AXIOMS FOR CENTRALITY

From a paper by Paolo Boldi, Sebastiano Vigna
Università degli Studi di Milano

More to come...
1. (Collecting) Consider the most important centrality indices proposed in the scientific literature(s).

2. (Assessing) Test them against axioms that all centrality indices should satisfy.
What do these people have in common?

Ron Jeremy Adolf Hitler Lloyd Kaufman George W. Bush

Ronald Reagan Bill Clinton Martin Sheen Debbie Rochon
PageRank (believe it or not)

* These are the top-8 actors of the Hollywood graph according to PageRank

* Who is going to tell that is better?
And these?

William Shatner Bess Flowers Martin Sheen Ronald Reagan

George Clooney Samuel Jackson Robin Williams Tom Hanks
These were computed by using Harmonic Centrality instead.
Definitely better, but who’s Bess Flowers?

Bess Flowers

From Wikipedia, the free encyclopedia

Bess Flowers (November 23, 1898 – July 28, 1984) was an *American actress*. By some counts considered the most prolific actress in the history of Hollywood, she was known as "The Queen of the Hollywood Extras," appearing in over 700 movies in her 41 year career.

- **Born**: November 23, 1898
- **Died**: July 28, 1984 (aged 85)
Centrality in social sciences

★ First works by Bavelas at MIT (1946)

★ This sparked countless works (Bavelas 1951; Katz 1953; Shaw 1954; Beauchamp 1965; Mackenzie 1966; Burgess 1969; Anthonisse 1971; Czapiel 1974...) that Freeman (1979) tried to summarize concluding that:

several measures are often only vaguely related to the intuitive ideas they purport to index, and many are so complex that it is difficult or impossible to discover what, if anything, they are measuring
Only few surveys

Noteworthy (in the IR context): Craswell, Upstill, Hawking (ADCS 2003); Najork, Zaragoza, Taylor (SIGIR 2007); Najork, Gollapudi, Panigrahy (WSDM 2009)
Collecting

A brief survey of centrality measures
A tale of three tribes

- *Spectral indices*, based on some linear-algebra construction
- *Path-based indices*, based on the number of paths or shortest paths (geodesics) passing through a vertex
- *Geometric indices*, based on distances from a vertex to other vertices
*(In-) **Degree centrality**: the number of incoming links

\[c_{\text{deg}}(x) = d^-(x) \]

* Or number of nodes at distance one

* Careful: when dealing with *directed* networks, some indices present two variants (e.g., in-degree vs. out-degree), the ones based on incoming paths being usually more interesting
The path tribe

* **Betweenness centrality** (Anthonisse 1971):

\[
c_{\text{betw}}(x) = \sum_{y, z \neq x} \frac{\sigma_{yz}(x)}{\sigma_{yz}}
\]

* **Katz centrality** (Katz 1953):

\[
c_{\text{Katz}}(x) = \sum_{t=0}^{\infty} \alpha^t \Pi_x(t) = 1 \sum_{t=0}^{\infty} \alpha^t G^t
\]

Fraction of shortest paths from \(y \) to \(z \) passing through \(x \)

of paths of length \(t \) ending in \(x \)
The distance tribe

* **Closeness centrality** (Bavelas 1946):

\[c_{\text{clos}}(x) = \frac{1}{\sum_y d(y, x)} \]

* The summation is over all \(y \) such that \(d(y, x) < \infty \)

* **Harmonic centrality**:

\[c_{\text{harm}}(x) = \sum_{y \neq x} \frac{1}{d(y, x)} \]

* The denormalized reciprocal of the harmonic mean of all distances (even \(\infty \)), inspired by (Marchiori, Latora 2000)
The spectral tribe

(* All based on the eigenstructure of some graph-related matrix

(* Most obvious: left or right dominant eigenvector of some matrix derived from the graph adjacency matrix \(G\). Most common: \(G_r\), in which rows are normalized to row sum one

(* All share the same issues of unicity and computability, mainly solved using Perron-Frobenius theory and the power method or more sophisticated approaches
Basic idea: in a group of children, a child is as popular as the sum of the popularities of the children who like him, but popularities are divided evenly among friends:

\[c_{\text{Seeley}}(x) = \sum_{y \rightarrow x} \frac{c_{\text{Seeley}}(y)}{d^+(y)} \]

In general it is a left dominant eigenvector of \(G_r \)
The idea is to start from Seeley's equation and add an adjustment to make it have a unique solution (and more)

\[c_{pr}(x) = \alpha \sum_{y \rightarrow x} \frac{c_{pr}(y)}{d^+(y)} + \frac{1 - \alpha}{n} \]

It is the dominant eigenvector of \(\alpha G_r + (1 - \alpha) \mathbf{1}^T \mathbf{1} / n \)

Recall: Katz (1953) is the dom. eigenv. of \(\alpha G + (1 - \alpha) \mathbf{e}^T \mathbf{1} / n \)

Recall: Seeley (1949) is the dom. eigenv. of \(G_r \)
HITS
(Kleinberg 1997)

- The idea is to start from the system:

\[c_{\text{Hauth}}(x) = \sum_{y \rightarrow x} c_{\text{Hhub}}(y) \]
\[c_{\text{Hhub}}(x) = \sum_{x \rightarrow y} c_{\text{Hauth}}(y) \]

- HITS centrality is defined to be the “authoritativeness” score

- It is a dominant eigenvector of \(G^T G \) so it coincides with the dominant eigenvector on symmetric graphs

- Actually defined by Bonacich in 1991
Assessing

Axioms for centrality
Axioms for Centrality

* Let’s try to isolate interesting properties
* Various precedents: Sabidussi [1966], Nieminen [1973], Chien et al. for PageRank [2004], Brandes et al. [2012]
* One of the axioms is indeed common (score monotonicity)
Axioms
Sensitivity to density

The blue and the red node have the same importance (the two rings have the same size!)
Axioms

Sensitivity to density

Densifying the left-hand side, we expect the red node to become more important than the blue node.
Two disjoint (i.e., “very far”) components of a single network

When k or p goes to ∞, the nodes of the corresponding subnetwork must become more important.
Axios

Score monotonicity

*: Score monotonicity: if I add an arc towards y, the score of y must (strictly) increase (same as Sabidussi)
An axiomatic slaughter

<table>
<thead>
<tr>
<th></th>
<th>Density</th>
<th>Size</th>
<th>Monotone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree</td>
<td>yes</td>
<td>only k</td>
<td>yes</td>
</tr>
<tr>
<td>Betweenness</td>
<td>no (!)</td>
<td>only p</td>
<td>no</td>
</tr>
<tr>
<td>Dominant</td>
<td>yes</td>
<td>only k</td>
<td>no</td>
</tr>
<tr>
<td>Seeley</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Katz</td>
<td>yes</td>
<td>only k</td>
<td>yes</td>
</tr>
<tr>
<td>PageRank</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>HITS</td>
<td>yes</td>
<td>only k</td>
<td>no</td>
</tr>
<tr>
<td>Closeness</td>
<td>no (!)</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Harmonic</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
Conclusions

* Next time you need a centrality index... *try harmonic*!
* (You can compute it quickly using HyperBall)
Thanks!