
Rank and Select Operations on Binary Strings (1974; Elias)

Naila Rahman, University of Leicester, www.cs.le.ac.uk/˜nyr1
Rajeev Raman, University of Leicester, www.cs.le.ac.uk/˜rraman

entry editor: Paolo Ferragina

INDEX TERMS: Binary bit-vector, compressed bit-vector, rank and select dictionary.
SYNONYMS: Binary bit-vector, compressed bit-vector, rank and select dictionary, fully index-
able dictionary (FID).

1 PROBLEM DEFINITION

Given a static sequence b = b1 . . . bm of m bits, to preprocess the sequence and to create a space-
efficient data structure that supports the following operations rapidly:

rank1(i) takes an index i as input, 1 ≤ i ≤ m, and returns the number of 1s among b1 . . . bi.

select1(i) takes an index i ≥ 1 as input, and returns the position of the i-th 1 in b, and −1 if i is
greater than the number of 1s in b.

The operations rank0 and select0 are defined analogously for the 0s in b. As rank0(i) = i− rank1(i),
we consider just rank1 (abbreviated to rank), and refer to select0 and select1 collectively as select.
In what follows, |x| denotes the length of a bit sequence x and w(x) denotes the number of 1s in
it. We always use b to denote the input bit sequence, m to denote |b| and n to denote w(b).

Models of Computation, Time and Space Bounds. We consider two models of computation.
One is the standard unit-cost RAM model with word size O(lg m) bits [1]. The other model, which
is particularly useful for proving lower bounds, is the bit-probe model, where the data structure
is stored in bit-addressable memory, and the complexity of answering a query is the worst-case
number of bits of the data structure that are probed by the algorithm to answer that query. In
the RAM model, the algorithm can read O(lg m) consecutive bits in one step, so supporting all
operations in O(1) time on the RAM model implies a solution that uses O(lg m) bit-probes, but
the converse is not true.

We define three variants of the problem: in each variant, rank and select must be supported in
O(1) time on the RAM model, or in O(lg m) bit-probes. However, the use of memory varies:

Problem 1 (Bit-Vector). The overall space used must be m + o(m) bits.

Problem 2 (Bit-Vector Index). b is given in read-only memory and the algorithm can create
auxiliary data structures (called indices) which must use o(m) bits.

Indices allow the representation of b to be de-coupled from the auxiliary data structure, e.g.,
b can be stored (in a potentially highly compressed form) in a data structure such as that of
[6, 9, 10] which allows access to O(lg m) consecutive bits of b in O(1) time on the RAM model.
Most bit-vectors developed to date are bit-vector indices.

Recalling that n = w(b), we observe that if m and n are known to an algorithm, there are
only l =

(
m
n

)
possibities for b, so an information-theoretically optimal encoding of b would require

B(m, n) = dlg le bits (it can be verified that B(m,n) < m for all m,n). The next problem is:

1

Problem 3 (Compressed Bit-Vector). The overall space used must be B(m,n) + o(n) bits.

It is helpful to understand the asymptotics of B(m,n) in order to appreciate the difference
between the bit-vector and the compressed bit-vector problems:

• Using standard approximations of the factorial function, one can show [15] that:

B(m,n) = n lg(m/n) + n lg e + O(n2/m) (1)

If n = o(m), then B(m,n) = o(m), and if such a sparse sequence b were represented as a
compressed bit-vector, then it would occupy o(m) bits, rather than m + o(m) bits.

• B(m,n) = m − O(lg m), whenever |m/2 − n| = O(
√

m lg m). In such cases, a compressed
bit-vector will take about the same amount of space as a bit-vector.

• Taking p = n/m, H0(b) = (1/p) lg(1/p) + (1/(1 − p)) lg(1/(1 − p)) is the empirical zeroth-
order entropy of b. If b is compressed using an ‘entropy’ compressor such as non-adaptive
arithmetic coding [18], the size of the compressed output is at least mH0(b) bits. However,
B(m,n) = mH0(b)−O(log m). Applying Golomb coding to the ‘gaps’ between successive 1s,
which is the best way to compress bit sequences that represent inverted lists [18], also gives
a space usage close to B(m,n) [4].

Related Problems. Viewing b as the characteristic vector of a set S ⊆ U = {1, . . . ,m}, we note
that the well-known predecessor problem — given y ∈ U , return pred(y) = max{z ∈ S|z ≤ y} —
may be implemented as select1(rank1(y)). One may also view b as a multiset of size m − n over
the universe {1, . . . , n + 1} [5]. First, append a 1 to b. Then, take each of the n + 1 1s to be the
elements of the universe, and the number of consecutive 0s immediately preceding a 1 to indicate
their multiplicities. For example, b = 01100100 maps to the multiset {1, 3, 3, 4, 4}. Seen this way,
select1(i)− i on b gives the number of items in the multiset that are ≤ i, and select0(i)− i+1 gives
the value of the i-th element of the multiset.

Lower-Order Terms. From an asymptotic viewpoint, the space utilization is dominated by the
main terms in the space bound. However, the second (apparently lower-order) terms are of interest
for several reasons, primarily because the lower-order terms are extremely significant in determining
practical space usage, and also because non-trivial space bounds have been proven for the size of
the lower-order terms.

2 KEY RESULTS

2.1 Reductions

It has been already noted that rank0 and rank1 reduce to each other, and that operations on multisets
reduce to select operations on a bit sequence. We now note some other reductions, whereby we can
support operations on b by performing operations on bit sequences derived from b:

Theorem 1. (a) rank reduces to select0 on a bit sequence c such that |c| = m+n and w(c) = n.

(b) If b has no consecutive 1s, then select0 on b can be reduced to rank on a bit sequence c such
that |c| = m− n and w(c) is either n− 1 or n.

(c) From b one can derive two bit sequences b0 and b1 such that |b0| = m − n, |b1| = n,
w(b0), w(b1) ≤ min{m − n, n} and select0 and select1 on b can be supported by supporting
select1 and rank on b0 and b1.

2

Parts (a) and (b) follow from Elias’s observations on multiset representations (see the “Related
Problems” paragraph), specialised to sets. For part (a), create c from b by adding a 0 after every 1.
For example, if b = 01100100 then c = 01010001000. Then, rank1(i) on b equals select0(i)− i
on c. For part (b), essentially invert the mapping of part (a). Part (c) is shown in [3].

2.2 Bit-Vector Indices

Theorem 2 ([8]). There is an index of size (1 + o(1))(m lg lg m/ lg m) + O(m/ lg m) that supports
rank and select in O(1) time on the RAM model.

Elias previously gave an o(m)-bit index that supported select in O(lg m) bit-probes on average
(where the average was computed across all select queries). Jacobson gave o(m)-bit indices that
supported rank and select in O(lg m) bit-probes in the worst case. Clark and Munro [2] gave the
first o(m)-bit indices that support both rank and select in O(1) time on the RAM. A matching
lower bound on the size of indices has also been shown (this also applies to indices which support
rank and select in O(1) time on the RAM model):

Theorem 3 ([8]). Any index that allows rank or select1 to be supported in O(lg m) bit-probes has
size Ω(m lg lg m/ lg m) bits.

2.3 Compressed Bit-Vectors

Theorem 4. There is a compressed bit-vector that uses:

(a) B(m,n) + O(m lg lg m/ lg m) bits and supports rank and select in O(1) time.

(b) B(m,n) + O(n(lg lg n)2/ lg n) bits and supports rank in O(1) time, when n = m/(lg m)O(1).

(c) B(m,n) + O(n lg lg n/
√

lg n) bits and supports select1 in O(1) time.

Theorem 4(a) and (c) were shown by Raman et al. [17] and Theorem 4(b) by Pagh [15]. Note
that Theorem 4(a) has a lower-order term that is o(m), rather than o(n) as required by the problem
statement. As compressed bit-vectors must represent b compactly, they are not bit-vector indices,
and the lower bound of Theorem 3 does not apply to compressed bit-vectors. Coarser lower bounds
are obtained by reduction to the predecessor problem on sets of integers, for which tight upper and
lower bounds in the RAM model are now known. In particular the work of [16] implies:

Theorem 5. Let U = {1, . . . ,M} and let S ⊆ U , |S| = N . Any data structure on a RAM with
word size O(lg M) bits that occupies at most O(N lg M) bits of space can support predecessor queries
on S in O(1) time only when N = M/(lg M)O(1) or N = (lg M)O(1).

As noted in the paragraph “Related Problems”, the predecessor problem can be solved by the
use of rank and select1 operations. Thus, Theorem 5 has consequences for compressed bit-vector
data structures, which are spelt out below:

Corollary 1. There is no data structure that uses B(m,n) + o(n) bits and supports either rank or
select0 in O(1) time unless n = m/(lg m)O(1), or n = (log m)O(1).

Given a set S ⊆ U = {1, . . . ,m}, |S| = n, we have already noted that the predecessor problem
on S is equivalent to rank and select1 on a bit-vector c with w(c) = n, and |c| = m. However,
B(m,n) + o(n) = O(n lg m). Thus, given a bit-vector that uses B(m,n) + o(n) bits and supports
rank in O(1) time for m = n(lg n)ω(1), we can augment it with the trivial O(1)-time data structure
for select1, that stores the value of select1(i) for i = 1, . . . , n (which occupies a further O(n lg m)
bits), solving the predecessor problem in O(1) time, a contradiction. The hardness of select0 is
shown in [17], but follows easily from Theorem 1(a) and Equation 1.

3

3 APPLICATIONS

There are a vast number of applications of bit-vectors in succinct and compressed data structures
(see e.g. [13]). Such data structures are used for, e.g., text indexing, compact representations of
graphs and trees, and representations of semi-structured (XML) data.

4 EXPERIMENTAL RESULTS

Several teams have implemented bit-vectors and compressed bit-vectors. When implementing bit-
vectors for good practical performance, both in terms of speed and space usage, the lower-order
terms are very important, even for uncompressed bit-vectors1, and can dominate the space usage
even for bit-vector sizes that are at the limit of conceivable future practical interest. Unfortunately,
this problem may not be best addressed purely by a theoretical analysis of the lower-order terms.
Bit-vectors work by partitioning the input bit sequence into (usually equal-sized) blocks at several
levels of granularity—usually 2-3 levels are needed to obtain a space bound of m + o(m) bits.
However, better space usage—as well as better speed—in practice can be obtained by reducing the
number of levels, resulting in space bounds of the form (1 + ε)m bits, for any ε > 0, with support
for rank and select in O(1/ε) time.

Clark [2] implemented bit-vectors for external-memory suffix trees. More recently, an imple-
mentation using ideas of Clark and Jacobson was used by [7], which occupied (1 + ε)m bits and
supported operations in O(1/ε) time. Using a substantially different approach, Kim et al. [12] gave
a bit-vector that takes (2 + ε)n bits to support rank and select. Experiments using bit sequences
derived from real-world data in [3, 4] showed that if parameters are set to ensure that [12] and [7]
use similar space — on typical inputs — the Clark-Jacobson implementation of [7] is somewhat
faster than an implementation of [12]. On some inputs, the Clark-Jacobson implementation can use
significantly more space, whereas Kim et al’s bit-vector appears to have stable space usage; Kim et
al’s bit-vector may also be superior for somewhat sparse bit-vectors. Combining ideas from [7, 12], a
third practical bit-vector (which is not a bit-vector index) was described in [4], and appears to have
desirable features of both [12] and [7]. A first implementational study on compressed bit-vectors
can be found in [14] (compressed bit-vectors supporting only select1 were considered in [4]).

5 URL to CODE

Bit-vector implementations from [3, 4, 7] can be found at http://hdl.handle.net/2381/318.

6 CROSS REFERENCES

Arithmetic Coding for Data Compression; Compressed Text Indexing; Succinct Encoding of Per-
mutations and its Applications to Text Indexing; Tree Compression and Indexing.

7 RECOMMENDED READING

[1] A. V. Aho, J. E. Hopcroft and J. D. Ullman. The Design and Analysis of Computer Algo-
rithms. Addison-Wesley, 1974.

[2] D. Clark and J. I. Munro. Efficient suffix trees on secondary storage. In Proc. 7th ACM-SIAM
SODA, pp. 383–391, 1996.

1For compressed bit-vectors, the ‘lower-order’ o(m) or o(n) term can dominate B(m, n), but this is not our concern
here.

4

[3] O. Delpratt, N. Rahman and R. Raman. Engineering the LOUDS succinct tree representa-
tion. In Proc. WEA 2006, LNCS 4007, pp. 134–145, Springer, 2006.

[4] O. Delpratt, N. Rahman and R. Raman. Compressed prefix sums. In Proc. SOFSEM 2007,
LNCS 4362, pp. 235–247, 2007.

[5] P. Elias. Efficient storage retrieval by content and address of static files. Journal of the ACM,
21(2):246–260, April 1974.

[6] P. Ferragina and R. Venturini. A simple storage scheme for strings achieving entropy bounds.
Theoretical Computer Science 372 (2007), pp 115–121.

[7] R. F. Geary, N. Rahman, R. Raman and V. Raman. A simple optimal representation for
balanced parentheses. Theoretical Computer Science 368 (2006), pp. 231–246.

[8] A. Golynski. Optimal lower bounds for rank and select indexes. In Proc. ICALP 2006, Part
I., LNCS 4051, pp. 370–381, 2006.

[9] Rodrigo González and Gonzalo Navarro Statistical encoding of succinct data structures. In
Proc. CPM 2006, LNCS 4009, Springer, 2006, pp. 294-305.

[10] K. Sadakane and R. Grossi. Squeezing succinct data structures into entropy bounds. In Proc.
17th ACM-SIAM SODA, pp. 1230–1239. ACM Press, 2006.

[11] G. Jacobson. Space-efficient static trees and graphs. In Proc. 30th FOCS, 549-554, 1989.

[12] D. K. Kim, J. C. Na, J. E. Kim and K. Park. Efficient implementation of Rank and Select
functions for succinct representation. In Proc. WEA 2005, LNCS 3505, pp. 315–327, 2005.

[13] J. I. Munro and S. Srinivasa Rao. Succinct representation of data structures. Chapter 37 in
Handbook of Data Structures with Applications, D. Mehta and S. Sahni, eds. Chapman and
Hall/CRC Press, 2005.

[14] D. Okanohara and K. Sadakane. Practical entropy-compressed rank/select dictionary. In
Proc. 9th ACM-SIAM Workshop on Algorithm Engineering and Experiments (ALENEX ’07),
SIAM, to appear, 2007.

[15] R. Pagh. Low redundancy in static dictionaries with constant query time. SIAM J. Comput,
31 (2001), 353–363.

[16] M. Patrascu and M. Thorup, Time-space trade-offs for predecessor search. In Proc. 38th
ACM STOC, pp. 232–240, 2006.

[17] R. Raman, V. Raman and S. S. Rao. Succinct indexable dictionaries, with applications to
representing k-ary trees and multisets. In Proc. 13th ACM-SIAM SODA, 233–242, 2002.

[18] I. Witten, A. Moffat, I. Bell. Managing Gigabytes, 2e. Morgan Kaufmann, 1999.

5

