Data Compression

Arithmetic Coding

Arithmetic Coding: Introduction

Allows using “fractional” parts of bits!!

Used in PPM, JPEG/MPEG (as option), Bzip

More time costly than Huffman, but integer implementation is not too bad.
Arithmetic Coding (message intervals)

Assign each symbol to an interval range from 0 (inclusive) to 1 (exclusive).

e.g.

\[f(i) = \sum_{j=1}^{i-1} p(j) \]

\[f(a) = 0.0, \quad f(b) = 0.2, \quad f(c) = 0.7 \]

The interval for a particular symbol will be called the **symbol interval** (e.g. for b it is [0.2, 0.7])

Arithmetic Coding: Encoding Example

Coding the message sequence: bac

The final sequence interval is [0.27, 0.3]
Arithmetic Coding

To code a sequence of symbols c with probabilities $p[c]$ use the following:

$$\begin{align*}
l_0 &= 0 \\
l_i &= l_{i-1} + s_{i-1} \cdot f[c_i] \\
s_0 &= 1 \\
s_i &= s_{i-1} \cdot p[c_i]
\end{align*}$$

$f[c]$ is the cumulative prob. up to symbol c (not included)

Final interval size is

$$s_n = \prod_{i=1}^{n} p[c_i]$$

The interval for a message sequence will be called the sequence interval.

Uniquely defining an interval

Important property: The intervals for distinct messages of length n will never overlap

Therefore by specifying any number in the final interval uniquely determines the msg.

Decoding is similar to encoding, but on each step need to determine what the message value is and then reduce interval.
Decoding the number .49, knowing the message is of length 3:

The message is **bbc**.

Representing a real number

Binary fractional representation:

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary Fractional</th>
</tr>
</thead>
<tbody>
<tr>
<td>.75</td>
<td>.11</td>
</tr>
<tr>
<td>1/3</td>
<td>.0101</td>
</tr>
<tr>
<td>11/16</td>
<td>.1011</td>
</tr>
</tbody>
</table>

So how about just using the **shortest** binary fractional representation in the sequence interval.

e.g. [0, .33) = .01, [.33, .66) = .1, [.66, 1) = .11
Representing a code interval

Can view binary fractional numbers as **intervals** by considering all completions.

<table>
<thead>
<tr>
<th>min</th>
<th>max</th>
<th>interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>.11</td>
<td>.110</td>
<td>[.75,1.0)</td>
</tr>
<tr>
<td>.101</td>
<td>.1010</td>
<td>[.625,.75)</td>
</tr>
</tbody>
</table>

We will call this the **code interval**.

Selecting the code interval

To find a prefix code, find a binary fractional number whose code interval is contained in the sequence interval (**dyadic number**).

Sequence Interval | .79 | .75 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.61</td>
<td>.625</td>
</tr>
</tbody>
</table>

Can use L + s/2 truncated to 1 + ⌈log (1/s)⌉ bits
Bound on Arithmetic length

Lemma 3.20 \(\forall l, s \geq 0 \) such that \(l + s < 1 \), the truncation of \(l + \frac{s}{2} \) to the first \(-[\log_2 s] + 1\) bits is in \([l, l + s)\).

Proof: Clearly we have that \(l + \frac{s}{2} \in [l, l + s) \), but we want to prove that also its truncation is in the interval. If we let \(l + \frac{s}{2} = 0.b_1b_2 \ldots \), it differs from its truncation to the first \(h \) bits (\(0.b_1 \ldots b_h \)) of at most:
\[
 l + \frac{s}{2} - \text{trunc}_h(l + \frac{s}{2}) = \sum_{i=h+1}^{\infty} b_i \cdot 2^{-i} \leq 2^{-h} \sum_{i=1}^{\infty} 2^{-i} = 2^{-h}
\]
So we have
\[
 l + \frac{s}{2} - 2^{-h} \leq \text{trunc}_h(l + \frac{s}{2}) \leq l + \frac{s}{2}
\]
and if we let \(h = -[\log_2 s] + 1 \) we have
\[
 2^{-h} = 2^{-[\log_2 s]-1} \leq \frac{s}{2} \quad \text{and} \quad l \leq \text{trunc}_h(l + \frac{s}{2}) \leq l + \frac{s}{2}
\]
so \(\text{trunc}_h(l + \frac{s}{2}) \in [l, l + s) \).

Note that \(-[\log_2 s] + 1 = \lceil \log (2/s) \rceil\)

Bound on Length

Theorem: For a text of length \(n \), the Arithmetic encoder generates at most
\[
 l + \lceil \log (1/s) \rceil = 1 + \lceil \log \prod (1/p_i) \rceil
\]
\[
 \leq 2 + \sum_{j=1,n} \log (1/p_j)
\]
\[
 = 2 + \sum_{k=1,|\Sigma|} np_k \log (1/p_k)
\]
\[
 = 2 + n H_0 \text{ bits}
\]
\[
 nH_0 + 0.02 n \text{ bits in practice because of rounding}
\]
Integer Arithmetic Coding

Problem is that operations on arbitrary precision real numbers is expensive.

Key Ideas of integer version:
- Keep integers in range \([0..R)\) where \(R=2^k\)
- Use rounding to generate integer interval
- Whenever sequence intervals falls into top, bottom or middle half, expand the interval by a factor 2

Integer Arithmetic is an approximation

Integer Arithmetic (scaling)

If \(l \geq R/2\) then (top half)
- Output 1 followed by \(m\) 0s
- \(m = 0\)
- Message interval is expanded by 2

If \(u < R/2\) then (bottom half)
- Output 0 followed by \(m\) 1s
- \(m = 0\)
- Message interval is expanded by 2

If \(l \geq R/4\) and \(u < 3R/4\) then (middle half)
- Increment \(m\)
- Message interval is expanded by 2

All other cases, just continue...
You find this at

Arithmetic ToolBox

As a state machine

\[(p_1, ..., p_k, c) \rightarrow_{c} (L, s) \rightarrow_{L+s} (L', s')\]

Therefore, even the distribution can change over time
K-th order models: PPM

Use previous k characters as the context.
- Makes use of conditional probabilities
- This is the *changing* distribution

Base probabilities on counts:
- e.g. if seen `th` 12 times followed by `e` 7 times, then the conditional probability $p(e|th) = 7/12$.

Need to keep k small so that dictionary does not get too large (typically less than 8).

PPM: Partial Matching

Problem: What do we do if we have not seen context followed by character before?
- Cannot code 0 probabilities!

The key idea of PPM is to reduce context size if previous match has not been seen.
- If character has not been seen before with current context of size 3, send an `escape-msg` and then try context of size 2, and then again an `escape-msg` and context of size 1,

Keep statistics for each context size $< k$
The escape is a special character with some probability.
- Different variants of PPM use different heuristics for the probability.
PPM + Arithmetic ToolBox

$\sigma = c \text{ or } \text{esc}$

$\mathcal{P}(\sigma | \text{context })$

Encoder and Decoder must know the protocol for selecting the same conditional probability distribution (PPM-variant)

PPM: Example Contexts

<table>
<thead>
<tr>
<th>Context</th>
<th>Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empty</td>
<td>A = 4</td>
</tr>
<tr>
<td></td>
<td>B = 2</td>
</tr>
<tr>
<td></td>
<td>C = 5</td>
</tr>
<tr>
<td></td>
<td>$ = 3$</td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C = 3</td>
</tr>
<tr>
<td></td>
<td>$ = 1$</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A = 2</td>
</tr>
<tr>
<td></td>
<td>$ = 1$</td>
</tr>
<tr>
<td></td>
<td>C = 2</td>
</tr>
<tr>
<td></td>
<td>$ = 3$</td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A = 1</td>
</tr>
<tr>
<td></td>
<td>B = 2</td>
</tr>
<tr>
<td></td>
<td>C = 2</td>
</tr>
<tr>
<td></td>
<td>$ = 3$</td>
</tr>
</tbody>
</table>

String = ACCBACCACBA \(k = 2 \)
You find this at: compression.ru/ds/