

f[c] is the cumulative prob. up to symbol c (not included) Final interval size is *n*

$$
S_n = \prod_{i=1}^n p[c_i]
$$

The interval for a message sequence will be called the sequence interval

Lemma 3.20 $\forall l, s \geq 0$ such that $l + s < 1$, the truncation of $l + \frac{s}{2}$ to the first $-|\log_2 s| + 1$ bits is in $[l, l + s)$.

Proof: Clearly we have that $l + \frac{s}{2} \in [l, l + s)$, but we want to prove that also its truncation is in the interval. If we let $l + \frac{s}{2} = 0.b_1b_2...$, it differs from its truncation to the first h bits $(0.b_1...b_h)$ of at most:

 $l+\frac{s}{2}-\text{trunc}_h(l+\frac{s}{2})=\sum_{i=h+1}^{\infty}b_i\cdot 2^{-i}\leq 2^{-h}\sum_{i=1}^{\infty}2^{-i}=2^{-h}$ So we have $l+\frac{s}{2}-2^{-h}\leq \text{trunc}_h(l+\frac{s}{2})\leq l+\frac{s}{2}$

and if we let $h = -\lfloor \log_2 s \rfloor + 1$ we have

 $2^{-h} = 2^{\lfloor \log_2 s \rfloor - 1} \leq \frac{s}{2} \qquad \text{and} \qquad l \leq \text{trunc}_h (l + \frac{s}{2}) \leq l + \frac{s}{2}$

so trunc_h $(l + \frac{s}{2}) \in [l, l + s)$.

Note that $-\lfloor \log s \rfloor + 1 = \lceil \log (2/s) \rceil$

