The Burrows-Wheeler Transform
(1994; M. Burrows, D. J. Wheeler)

Paolo Ferragina, University of Pisa, www.di.unipi.it/ ferragin
Giovanni Manzini, University of Piemonte Orientale, www.mfn.unipmn.it/ manzini

Entry Editor: Paolo Ferragina

INDEX TERMS: Data transform, Lossless data compression, Empirical Entropy, Suffix array.
SYNONYMS: Block-sorting data compression.

1 PROBLEM DEFINITION

The Burrows-Wheeler transform is a technique used for the lossless compression of data. It is the
algorithmic core of the tool bzip2 which has become a standard for the creation and distribution of
compressed archives.

Before the introduction of the Burrows-Wheeler transform, the field of lossless data compression
was dominated by two approaches (see [14, 16] for comprehensive surveys). The first approach dates
back to the pioneering works of Shannon and Huffman, and it is based on the idea of using shorter
codewords for the more frequent symbols. This idea has originated the techniques of Huffman
and Arithmetic Coding, and, more recently, the PPM (Prediction by Partial Matching) family of
compression algorithms. The second approach originated from the works of Lempel and Ziv and
is based on the idea of adaptively building a dictionary and representing the input string as a
concatenation of dictionary words. The best known compressor based on this approach is gzip
which has been a standard for several years and is available on essentially any computing platform.

The Burrows-Wheeler transform introduced a completely new approach to lossless data com-
pression based on the idea of transforming the input to make it easier to compress. In the authors’
words: “(this) technique [...] works by applying a reversible transformation to a block of text to
make redundancy in the input more accessible to simple coding schemes” [2, Sect. 7]. Not only this
technique produced some state-of-the-art compressors, but it also originated the field of compressed
indexes [13] and it has been successfully extended to compress (and index) structured data such as
XML files [6] and tables [15].

2 KEY RESULTS

Notation. Let s be a string of length n drawn from an alphabet ¥. For i = 0,...,n — 1, s[i]
denotes the i-th character of s, and s[i,n — 1] denotes the suffix of s starting at position ¢ (that is,
starting with the character s[i]). Given two strings s and ¢, the notation s < ¢ is used to denote
that s lexicographically precedes t.

The Burrows-Wheeler Transform. In [2] Burrows and Wheeler introduced a new compres-
sion algorithm based on a reversible transformation, now called the Burrows-Wheeler Transform
(shortly, bwt). Given a string s, the computation of bwt(s) consists of three basic steps (see Fig. 1):

mississippi$ $ mississipp i
ississippi$m i $mississip p
ssissippi$mi i ppi$missis s
sissippi$mis i ssippi$mis s
issippi$miss i ssissippi$ m
ssippi$missi . m ississippi $
sippi$missis p i$mississi p
ippi$mississ p pidmississ i
ppi$mississi s ippi$missi s
pi$mississip s issippi$mi s
i$mississipp s sippi$miss i
$mississippi S sissippi$m i

Figure 1: Example of Burrows-Wheeler transform for the string s = mississippi. The matrix on
the right has the rows sorted in lexicographic order. The output of the bwt is the last column of
the sorted matrix; in this example the output is § = bwt(s) = ipssm$pissii.

1. append to the end of s a special symbol $ smaller than any other symbol in ¥;

2. form a conceptual matrix M whose rows are the cyclic shifts of the string s$ sorted in
lexicographic order;

3. construct the transformed text § = bwt(s) by taking the last column of M.

Notice that every column of M, hence also the transformed text §, is a permutation of s$. As
an example F, the first column of the bwt matrix M, consists of all characters of s alphabetically
sorted. In Fig. 1 it is F = $iiiimppssss.

Although it is not obvious from its definition, the bwt is an invertible transformation and both
the bwt and its inverse can be computed in O(n) optimal time. To be consistent with the more
recent literature, the following notation and proof techniques will be slightly different from the ones
in [2].

Definition 1. For 1 < i < n, let slki,n — 1] denote the suffiz of s prefizing row i of M, and define
V(i) as the index of the row prefized by slk; + 1,n — 1].

For example in Fig. 1 it is ¥(2) = 7 since row 2 of M is prefixed by ippi and row 7 is prefixed by
ppi. Note that W(4) is not defined for 4 = 0 since row 0 is not prefixed by a proper suffix of s.!

Lemma 1. Fori=1,...,n, it is Fli] = §[¥(i)].

Proof. Since each row contains a cyclic shift of s$, the last character of the row prefixed by s[k; +
1,m — 1] is s[k;]. Definition 1 then implies §[¥ ()] = s[k;| = F[i] as claimed. O

Lemma 2. If1 <i < j<mn and F[i] = F[j] then ¥(i) < ¥(j).

Proof. Let s[k;,n — 1] (resp. s[kj,n — 1]) denote the suffix of s prefixing row i (resp. row j).
The hypothesis ¢ < j implies that s[k;,n — 1] < s[kj,n — 1]. The hypothesis F[i] = F[j] implies
slki] = s|k;] hence it must be s[k; + 1,n — 1] < s[k; + 1,n — 1]. The thesis follows since by
construction W (i) (resp. ¥(j)) is the lexicographic position of the row prefixed by s[k; + 1,n — 1]
(resp. s[k; +1,n —1]). O

'Tn [2] instead of ¥ the authors make use of a map which is essentially the inverse of ¥. The use of ¥ has been
introduced in the literature of compressed indexes where ¥ and its inverse play an important role (see [13]).

Lemma 3. For any character ¢ € 3, if F[j] is the £-th occurrence of ¢ in F, then $[V(j)] is the (-th
occurrence of ¢ in §.

Proof. Take an index h such that h < j and F[h] = F[j] = ¢ (the case h > j is symmetric). Lemma 2
implies ¥(h) < ¥(j) and Lemma 1 implies §[¥(h)] = §[¥(j)] = c¢. Consequently, the number of ¢’s
preceding (resp. following) F[j] in F coincides with the number of ¢’s preceding (resp. following)
3[¥(4)] in $ and the lemma follows. O

In Fig. 1 it is ¥(2) = 7 and both F[2] and §[7] are the second i in their respective strings. This
property is usually expressed by saying that corresponding characters maintain the same relative
order in both strings F and s.

Lemma 4. For any i, ¥(i) can be computed from § = bwt(s).

Proof. Retrieve F simply by sorting alphabetically the symbols of §. Then compute ¥ (i) as follows:
(1) set ¢ = F[i], (2) compute ¢ such that F[i] is the /-th occurrence of ¢ in F, (3) return the index
of the ¢-th occurrence of ¢ in §. O]

Referring again to Fig. 1, to compute ¥(10) it suffices to set ¢ = F[10] = s and observe that F[10] is
the second s in F. Then it suffices to locate the index j of the second s in §, namely j = 4. Hence
U(10) = 4, and in fact row 10 is prefixed by sissippi and row 4 is prefixed by issippi.

Theorem 5. The original string s can be recovered from bwt(s).

Proof. Lemma 4 implies that the column F and the map ¥ can be retrieved from bwt(s). Let jo
denote the index of the special character $ in §. By construction, the row jg of the bwt matrix is
prefixed by s[0,n — 1], hence s[0] = F[jo]. Let j1 = ¥(jo). By Definition 1 row j; is prefixed by
s[1,n — 1] hence s[1] = F[j1]. Continuing in this way it is straightforward to prove by induction
that s[i] = F[¥(jo)], for i = 1,...,n — 1. O

Algorithmic issues. A remarkable property of the bwt is that both the direct and the inverse
transform admit efficient algorithms that are extremely simple and elegant.

Theorem 6. Let s[1,n]| be a string over a constant size alphabet 3. String § = bwt(s) can be
computed in O(n) time using O(nlogn) bits of working space.

Proof. The Suffix Array of s can be computed in O(n) time and O(nlogn) bits of working space
by using for example the algorithm in [10]. The Suffix Array is an array of integers sa[l,n| such
that for i = 1,...,n, s[sali],n — 1] is the i-th suffix of s in the lexicographic order. Since each row
of M is prefixed by a unique suffix of s followed by the special symbol $, the Suffix Arrays provides
the ordering of the rows in M. Consequently, bwt(s) can be computed from sa in linear time using
the procedure sa2bwt of Fig. 2. d

Theorem 7. Let s[1,n] be a string over a constant size alphabet . Given bwt(s), the string s can
be retrieved in O(n) time using O(nlogn) bits of working space.

Proof. The algorithm for retrieving s follows almost verbatim the procedure outlined in the proof
of Theorem 5. The only difference is that, for efficiency reasons, all the values of the map ¥ are
computed in one shot. This is done by the procedure bwt2psi in Fig. 2. In bwt2psi instead of
working with the column F, it is used the array count which is a “compact” representation of F.
At the beginning of the procedure, for any character ¢ € 3, count|c] provides the index of the first
row of M prefixed by c. For example, in Fig. 1 count[i] = 1, count[m] = 5, and so on. In the main
for loop of bwt2psi the array bwt is scanned and count[c] is increased every time an occurrence of
character c is encountered (line 6). Line 6 also assigns to h the index of the ¢-th occurrence of ¢ in F.

Procedure sa2bwt Procedure bwt2psi Procedure psi2text
1. bwt[0]=s[n-1]; 1. for(i=0;i<=n;i++) { 1. k = jO; i=0;

2. for(i=1;i<=n;i++) { 2. c = bwt[i]; 2. do {
3. if(sali]l == 1) 3. if(c == ’$) 3 k = psilk];
4. bwt[i]="$’; 4. jo = i; 4, s[i++] = bwt[k];
5. else 5. else { 5. } while(i<n);
6. bwt[i]l=s[sal[i]l-1]; 6. h = count[c]++;
7.} 7. psilhl=i;
8. }
9. }

Figure 2: Algorithms for computing and inverting the Burrows-Wheeler Transform. Procedure
sa2bwt computes bwt(s) given s and its suffix array sa. Procedure bwt2psi takes bwt(s) as input
and computes the ¥ map storing it in the array psi. bwt2psi also stores in jO the index of the
row prefixed by s[0,n — 1]. bwt2psi uses the auxiliary array count[l,|3|] which initially contains
in count [i] the number of occurrences in bwt(s) of the symbols 1,...,i — 1. Finally, procedure
psi2text recovers the string s given bwt(s), the array psi, and the value jp.

By Lemma 3, line 7 stores correctly in psi[h] the value i = WU(h). After the computation of array
psi, s is retrieved by using the procedure psi2text of Fig. 2, whose correctness follows immediately
by Theorem 5.

Clearly the procedures bwt2psi and psi2text in Fig. 2 run in O(n) time. Their working space is
dominated by the cost of storing the array psi which takes O(nlogn) bits. O

The Burrows-Wheeler compression algorithm. The rationale for using the bwt for data
compression is the following. Consider a string w that appears k times within s. In the bwt matrix
of s there will be k consecutive rows prefixed by w, say rows ry, + 1,74 + 2,...,7, + k. Hence,
the positions ry, + 1,...,7y + k of § = bwt(s) will contain precisely the symbols that immediately
precede w in s. If in s certain patterns are more frequent than others, then for many substrings
w the corresponding positions 7, + 1,...,7, + k of § will contain only a few distinct symbols.
For example, if s is an English text and w is the string his, the corresponding portion of § will
likely contain many t’s and blanks and only a few other symbols. Hence § is a permutation of s
that is usually locally homogeneous, in that its “short” substrings usually contain only few distinct
symbols.?

To take advantage of this property, Burrows and Wheeler proposed to process the string §
using move-to-front encoding [1] (shortly, mtf). mtf encodes each symbol with the number of
distinct symbols encountered since its previous occurrence. To this end, mtf maintains a list of the
symbols ordered by recency of occurrence; when the next symbol arrives the encoder outputs its
current rank and moves it to the front of the list. Note that mtf produces a string which has the
same length as § and, if § is locally homogeneous, the string mtf($) will mainly consist of small
integers.> Given this skewed distribution, mtf(3) can be easily compressed: Burrows and Wheeler
proposed to compress it using Huffman or Arithmetic coding, possibly preceded by the run-length
encoding of runs of equal integers.

Burrows and Wheeler were mainly interested in proposing an algorithm with good practical
performance. Indeed their simple implementation outperformed, in terms of compression ratio, the
tool gzip that was the current standard for lossless compression. A few years after the introduction
of the bwt, [8,11] have shown that the compression ratio of the Burrows-Wheeler compression
algorithm can be bounded in terms of the k-th order empirical entropy of the input string for any

20bviously this is true only if s has some regularity: if s is a random string § will be random as well!
3If s is an English text, mtf(3) usually contains more that 50% zeroes.

k > 0. For example, Kaplan et al. [8] showed that for any input string s and real > 1, the length
of the compressed string is bounded by unHy(s) + nlog(¢(r)) + pgr + O(logn) bits, where (1)
is the standard Zeta function and g is a function depending only on k£ and ¥X. This bound holds
pointwise for any string s, simultaneously for any k > 0 and pu > 1, and it is remarkable since
similar bounds have not been proven for any other known compressor. The theoretical study on
the performance of bwt-based compressors is currently a very active area of research. The reader
is referred to the recommended readings for further information.

3 APPLICATIONS

After the seminal paper of Burrows and Wheeler, many researchers have proposed compression
algorithms based on the bwt (see [3,4] and references therein). Of particular theoretical interest
are the results in [5] showing that the bwt can be used to design a “compression booster”, that is,
a tool for improving the performance of other compressors in a well defined and measurable way.

Another important area of application of the bwt is the design of Compressed Full-text In-
dexes [13]. These indexes take advantage of the relationship between the bwt and the Suffix Array
to provide a compressed representation of a string supporting the efficient search and retrieval of
the occurrences of an arbitrary pattern.

4 OPEN PROBLEMS

In addition to the investigation on the performance of bwt-based compressors, an open problem
of great practical significance is the space efficient computation of the bwt. Given a string s of
length n over an alphabet X, both s and § = bwt(s) take O(nlog|X|) bits. Unfortunately, the
linear time algorithms shown in Fig. 2 make use of auxiliary arrays (i.e. sa and psi) whose storage
takes ©(nlogn) bits. This poses a serious limitation to the size of the largest bwt that can be
computed in main memory. Space efficient algorithms for inverting the bwt have been obtained in
the compressed indexing literature [13], while the problem of space and time efficient computation
of the bwt is still open even if interesting preliminary results are reported in [7,9, 12].

5 EXPERIMENTAL RESULTS

An experimental study of the performance of several compression algorithms based on the bwt and
a comparison with other state-of-the-art compressors is presented in [3].

6 DATA SETS

The data set used in [3] are available from http://www.mfn.unipmn.it/“manzini/boosting. Other
data sets relevant for compression and compressed indexing are available at the Pizza& Chili site
http://pizzachili.di.unipi.it/.

7 URL to CODE

The Compression Boosting page (http://www.mfn.unipmn.it/“manzini/boosting) contains the source
code of the algorithms tested in [3]. A more “lightweight” code for the computation of the bwt and
its inverse (without compression) is available at http://www.mfn.unipmn.it/“manzini/lightweight.
The code of bzip2 is available at http://www.bzip.org.

8 CROSS REFERENCES

Arithmetic coding, Boosting Textual Compression, Compressed text indexing, Compressed suffix
array, Suffix array construction, Table compression, Tree compression and indexing.

9 RECOMMENDED READING

[1]
2]

[3]

[4]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

J. BENTLEY, D. SLEATOR, R. TARJAN, AND V. WEI, A locally adaptive compression scheme,
Communications of the ACM, 29 (1986), pp. 320-330.

M. BURROWS AND D. WHEELER, A block sorting lossless data compression algorithm, Tech.
Report 124, Digital Equipment Corporation, 1994.

P. FERRAGINA, R. GIANCARLO, AND G. MANZINI, The engineering of a compression boost-

ing library: Theory vs practice in bwt compression, in Proc. 14th European Symposium on
Algorithms (ESA), Springer Verlag LNCS n. 4168, 2006, pp. 756-767.

—, The myriad virtues of wavelet trees, in Proc. 33th International Colloquium on Au-
tomata and Languages (ICALP), Springer Verlag LNCS n. 4051, 2006, pp. 561-572.

P. FERRAGINA, R. GIANCARLO, G. MANZINI, AND M. SCIORTINO, Boosting textual com-
pression in optimal linear time, Journal of the ACM, 52 (2005), pp. 688-713.

P. FERRAGINA, F. Luccio, G. MANZINI, AND S. MUTHUKRISHNAN, Structuring labeled

trees for optimal succinctness, and beyond, in Proc. 46th IEEE Symposium on Foundations
of Computer Science (FOCS), 2005, pp. 184-193.

W. Hon, K. SADAKANE, AND W. SUNG, Breaking a time-and-space barrier in constructing
full-text indices, in Proc. of the 44th IEEE Symposium on Foundations of Computer Science,
2003, pp- 251-260.

H. KAPLAN, S. LANDAU, AND E. VERBIN, A simpler analysis of Burrows-Wheeler based
compression, in Proc. of the 17th Symposium on Combinatorial Pattern Matching (CPM
'06), LNCS 4009, Springer-Verlag, 2006.

J. KARKKAINEN, Fast BWT in small space by blockwise suffix sorting (extended abstract).
http://dimacs.rutgers.edu/Workshops/BWT /index.html.

J. KARKKAINEN, P. SANDERS, AND S. BURKHARDT, Linear work suffix array construction,
Journal of the ACM. To appear.

G. MANZINI, An analysis of the Burrows- Wheeler transform, Journal of the ACM, 48 (2001),
pp. 407-430.

J. NA, Linear-time construction of compressed suffiz arrays using o(nlogn)-bit working space
for large alphabets, in Proc. 16th Symposium on Combinatorial Pattern Matching (CPM),
Springer-Verlag LNCS n. 3537, 2005, pp. 57—67.

G. NAVARRO AND V. MAKINEN, Compressed full text indexes, ACM Computing Surveys.
To Appear.

D. SAaLoMoON, Data Compression: the Complete Reference, 3rd Edition, Springer Verlag,
2004.

B. D. Vo aND K.-P. Vo, Using column dependency to compress tables, in Proc. of IEEE
Data Compression Conference (DCC), 2004, pp. 92-101.

[16] I. H. WITTEN, A. MOFFAT, AND T. C. BELL, Managing Gigabytes: Compressing and
Indexing Documents and Images, Morgan Kaufmann Publishers, Los Altos, CA 94022, USA,
second ed., 1999.

