
BUbiNG
Massive Crawling

for the Masses
Paolo Boldi, Andrea Marino,  

Massimo Santini, Sebastiano Vigna  
 

Dipartimento di Informatica  
Università degli Studi di Milano  

Italy  

Once upon a time
UbiCrawler

UbiCrawler was a scalable, fault-tolerant and fully
distributed web crawler (Software: Practice &
Experience, 34(8):711-726, 2004)!

LAW (Laboratory for Web Algorithmics) used it many
times in the mid-2000s, to download portions of the
web (.it, .uk, .eu, Arabic countries...)!

Based on this experience, LAW decided to write a new
crawler, 10 years later!  

 BUbiNG

Why a new crawler?
OPEN SOURCE! !

Not so many open-source crawlers !

Heritrix (Internet Archive; used for ClueWeb12)!

Nutch (used for ClueWeb09)!

Not suitable to collect really big datasets!

Not so easily extensible!

Distributed? (Heritrix is not distributed; Nutch uses Hadoop)

Challenges
Pushing hardware to the limit: Use massive memory and multiple cores
efficiently!

Fill bandwidth in spite of politeness (both at host and IP level) => coherent
time frame!

Producing big datasets in spite of limited hardware!

Making crawling and analysis consistent!

!

Completely configurable!

Extensible will little eff!

Integrated with spam detection (Hungarian Academy of Sciences)

High Parallelism
We use massively multiple (like 5000) fetching
threads!

Every thread handles a request and is I/O
bound!

Parallel threads parse and store pages!

Slow data structures are sandwiched between
lock-free queues

Fully Distributed
We use JGroups to set up a view on a set of agents!

We use JAI4J, a thin layer over JGroups that
handles job assignment.!

Hosts are assigned to agent using consistent
hashing!

URLs for which an agent is not responsible are
quickly delivered to the right agent!

Near–Duplicates

We detect (presently) near-duplicates using a
fingerprint of a stripped page (stored in a
Bloom filter)!

The stripping includes eliminating almost all
tag attributes and numbers from text

(1)

Sieve Distributor

URL

host � visit state

DNSThread

URL in
new host

workbench entry

IP � workbench entry

Workbench

URL in
known host

visit state (acquire)

WorkbenchThread

visit state

TODOListFetchingThreadResults

ParsingThread parsed!

visit state (put back)

Guava
cache

Store

Workbench
Virtualizer
(disk queues)

(in memory)

page,
headers

etc.

URLs
found

URL

(2)

other
 agents

(3)

URL

Frontier

Highlight: The
workbench

A double priority queue of visit states (the state
of visit of a host)!

Organized by next-fetch per host & per IP!

Works like a delay queue: wait until a host is
ready to be visited

Highlight: the
workbench virtualizer

Visit states keep track of URLs that are to be
visited for a given host (those already been
output from the sieve)!

How to reconcile this with constant memory?!

Keeping only the tip of each queue and using
on-disk refill queues for the rest...

Behavior on a slow
connection

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 50 100 150 200 250 300

P
ag

es
/s

Number of threads

Front size

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 500 1000 1500 2000 2500 3000 3500 4000

A
v

er
ag

e
fr

o
n

t
si

ze
 (

IP
s)

IP delay (ms)

125 threads
500 threads

2000 threads

Average speed

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 500 1000 1500 2000 2500 3000 3500 4000

A
v

er
ag

e
S

p
ee

d
 (

R
eq

u
es

ts
/s

)

IP delay (ms)

125 threads
500 threads

2000 threads

Comparisons
Machines Speed/agent (MB/s)

Nutch (ClueWeb09) 100 0,1

Heritrix (ClueWeb12) 5 4

Heritrix (in vitro) 1 4,5

IRLBot 1 40

BUbiNG (in vivo) 1 154

BUbiNG (in vitro) 4 160

Fast?

In vitro: >9000 pages/s average, peaks at 18000
pages/s!

In vivo (@iStella): >3500 pages/s average (single
crawler), steady download speed of 1.2Gb/s!

ClueWeb09 (Nutch): 4.3 pages/s!

ClueWeb12 (Heritrix): 60 pages/s!

IRLbot: 1790 pages/s (unverifiable)

We broke down
almost everything!
Hardware broke down: €40,000 server replaced for no
charge with a €60,000 server!

OS broke down: Linux kernel’s bug 862758!

JVM broke down: try opening 5000 random-access files!

Dozens of bug reports and improvements to a number of
open-source projects, including the Jericho HTML parser,
Apache Software Foundation’s HTTP Client, etc.

Vital im
portance in open-source development

https://bugzilla.redhat.com/show_bug.cgi?id=862758

Future works

Download@ http://law.di.unimi.it/!

Using other prioritizations for URL!

But first of all: making crawling technology
more and more accessible to the masses

Thanks!

