table that stores the index of a minimum entry for each possible range (i, j). Such table requires $O(n^2)$ space and $O(n^2)$ time to be built. A better solution hinges on the following observation: any range (i, j) can be decomposed into two (possibly overlapping) ranges whose size is a power of two, namely $(i, i + 2^L)$ and $(j - 2^L, j)$ where $L = \lceil \log(j - i + 1) \rceil$. This allows us to sparsify the previous quadratic-sized table by storing only ranges whose size is a power of two. This way, for each position i we store the answers to the queries $\text{RMQ}_A(i, i + 2^L)$, thus occupying a total space of $O(n \log n)$ without impairing the time complexity of the query which is still constant and corresponds to return $\text{RMQ}_A(i, j) = \arg\min_{i \leq j} \{\text{RMQ}_A(i, i + 2^L), \text{RMQ}_A(j - 2^L, j)\}$.

In order to get the optimal $O(n)$ space occupancy, we need to dig into the structure of the RMQ-problem and make a twofold reduction which goes back-and-forth from RMQ-computations...
to 1ca-computations: namely, we reduce (1) the RMQ-computation over the lcp-array to an 1ca-computation over Cartesian Trees (that we define next); we then reduce (2) the 1ca-computation over Cartesian Trees to an RMQ-computation over a binary array. This last problem will then be solved in $O(n)$ space and constant query time. Clearly reduction (2) can be applied to any tree, and thus can be applied to Suffix Trees in order to solve 1ca-queries over them.

First reduction step: from RMQ to 1ca. We transform the RMQ$_A$-problem “back” into an 1ca-problem over a special tree which is known as Cartesian Tree and is built over the entries of the array $A[1, n]$. The Cartesian Tree C_A is a binary tree of n nodes, each labeled with one of A’s entries (i.e. value and position in A). The labeling is defined recursively as follows: the root of C_A is labeled by the minimum entry in $A[1, n]$, say this is $(A[m], m)$. Then the left subtree of the root is recursively defined as the Cartesian Tree of the subarray $A[1, m - 1]$, and the right subtree is recursively defined as the Cartesian Tree of the subarray $A[m + 1, n]$. Tree C_A can be constructed in $O(n)$ time as follows: Suppose that we have already built the tree C_i for the array $A[1, i]$, then we insert the element $A[i + 1]$ in two steps (see Figure 8.13):

1. we climb the rightmost path of C_i and determine the first node u whose associated entry $A[j]$ is smaller than $A[i + 1]$;
2. we make the node corresponding to $A[i + 1]$ the right son of u, and turn the previous right subtree of u into the left subtree of $A[i + 1]$.

![FIGURE 8.13: Example of Cartesian Tree built over the array $A[1, 3] = \{1, 4, 3\}$, and the insertion of the value 2. Observe that nodes of C_A store only A’s values, their positions in A are dropped to ease the presentation.](image)

The following Figure 8.14 shows the Cartesian tree built on the lcp-array depicted in Figure 8.12. Given the construction process, we can state that ranges in the lcp-array correspond to subtrees of the Cartesian tree. Therefore computing RMQ$_{\text{lcp}}(i, j)$ boils down to compute an 1ca-query between the nodes of C_A associated to the entries i and j. Differently of what occurred for 1ca-queries on STX, where the arguments were leaves of that suffix tree, the queried nodes in the Cartesian Tree may be internal nodes, and actually it might occur that one node is ancestor of the other node. For example, executing RMQ$_{\text{lcp}}(6, 8)$ equals to executing 1ca$(6, 8)$ over the Cartesian Tree C_{lcp} of Figure 8.14. The result of this query is the node $\langle \text{lcp}[7], 7 \rangle = \langle 1, 7 \rangle$. Notice that we have another minimum value in $\text{lcp}[6, 8]$ at $\text{lcp}[6] = 1$; the answer provided by the 1ca is one of the existing minima in the queried-range.
FIGURE 8.14: Cartesian tree built on the lcp-array of Figure 8.12. On the bottom part are reported the Euler Tour of the Cartesian Tree and the array D of the depths of the nodes according to the Euler-Tour order.

Second reduction step: from lca to RMQ. We transform the lca-problem over the Cartesian Tree C_{lcp} “back” into an RMQ-problem over a special binary array $\Delta[1, 2e]$, where e is the number of edges in the Cartesian Tree (of course $e = O(n)$). It seems strange this “circular” sequence of reductions that now has turned us back into an RMQ-problem. But the current RMQ-problem, unlike the original one, is formulated on a binary array and thus admits an optimal solution in $O(n)$ space.

To build the binary array $\Delta[1, 2e]$ we need first to build the array $D[1, 2e]$ which is obtained as follows. Take the Euler Tour of Cartesian Tree C_A, visiting the tree in pre-order and writing down each node everytime the visit passes through it. A node can be visited multiple times, precisely it is visited/written as many times as its number of incident edges; except for the root which is written the number of incident edges plus 1.

Given the Euler Tour of the Cartesian Tree C_A, we build the array $D[1, 2e]$ which stores the depths of the visited nodes in the order stated by the Euler Tour (see Figure 8.14). Given D and the way the Euler Tour is built, we can conclude that query $\text{lca}(i, j)$ in C_A boils down to compute the node of minimum depth in the sub-array $D[i', j']$ where i' (resp. j') is the position of the first (resp. last) occurrence of the node i (resp. j) in the Euler Tour. In fact, the range $D[i', j']$ corresponds to the part of the Euler Tour that starts at node i and ends at node j. The node of minimum depth encountered in this Euler sub-Tour is properly the $\text{lca}(i, j)$.

So we reduced an lca-query over the Cartesian Tree into an RMQ-query over node depths. In our running example on Figure 8.14 this reduction transforms the query $\text{lca}(6, 8)$ into a query $\text{RMQ}_0(11, 13)$, which is highlighted by a red rectangle. Turning nodes into ranges can be done in constant time by simply storing two integers per node of the Cartesian Tree, denoting their first/last occurrence in the Euler Tour, thus taking $O(n)$ space.

We are again “back” to an RMQ-query over an integer array. But the current array D is special
Searching Strings by Substring

because its consecutive entries differ by 1 given that they refer to the depths of consecutive nodes in an Euler Tour. And in fact, two consecutive nodes in the Euler Tour are connected by an edge and thus one node is the parent of the other, and hence their depths differ by one unit. The net result of this property is that we can solve the RMQ-problem over \(D[1, 2e] \) in \(O(n) \) space and \(O(1) \) time as follows. (Recall that \(e = O(n) \)). Solution is based on two data structures which are detailed next.

First, we split the array \(D \) into \(\frac{2e}{2} \) subarrays \(D_k \) of size \(d = \frac{1}{2} \log e \) each. Next, we find the minimum element in each subarray \(D_k \), and store its position at the entry \(M[k] \) of a new array whose size is therefore \(\frac{2e}{2} \). We finally build on the array \(M \) the sparse-table solution indicated above which takes superlinear space (in the size of \(M \)) and solves \(\text{RMQ} \)-queries in constant time. The key point here is that \(M \)'s size is sublinear in \(e \), and thus in \(n \), so that the overall space taken by array \(M \) and its sparse-table is \(O((\frac{\sqrt{n}}{\log n}) \cdot \log \frac{\sqrt{n}}{\log n}) = O(e) = O(n) \).

The second data structure is built to efficiently answer \(\text{RMQ} \)-queries in which \(i \) and \(j \) are in the same block \(D_k \). It is clear that we cannot tabulate all answers to all such possible pairs of indexes because this would end up in \(\Theta(n^2) \) space occupancy. So the solution we describe here spurs from two simple, deep observations whose proof is immediate and left to the reader:

Binary entries: Every block \(D_k \) can be transformed into a pair that consists of its first element \(D_k[1] \) and a binary array \(\Delta_k[i] = D_k[i] - D_k[i-1] \) for \(i = 2, \ldots, d \). Entries of \(\Delta_k \) are either \(-1 \) or \(+1 \) because of the unit difference between adjacent entries of \(D \).

Minimum location: The position of the minimum value in \(D_k \) depends only on the content of the binary sequence \(\Delta_k \) and does not depend on the starting value \(D_k[1] \).

Nicely, the possible configurations that every block \(D_k \) can assume are infinite, given that infinite is the number of ways we can instantiate the input array \(A \) on which we want to issue the \(\text{RMQ} \)-queries; but the possible configurations of the image \(\Delta_k \) is finite and equal to \(2^d \). This suggests to apply the so called *Four Russians trick* to the binary arrays by tabulating all possible binary sequences \(\Delta_k \) and, for each of them, storing the position of the minimum value. Since the blocks \(\Delta_k \) have length \(d = \frac{\log e}{\log 2} \), the total number of possible binary sequences is \(2^d = O(\frac{n^{\log \log e}}{\log n}) = O(\sqrt{n}) \). Moreover, since both query-indices \(i \) and \(j \) can take at most \(d = \frac{\log e}{\log 2} \) possible values, being internal in a block \(D_k \), we can have at most \(O(\log^2 e) \) queries of this third type. Consequently, we build a lookup table \(T[i_o, j_o, \Delta_k] \) that is indexed by the possible query-offsets \(i_o \) and \(j_o \) within the block \(D_k \) and its binary configuration \(\Delta_k \). Table \(T \) stores at that entry the position of the minimum value in \(D_k \). We also assume that, for each \(k \), we have stored \(\Delta_k \) so that the binary representation \(\Delta_k \) of \(D_k \) can be retrieved in constant time. Each of these indexing parameters takes \(O(\log e) = O(\log n) \) bits of space, hence one memory word, and thus can be managed in \(O(1) \) time and space. In summary, the whole table \(T \) consists of \(O(\sqrt{n}(\log n)^2) = o(n) \) entries. The time needed to build \(T \) is \(O(n) \). The power of transforming \(D_k \) into \(\Delta_k \) is evident now, every entry of \(T[i_o, j_o, \Delta_k] \) is actually encoding the answer for an infinite number of blocks \(D_k \), namely the ones that can be turned to the same binary configuration \(\Delta_k \).

At this point we are ready to design an algorithm that, using the three data structures illustrated above, answers a query \(\text{RMQ}_d(i, j) \) in constant time. If \(i, j \) are inside the same block \(D_k \) then the answer is retrieved in two steps: first we compute the offsets \(i_o \) and \(j_o \) with respect to the beginning of \(D_k \) and determine the binary configuration \(\Delta_k \) from \(k \); then we use this triple to access the proper entry of \(T \). Otherwise the range \((i, j) \) spans at least two blocks and can thus be decomposed in three parts: a suffix of some block \(D_j \), a consecutive sequence of blocks \(D_{r+1} \cdots D_{j-1} \), and finally the prefix of block \(D_j \). The minimum for the suffix of \(D_j \) and the prefix of \(D_j \) can be retrieved from \(T \) given that these ranges are inside two blocks. The minimum of the range spanned by \(D_{r+1} \cdots D_{j-1} \) is stored in \(M \). All this information can be accessed in constant time and the final minimum-position can be retrieved by comparing these three minimum values, in constant time too.
THEOREM 8.11 Range-minimum queries over an array $A[1,n]$ of elements drawn from an ordered universe can be answered in constant time using a data structure that occupies $O(n)$ space.

Given the stream of reductions we illustrated above, we can conclude that Theorem 8.11 applies also to computing LCA in generic trees: it is enough to take the input tree in place of the Cartesian Tree.

THEOREM 8.12 Lowest-common-ancestor queries over a generic tree of size n can be answered in constant time using a data structure that occupies $O(n)$ space.

8.4.2 Text Compression

Data compression will be the topic of one of the following chapters; nonetheless in this section we address the problem of compressing a text via the simple algorithm which is at the core of the well known gzip compressor, named LZ77 from the initials of its inventors (Abraham Lempel and Jacob Ziv [9]) and from the year of its publication (1977). We will show that there exists an optimal implementation of the LZ77-algorithm taking $O(n)$ time and using suffix trees.

Given a text string $T[1,n]$, the algorithm LZ77 produces a parsing of T into substrings that are defined as follows. Assume that it has already parsed the prefix $T[1,i-1]$ (at the beginning this prefix is empty), then it decomposes the remaining text suffix $T[i,n]$ in three parts: the longest substring $T[i,i+\ell-1]$ which starts at i and repeats before in the text T, the next character $T[i+\ell]$, and the remaining suffix $T[i+\ell+1,n]$. The next substring to add to the parsing of T is $T[i,i+\ell]$, and thus corresponds to the shortest string that is new in $T[1,i-1]$. Parsing then continues onto the remaining suffix $T[i+\ell+1,n]$, if any.

Compression is obtained by succinctly encoding the triple of integers $\langle d,\ell,T[i+\ell]\rangle$, where d is the distance (in characters) from i to the previous copy of $T[i,i+\ell-1]$; ℓ is the length of the copied string; $T[i+\ell]$ is the appended character. By saying "previous copy" of $T[i,i+\ell-1]$, we mean that its copy starts before position i but it might extend after this position, hence it could be $d<\ell$; furthermore, the previous copy can be any previous occurrence of $T[i,i+\ell-1]$, although space-efficiency issues suggest us to take the closest copy (and thus the smallest d). Finally we observe that the reason for adding the character $T[i+\ell]$ to the emitted triple is that this character behaves like an escape-mechanism; in fact it is useful when no-copy is possible and thus $\ell=0$ (this occurs when a new character is met in T).\(^6\)

Before digging into an efficient implementation of the LZ77-algorithm let us consider our example string $T=\text{mississippi}$. Its LZ77-parsing is computed as follows:

\[\begin{array}{cccccccccccc}
\text{'m'} & \text{'i'} & \text{'s'} & \text{'i'} & \text{'s'} & \text{'i'} & \text{'s'} & \text{'i'} & \text{'p'} & \text{'p'} & \text{'i'}
\end{array}\]

Output: $\langle 0,0,m \rangle$

\[\begin{array}{cccccccccccc}
\text{'m'} & \text{'i'} & \text{'s'} & \text{'s'} & \text{'i'} & \text{'s'} & \text{'i'} & \text{'p'} & \text{'p'} & \text{'i'}
\end{array}\]

\(^6\)We are not going to discuss the integer-encoding issue, since it will be the topic of a next chapter, we just mention here that efficiency is obtained in gzip by taking the rightmost copy and by encoding the values d and ℓ via a Huffman coder.
Searching Strings by Substring

Output: < 0, 0, i >

Output: < 0, 0, s >

Output: < 1, 1, i >

Output: < 3, 3, p >

Output: < 1, 1, i >

We can compute the LZ77-parsing in $O(n)$ time via an elegant algorithm that deploys the suffix tree ST. The difficulty is to find π_i, the longest substring that occurs at position i and repeats before in the text T. Say d is the distance of the previous occurrence. Given our notation above we have that $\ell = |\pi_i|$. Of course π_i is a prefix of suff_i and a prefix of suff_{i-d}; actually, it is the longest common prefix of these two suffixes, and by maximality, there is no other previous suffix suff_j (with $j < i$) that shares a longer prefix with suff_i. By properties of suffix trees, the lowest-common-ancestor of leaves i and j spells out π_i. However we cannot compute $\text{lca}(i, j)$ by issuing a query to the data structure of Theorem 8.12 because we do not know j, which is exactly the information we wish to compute. Similarly we cannot trace a downward path from the root of ST trying to match suff_i because all suffixes of T are indexed in the suffix tree and thus we could detect a longer copy which follows position i, instead of preceding it.

To circumvent these problems we preprocess ST via a post-order visit that computes for every internal node v its minimum leaf $\text{min}(v)$. Clearly $\text{min}(u)$ is the leftmost position from which we can copy the substring $s[u]$. Given this information we can determine easily π_i, just trace a downward path from the root of ST scanning suff_i and stopping as soon as the reached node v is such that $\text{min}(v) = i$. At this point we take v as the parent of v and set $\pi_i = s[u]$, and $d = i - \text{min}(u)$. Clearly, the chosen copy of π_i is the farthest one and not the closest one: this does not impact in the number of phrases in which T is parsed by LZ77, but possibly influences the magnitude of these distances and thus their succinct encoding. Devise an LZ77-parsing that efficiently determines the closest copy of each π_i is non trivial and needs much more sophisticated data structures.

Take $T = \text{mississippi}$ as the string to be parsed (see above) and consider its suffix tree ST in Figure 8.8. Assume that the parsing is at the suffix $\text{suff}_z = \text{ississippi}$. Its tracing down ST stops immediately at the root of the suffix tree because the node to be visited next would be u, for which $\text{min}(u) = 2$ which is not smaller than the current suffix position. Then consider the parsing at suffix $\text{suff}_6 = \text{ssippi}$. We trace down ST and actually exhaust suff_6, so reaching the leaf 6, for which min is 3. So the selected node is its parent π, for which $s[\pi] = \text{ssii}$. The emitted triple is correctly $< 3, 3, p >$.
The time complexity of this implementation of the LZ77-algorithm is \(O(n)\) because the traversal of the suffix tree advances over the string \(T\), and this may occur only \(n\) times. Branching out of suffix-tree nodes can be implemented in \(O(1)\) time via perfect hash tables, as observed for the substring-search problem. The construction of the suffix tree costs \(O(n)\) time, by using one of the algorithms we described in the previous sections. The computation of the values \(\min(n)\), over all nodes \(u\), takes \(O(n)\) time via a post-order visit of \(ST\).

THEOREM 8.13 The LZ77-parsing of a string \(T[1, n]\) can be computed in \(O(n)\) time and space. Each substring of the parsing is copied from its farthest previous occurrence.

8.4.3 Text Mining

In this section we briefly survey two examples of uses of suffix arrays and \(1cp\)-arrays in the solution of sophisticated text mining problems.

Let us consider the following question: Check whether there exists a substring of \(T[1, n]\) that repeats at least twice and has length \(L\). Solving this problem in a brute-force way would mean to take every text substring of length \(L\) and count its number of occurrences in \(T\). These substrings are \(\Theta(n)\), searching each of them takes \(O(nL)\) time, hence the overall time complexity of this trivial algorithm would be \(O(n^2L)\). A smarter and faster, actually optimal, solution comes from the use either of the suffix tree or of the \(1cp\)-array \(1cp\), built on the input text \(Ts\).

The use of suffix tree is simple. Let us assume that such a string does exist, and it occurs at positions \(x\) and \(y\) of \(T\). Now take the two leaves in the suffix tree which correspond to \(\text{suff}_x\) and \(\text{suff}_y\) and compute their lowest common ancestor, say \(a(x, y)\). Since \(T[x, x+L-1] = T[y, y+L-1]\), it is that \(|a(x, y)| \geq L\). We write ”greater or equal” because it could be the case that a longer substring is shared at positions \(x\) and \(y\), in fact \(L\) is just fixed by the problem. The net result of this argument is that it does exist an \(\text{internal}\) node in the suffix tree whose label is greater or equal than \(L\); a visit of the suffix tree is enough to search for any node such this one, thus taking \(O(n)\) time.

The use of the suffix array is a little bit more involved, but follows a similar argument. Recall that suffixes in \(SA\) are lexicographically ordered, so the longest common prefix shared by suffix \(SA[i]\) is with its adjacent suffixes, namely either with suffix \(SA[i-1]\) or with suffix \(SA[i+1]\). The length of these \(lcp\)s is stored in the entries \(1cp[i-1, i]\). Now, if the repeated substring of length \(L\) does exist, and it occurs e.g. at text positions \(x\) and \(y\), then we have \(1cp(T[x, n], T[y, n]) \geq L\). These two suffixes not necessarily are contiguous in \(SA\) (this is the case when the substring occurs more than twice), nonetheless all suffixes occurring among them in \(SA\) will surely share a prefix of length \(L\), because of their lexicographic order. Hence, if suffix \(T[x, n]\) occurs at position \(q\) of the suffix array, i.e. \(SA[q] = x\), then we have that either \(1cp[q-1] \geq L\) or \(1cp[q] \geq L\), depending on the fact that \(T[y, n] < T[x, n]\) or vice versa, respectively. Hence we can solve the question stated above by scanning \(1cp\) and searching for an entry \(\geq L\). This takes \(O(n)\) optimal time.

Let us now ask a more sophisticated question: Check whether there exists a text substring that repeats at least \(C\) times and has length \(L\). This is the typical query in a text mining scenario, where we are interested not just in a repetitive event but in an event occurring with some statistical evidence. We can again solve this problem by trying all possible substrings and counting their occurrences. Again, a faster solution comes from the use either of the suffix tree or of the array \(1cp\). Following the argument provided in the solution of the previous question we note that, if a substring of length \(L\) occurs (at least) \(C\) times, then it does exist (at least) \(C\) text suffixes that share (at least) \(L\) characters. So it does exist a node \(u\) in the suffix tree such that \(|s[u]| \geq L\) and the number of descending leaves \(\text{occ}[u] \geq C\). Equivalently, it does exist a sub-array in \(1cp\) of length \(\geq C-1\) that consists of entries \(\geq L\). Both approaches provide an answer to the above question in \(O(n)\) time.
Let us conclude this section by asking a query closer to a search-engine scenario: *Given two patterns P and Q, and a positive integer k, check whether there exists an occurrence of P whose distance from an occurrence of Q in an input text T is at most k. This is also called proximity search over a text T which is given in advance to be preprocessed. The solution passes through the use of any search data structure, being it a suffix tree or a suffix array built over T, plus some sorting/merging steps. We search for P and Q in T and derive their occurrences, say O. Both suffix arrays and suffix trees return these occurrences unsorted. Therefore we sort them, in order to produce the ordered list of occurrences of P and Q. At this point it is easy to determine whether the question above admits a positive answer; if it does, then there do exist two consecutive occurrences of P and Q whose distance is at most k. To detect this situation it is enough to scan the sorted sequence O and check, for every consecutive pair of positions which are occurrences of P and Q, whether the difference is at most k. This takes overall $O(|P| + |Q| + |O| \log |O|)$ time, which is clearly advantageous whenever the set O of candidate occurrences is small, and thus the queries P and Q sufficiently selective.*

References

