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Abstract

Rank/Select dictionaries are data structures for an ordered

set S ⊂ {0, 1, . . . , n − 1} to compute rank(x, S) (the

number of elements in S which are no greater than x),

and select(i, S) (the i-th smallest element in S), which

are the fundamental components of succinct data structures

of strings, trees, graphs, etc. In those data structures,

however, only asymptotic behavior has been considered and

their performance for real data is not satisfactory. In this

paper, we propose four novel Rank/Select dictionaries, esp,

recrank, vcode and sdarray, each of which is small if the

number of elements in S is small, and indeed close to nH0(S)

(H0(S) ≤ 1 is the zero-th order empirical entropy of S)

in practice, and its query time is superior to the previous

ones. Experimental results reveal the characteristics of our

data structures and also show that these data structures are

superior to existing implementations in both size and query

time.

1 Introduction

Rank/Select dictionaries are data structures for an
ordered set S ⊂ {0, 1, . . . , n−1} to support the following
queries:

• rank(x, S): the number of elements in S which are
no greater than x,

• select(i, S): the position of i-th smallest element
in S.

These data structures are used in succinct representa-
tions for several data structures. A succinct represen-
tation is a method to represent an object from an uni-
verse with cardinality L by (1 + o(1)) lg L bits1. While
this idea is very similar to the idea of data compres-
sion, the difference is that succinct representations sup-
port fast queries on the object such as enumerations
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1Let lg n denote log2 n

or navigations. Various succinct representation tech-
niques have been developed to represent data struc-
tures such as ordered sets [25, 19, 20, 21], ordinal
trees [1, 26, 5, 6, 13, 18, 23], strings [4, 9, 10, 22, 23, 24],
functions [17], and labeled trees [1, 3]. All these data
structures are based on a succinct representation of
Rank/Select dictionaries.

Many data structures have been proposed for
Rank/Select dictionaries, most of which support the
queries in constant time on word RAM [7, 13, 16, 19, 21]
using n + o(n) bits or nH0(S) + o(n) bits (H0(S) ≤ 1
is the zero-th order empirical entropy of S). In most
of these data structures, however, their asymptotic be-
havior is only considered, and their performance is
not optimal for real-size data. As a result, the query
time is large and the data structure size is large for
real data. Although recently some practical imple-
mentations of Rank/Select dictionaries have been pro-
posed using n + o(n) bits [8, 14], there is no practi-
cal implementation of those using nH0(S) + o(n) bits.
Recently gap-based compressed dictionaries have been
proposed [11, 12]. They use another measure called
gap(S) =

∑
i=1...m⌈lg (select(i + 1, S) − select(i, S))⌉

to define the minimum space to store S and propose
the data structure using gap + O(m log(n/m)/ log m) +
O(n log log m/n) bits where m is the number of elements
in S. This measure would become much smaller than
the entropy-based ones when adjacent elements in S
have similar values, but it cannot support constant time
rank and select queries.

We will introduce four novel Rank/Select dictio-
naries, esp, recrank, vcode and sdarray(sarray and
darray), each of which is based on different ideas
and thus has different advantages and disadvantages in
terms of speed, size and simplicity. These sizes are small
if the number of elements in S is small, and even close
to the zero-th order empirical entropy of S, H0(S) ≤ 1,
which is defined as H0(S) = m

n lg n
m+n−m

n lg n
n−m where

m is the number of elements in S.
Table 1 summarizes the properties of the proposed

data structures for an ordered set S ⊂ {0, 1, . . . , n − 1}
with m elements in terms of size and time. We note that
these bounds are in the worst case and they are small
in practice. For example, the O(log4 m/ log n) term in
sarray and darray and O(log n) term in vcode are



Table 1: The space and time results for esp, recrank, vcode, sarray and darray for an ordered set
S ⊂ {0, 1, . . . , n − 1} with m elements. H0(S) ≤ 1 is the zero-th order empirical entropy of S.

method size (bits) rank select
esp (Sec. 3) nH0(S) + o(n) O(1) O(1)

recrank (Sec. 4) 1.44m lg n
m + m + o(n) O(log n

m ) O(log n
m )

vcode (Sec. 5) m lg(n/ lg n) + O(m) O(log2 n) O(log n)
sarray (Sec. 6) m lg n

m + 2m + o(m) O(log n
m ) + O(log4 m/ log n) O(log4 m/ log n)

darray (Sec. 6) n + o(n) O(1) O(log4 m/ log n)

O(1) in almost cases.
We conducted experiments using proposed methods

and previous methods and show that our data structures
are fast and small compared to the previous ones.

2 Preliminaries

In this paper we assume the word RAM model. Under
the word RAM model we can perform logical and
arithmetic operations for two O(log n)-bit integers in
constant time, and we can also read/write consecutive
O(log n) bits of memory for any address in constant
time.

An ordered set S, which is a subset of the universe
U = {0, 1, . . . , n−1}, can be represented by a bit-vector
B[0, . . . , n − 1] such that B[i] = 1 if i ∈ S and B[i] = 0
otherwise. We denote m as the number of ones in B.
Then rank(x, S) is the number of ones in B[0, x], and
select(i, S) is the position of the i-th one from the left
in B. These values are computed in constant time on
word RAM using O(n log log n/ log n)-bit auxiliary data
structures [16].

The above representation of S using the bit vector
of length n is worst-case optimal because there exist
2n different sets in the universe and we need lg 2n =
n bits to distinguish different subsets. We call this
representation verbatim representation. A lower-bound
of the size of the representation of S with m elements
is B(n,m) = ⌈lg

(
n
m

)
⌉ bits. This value is approximately

nH0(B), which is further approximated by H0(B) ≃
m lg n

m + 1.44m bits if m ≪ n. Therefore the size
of the verbatim representation is far from this lower-
bound if m ≪ n. Raman et al. [21] proposed a
constant-time Rank/Select data structure whose size
is B(n,m) + O(n log log n/ log n), which matches the
above lower-bound and the recent lower bounds [15, 7]
asymptotically.

The applications of Rank/Select dictionaries can be
divided into two groups. One is for sets with m ≃ n/2
and the other is for sets with m ≪ n. In this paper
we call the former dense sets and the latter sparse sets.

Typical applications of dense sets are for the wavelet
trees [9] that are used for indexing strings, and for
ordinal trees. On the other hand sparse sets are used
in many succinct data structures in order to compress
pointers to blocks, each of which stores a part of the
data. Because in the word RAM model any consecutive
O(log n) bits of data are accessed in constant time, we
often divide the data into blocks of Θ(log n) bits each.
For example, an ordinal tree with n nodes is encoded in
a bit-vector of length 2n, and to support tree navigating
operations, the bit-vector is divided into blocks of length
1
2 lg n bits and in each block we logically mark one bit
to construct a contracted tree with O(n/ log n) nodes.
These logical marks are represented by a bit-vector of
length 2n in which 4n/ lg n bits are 1. The ratio of ones
is 2/ lg n, that is, the vector is sparse. Such vectors can
be encoded in B(2n, 4n/ log n) + O(n log log n/ log n) =
O(n log log n/ log n) = o(n) bits. Therefore for storing
a sparse vector in a compressed form is important for
succinct data structures.

In this paper we will mainly focus on sparse sets to
support rank and select functions. In some applica-
tions like wavelet trees we also need a select0 function
defined as select0(i, S): the i-th smallest element not in
S2. We did not discuss select0 in this paper because we
usually assume dense sets in applications using select0.

2.1 Previous Implementation of Rank/Select
Dictionaries We first give a brief description of
Rank/Select dictionary using n + o(n) bits, which is
called verbatim. We conceptually partition B into
subsequences of length l := log2 n each, called large
block. Then each large block is partitioned into sub-
sequences of length s := log n/2 each, called small
blocks. For the boundaries of large blocks we store rank-
directory (results of rank) in Rl[0 . . . n/l] explicitly us-
ing O(n/ log2 n · log n) = O(n/ log n) bits. We also
store rank-directory for each boundary of small blocks

2We do not discuss rank0 since it can be computed by rank
as rank0(i, S) = i + 1 − rank(i, S).



in Rs[0 . . . n/s], but here we store only relative values
to ones stored for the large blocks, which are stored in
O(n log log n/ log n) bits.

Then rank is computed by rank(x, S) =
Rl[⌊x/l⌋] + Rs[⌊x/s⌋] + popcount(⌊x/s⌋ · s, x mod s),
where popcount(i, j) is the number of ones between
B[i . . . i+j] which can be calculated in constant time us-
ing a pre-computed table of size O(

√
n log2 n) bits or the

popcount function [8]3. For select we have two options;
the first is a constant time solution using o(n) auxiliary
data structures [14] and the second is a O(log n) solution
which is a binary search using rank functions without
any auxiliary data structures [8]. Because of the lack of
space we omit the detail of select in constant time and
see the detail in [14].

We next introduce Rank/Select dictionary using
nH0(S) + o(n) bits, which is called ent. The main dif-
ference between verbatim and ent is the representa-
tion of the bit-vector itself, where each small block is
encoded by the enumerative code [2] as follows. Given
t, the length of the block, and u, the number of ones
in the block, we calculate

∑
i=1...u

(
t

t−pi−1

)
where pi is

the position of i-th one in the block. This value is the
unique number in

(
[0,⌈t

m⌉−1]

)
for each possible block of t

length with u ones. This number can be represented by
B(t, u) = ⌈lg

(
t
m

)
⌉ bits and the size of all encoded blocks

is less than B(n,m) ≤ nH0(S) [19]. We represent each
small block as the result of enumerative code, and the
total size is less than nH0(S). Since they have differ-
ent sizes, we also need to store pointers to compressed
small blocks, which is O(n log log n/ log n) = o(n) bits.
These encoding and decoding are performed by using
pre-computed table of O(

√
n log2 n)-bits.

We note that although the size of ent is nH0(S) +
o(n) bits, we cannot ignore the o(n) term because
nH0(S) term is small compared to n if m ≪ n and
o(n) is as much as Θ(nH0(S)).

3 Estimating Pointer Information

We first propose esp (stands for EStimating Pointer
information), which does not require pointer informa-
tion by estimating it from rank information. Although
the size of pointer information is O(n log log n/ log n) =
o(n), this size is actually as large as Θ(nH0(S)) terms
for real-size data.

First we show the propositions which are needed to
bound the size of the compressed bit vector in terms of
rank information. Given a bit-vector B[0 . . . n−1] with
m ones, let L(B) be the length of the code word for B
using enumerative code [2] (See Section 2.1). Then,

3In this paper let a mod b denote a − ⌊a/b⌋.

Proposition 1. L(B) ≤ nH0(B).

Because nH0(B) is the size of a representation of block
that uses lg(n/m) bits for each 1’s and lg(n/(n − m))
bits for each 0’s, and the L(B) = B(n,m) := ⌈lg

(
n
m

)
⌉

is the smallest length of the code to represent the bit
vector.

Let Bi (i = 1 . . . ⌈n
u⌉) be the partition of B, and u

be the size of each block. Then,

Proposition 2.

⌈n
u ⌉∑

i=1

L(Bi) ≤
⌈n

u ⌉∑
i=1

uH0(Bi) ≤ nH0(B).

The second inequality holds because H0(B) is the
concave function.

Let B′ := B[0 . . . t] (t ≤ n) be the prefix of bit-
vector B. Since L(B′) ≤ H0(B′) (use Prop.(1) and
Prop.(2)), we can store all code words of B′ within
H0(B′) bits. However since the gap exists between
the estimated position and the actual position, we use
estimated position to store all code words at encoding.
This means that we insert gap bits so that we always
estimate the correct pointer information at reading
time.

Figure 1 shows the example of coding in esp. We
estimate pointer information using rank information
and do not store the actual sizes of each encoded block.

We will explain the details of esp. Basically, esp
is based on ent except for the existence of super-large
blocks (SLB) used to regularly reset estimation errors.
We conceptually partition B into subsequences of length
k := log3 n each, called super large block (SLB). Each
SLB is partitioned into large block (LB) of length l :=
log2 n, each LB is partitioned again into small block
(SB) of length s := log n/2. We then encode each SB by
its enumerative code (Section 2.1) independently. The
code word for the i-th SB: SBi is stored in the position
which is determined as follows. Let lr and sr be results
of rank for LB and SB as lr = Rl[xl], and sr = Rs[xs]
where xl = ⌊x/l⌋ and xs = ⌊x/s⌋. Then we estimate
the starting positions of LB and SB as ,

lp = H0(LB′
xl

)

= lr · lg
l · xl

lr
+ (l · xl − lr) · lg

l · xl

l · xl − lr
sp = H0(SB′

xs
),

= sr · lg
s · xs

sr
+ (s · xs − sr) · lg

s · xs

s · xs − sr
,

where LB′
xl

denotes the preceding LBs from the bound-
ary of SLB up to LBi and SB′

i denotes the preceding
SBs from the boundary of LB up to SBi. Then the po-
sition for compressed SBi is slp + lp + sp where slp is
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Figure 1: Example of esp. Estimate pointer information by rank information, R[0 . . . 4] and compressed blocks
are placed at estimated positions.

the pointer information of SLB which is stored explic-
itly. We note that all code words are not overlapped
(use Prop.(2)) and gap-bits are automatically inserted.

We store rank-directory for LB, SB and pointer
information for SLB. All of them are stored in o(n)
bits.

For rank(x, S), we lookup the correspondent rank-
directory for LB, SB as lr = Rl[xl], and sr = Rs[xs]
where xl = ⌊x/l⌋ and xs = ⌊x/s⌋. Then we estimate
the pointer information for LB and SB as in encoding.
We then read the compressed bit representation of SB
from that position, decode it in constant time using pre-
computed table and apply popcount as in verbatim.

For select, we use the same approach as in [14]
which is done in constant time with the o(n)-bits
auxiliary data structures.

In practice, since it is very slow to compute the
logarithm of a floating-point number for the estimating
the entropy, we use a pre-computed table lookup and
also use a fixed-point integer representation. We require
two integer multipliers and each integer addition for
estimating one value of the entropy.

4 RecRank

The second data structure recrank employs the reduc-
tion of a sparse bit-array into a contracted bit-array and
a denser extracted bit-array which was originally used
for Algorithm I in [14]. Here we use the reduction re-
cursively.

Given a bit-arrays B[0 . . . n − 1] with m ones, we
conceptually partition B into the blocks B0, . . . , Bn/t

of length t. We call zero block (ZB) a block where all
elements are 0 and non-zero block (NZ) a block where
there is at least one 1. The contracted bit-array of B,
Bc[0, . . . , n/t − 1] is defined as a bit-string such that
Bc[i] = 0 if Bi is ZB, and Bc[i] = 1 if Bi is NZ, and the
extracted bit-array Be is defined as a bit-array which is
formed by concatenating all NZ blocks of B in order.

int rank_rr(int pos, int bit){
// z[i]: i-th contracted bit array
// m[i]: i-th block size
int p = pos;
for (int i = 0; i < rec; i++){

int blockPos = p / m[i];
int b = z[i][blockPos];
int r = rank(blockPos,z[i]);
if (b == 0) {

if (r == 0) return 0;
else p = ((r * m[i]) - 1);

} else
p = ((r-1) * m[i]) + p % m[i];

}
return rank_1(p,B_e);

}

Figure 2: An example code of rank in recrank

We can calculate rank of B using Bc and Be as

rank(x,B) = rank(rank(⌊x/t⌋, Bc) · t(4.1)
+(x mod t) · Bc[⌊x/t⌋], Be).

We then recursively apply this reduction by considering
the extracted bit array as a new input bit array. We
continue this process until the extracted bit-array is
dense enough, that is the probability of one in a bit-
array is larger than 1/4. We denote the extracted
bit array and the contracted bit array at i-th process
as Bi

e and Bi
c. After u times of the reduction, we

have t contracted bit arrays B1
c , B2

c , .., Bt
c and the final

extracted bit array Bt
e.

Here we take the strategy that contracted bit arrays
would be dense (the probability of ones in the bit array
would be 1/2). Let p(B) = m/n be the probability
of ones in the bit array B. We choose the block size
t = 1

− lg(1−p) so that the p(Bc) would be 0.5. This is
because the probability of t bits being all zero is (1−p)t
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Figure 3: Example of coding in recrank. Input bit
array B1 is converted into dense bit arrays: B1

c , B2
c and

B2
e .

and the half of the elements in the contracted bit array
is one when (1 − p)t = 1/2. Then we can expect that
the length of Bc is −n lg(1 − p) and the length of Be is
n/2. We note that Be contains m ones and p(Be) = 2p.
This reduction is applied u = − lg p times so that the
probability of ones in the final extracted bit array is
larger than 1/4.

Figure 3 shows the example of coding in recrank.
In the first stage the block size is 5 = ⌊ 1

− lg(1−4/32)⌋ and
in the second stage the block size is 2 = ⌊ 1

− lg(1−4/15)⌋.
Let T be the size of recrank and p = 2−u. We can

analysis T as follows,

T = n ·
∑

i=0...u−2

(
− lg(1 − 2ip)

2i

)
+ 2m

≤ n · 1
loge(2)

∑
i=0...u−2

(
2ip + 2 · (2ip)2/3

2i

)
+ 2m(4.2)

= 2m + n · 1
loge(2)

(
−p lg p − 2p/3 − 2p2/3

)
=

1
loge(2)

(−m lg p − 2m/3 − 2mp/3) + 2m

In (4.2), we use lg(1 − x) ≤ x + 2
3x2 for 0 ≤ x ≤ 1

4 .
In short, T is bounded by 1.44m lg n/m + m bits. We
note that this is the expected size and the actual size
depends on the bit array.

For rank, we apply (4.1) at each stage. Since the
number of reduction is − lg p = lg n/m and each stage
is done in constant time, the total time is O(log n/m).
For select, we apply select in each stage, each of which
is done in constant time [14], so the total time is in
O(log n/m).

5 Vertical Code

A Vertical Code (vcode) supports fast select using
small space in practice because of its byte-based opera-

int select_vc(int i){ // return select(i,S)

// b is the block number and q is the offset

int b = i/p; int q = i%p;

int x = S[b] + q;

// count the number of ones

// in first q bits in each digit

int mask = (1U << q) - 1;

for (int j = 0; j < T[b]; j++)

x += popcount[V[b][j] & mask]<< j;

return x;

}

Figure 4: An example code of select in vcode written
in C++. V [p][j] contains Vp[j] and popcount[k] returns
the number of set bit in binary sequence of k. Other
variables correspond to the definition in the paper

tions and a novel orientation of data. This is a kind of
opportunistic data structure, that is, although it is not
an entropy-compressed Rank/Select dictionary in the
worst case, in most case its size is close to the zero-th
order empirical entropy.

Given a bit-arrays B[0 . . . n − 1] with m ones, we
first convert it into the gap sequence d[0 . . .m − 1],
d[i] = select(B, i+1)−select(B, i)−1 (i = 0 . . .m−1)4.

We then partition d into blocks B1, . . . , Bm/p of size
p = O(log n). Let T [0 . . .m/p − 1] be the arrays such
that T [i] = lg⌊maxj=0...p−1 d[ip + j]⌋, Vi[j] be the bit
arrays of length p consisting of the set of the j + 1-th
bit of d in the block Bi, and S[0 . . .m/p − 1] be the
arrays such that S[i] = select(B, ip). We note that all
d in a block Bi can be represented in T [i] bits each.
Figure 5 shows the example of coding in vcode.

We describe how to get select(S, i) by using T ,
V and S. Let b = i/p and q = i mod p. Since
select(S, i) = S[b]+q+

∑bp+q
i=bp d[i], we count the number

of ones in the first q bits of each Vb[0], . . . , Vb[Ti], then
sums them up with shift.

Figure 5 shows the example code of select in
vcode.

The characteristic of vcode is that all operations
are byte-aligned if we set p is a multiple of eight for any
bit arrays. And the cost of

∑bp+q
i=bp d[i] is O(T [b]), which

would be small if T [b] is small. This idea is similar to
gap-based compressed dictionary [11, 12]. In vcodewe
encode gap information directly and we can expect the
time of select is small if gap is small. For example, the
gap of ψ in compressed suffix arrays [24] is very small.

For select, we need to do T [i] operations each of
which is done in constant time. Since T [i] would become
O(log n) in the worst case, the total time for select is

4d[0] = select(B, 1)



O(log n). For rank and select0, we need to do the
binary search from m elements using select which is
done in O(log n · log m) time in the worst case.

The size of S is O(log n · m/ log n) = O(m). Since
d[i] < n, the size of Ti is bounded by lg n and T is
bounded by O(log n · m/ log n) = O(m) and the size of
V is bounded by m lg(n/ lg n) bits, which occurs when
d[ip] = n/ lg n (0 ≤ i < n/p) and others d[i] are all
0. we note that we can expect the size of V is close
to m lg n/m (≃ nH0(B)) bits and the time of select is
close to O(1) when adjacent elements in d have similar
values.

6 SDarrays

The idea of sdarrayis to use two different techniques
for sparse sets and dense sets each, which enables us
to design the data structure simply. We call the former
sarray and the latter darray (sarray uses darray as
a part of data structure).

First we will introduce sarray. Given a bit-
arrays B[0 . . . n − 1] with m ones (m ≪ n), we define
x[0 . . .m − 1] such that x[i] = select(i + 1, B). Each x
is then divided into upper z = ⌊lg m⌋ bits and lower
w = ⌈lg n/m⌉ bits. Lower bits are stored explicitly
in L[0 . . .m − 1] using m · ⌈lg n/m⌉ bits. Upper bits
are represented by a bit array H[0 . . . 2m− 1] such that
H[xi/2w + i] = 1 and others are 0. This can be seen
as a unary coding of gaps between values of upper bits.
By using H and L, we can calculate select in sarray
by select(i, B) = (select(i,H)− i) · 2w + L[i]. Here we
can assume that H is dense because there are m ones
and m zeros in H.

Figure 7 shows the example of coding in sarray.
Since ⌊lg 8⌋ = 3, we divide each x into upper 3 bits and
lower 2 bits. We store L directly and convert upper bits
into

We then explain darray for dense sets, B[0 . . . n−1]
with m ≃ n/2 ones5. We first partition B into the
blocks such that each block contains L ones respectively.
Let Pl[0 . . . n/L − 1] be the arrays such that Pl[i] :=
select(iL, B). We classify these blocks into two groups.
If the length of a block (Pl[i] − Pl[i − 1]) is larger than
L2, we store all the positions of ones explicitly in Sl. If
the length of a block is smaller than L2, we store the
positions of each L3-th ones in Ss. We can store these
values in lg L2 bits by storing only relative values to
ones stored for Pl.

For select(i, B) in darray, we lookup Pl[⌈i/L⌉] and
see whether the block is larger than L2 or not. If it
is, we lookup the value in Sl which is stored explicitly.

5The size of H in sarray is 2m not n. Here we explain darray
in general case.

int rank_sarray(int i){

int y = select_0(i>>w,H)+1; int x = y-i/2^w;

for (int j = i%(2<<w); H[y] == 1; x++,y++){

if (L[x] >= j){ //L is lower-bit of B

if (L[x] = j) x++;

break;

}

}

return x;

}

Figure 6: An example code of rank in sarray. Vari-
ables correspond to the definition in the paper

If not, we lookup the correspondent L3-th value in Ss

and then perform a sequential search in the block in
O(L2/ log n) time because we can read O(log n) bits in
RAM model. We note that if we can assume that ones
are distributed in B uniformly, this sequential search
is done in O(1) time. Although this data structure
concerns only select, we can use the same data for
select0 by reversing bits in H at reading time with
corresponding auxiliary data structure as for select.

For rank in darray, we use the same method
as in verbatim. For rank(i, B) in sarray(see the
example code in figure 6), we first calculate y =
select0(i/2w,H)+1 to find the smallest element which
is greater than ⌈i/2w⌉ · 2w. Then we count the number
of elements which are equal to or smaller than i by
sequentially searching over H and L in O(n/m) time
because the number of possible bit pattern of length
lg n/m is n/m. If we use binary search, we can do it
in O(log n/m) time but this is slower than sequential
search in practice.

The size of Pl is O( n
L · log n), that of Sl is at most

n
L2

· L lg n bits, and that of Ss is at most n
L3

lg L2 bits.
When we choose L := O(log2 n), L2 := O(log4 n), and
L3 := O(lg n), all the sizes of Pl and Sl and Ss are o(n).
In summary, the size of darray is n + o(n) bits.

We then analyze the size of sarray. We use m ·
⌈lg n/m⌉ bits for L. For H of length 2m, we use the data
structure of darray, which is 2m+o(m) bits. Therefore
the total size of sarray is m ·⌈lg n/m⌉+2m+o(m) bits.

7 Experimental Results

We conducted experiments using esp (esp), recrank
(rr), vcode (vc), sarray (sa) and darray (da). We
also compared them with byte-based implementation
in [14] (Kim), and its re-implementation by us (Kim2 )
and the implementation in [8] (navarro). For each data
structure, we used the following parameters. For esp,
we used k = 212, l = 28, s = 25. For vc, we used p = 8.



B = 001100111001000010000010100011

109876543210i

03542020 102D

232T

V[2]

V[1]

V[0]

1100

01000100101

01110000000

109876543210i
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V[2]

V[1]

V[0]

1100

01000100101

01110000000

Figure 5: Example of coding in vcode. D represents the gap between ones.

B = 01001001000000000010000010100011

x[0…7] = {1,4,7,18,24,26,30,31}

1 = 000 01
4 = 001 00
7 = 001 11

18 = 100 10
24 = 110 00
26 = 110 10
30 = 111 10
31 = 111 11

H = 101100010011011
3 = lg8
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i+xi/23
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65

64

43

12

11

00

xi/23i

14
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10

7
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2

0
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77

76

65

64

43

12

11

00

xi/23i

L = 0100111000101011

Figure 7: Example of coding in sarray. x is the
positions of ones in B. Since the number of ones is
8, we divide each element in x into upper 3 = ⌊lg 8⌋ and
lower 2 = ⌈lg 32/8⌉ bits.

For sa, we used L = 210 L2 = 216 and L3 = 25.
For select in rr, we used O(log n) solutions because

o(n) auxiliary data for select would become large. For
rank and select in sa and da, we used sequential
search in H instead of the O(1) solution because the
sequential search is fast in practice. The source code in
this experiment is found at “http://www-tsujii.is.s.u-
tokyo.ac.jp/˜hillbig/practical ent rs.zip”.

We used GNU C 3.4.3 -O6 -m64. We measured time
using the ftime function on a 3.4GHz Xeon with 8GB
of main memory.

All experiments are done using bit arrays in which

the positions of ones are determined randomly.
Figure 8 shows the measured size of several data

structure and Figure 9 shows the zoom-in on the 1− 10
ratio of 1. We also show the result of H0(B) which is
the lower bound on the size of a data structure if we
only know the ratio of ones. The size of esp is close to
zero-th order empirical entropy in all conditions. and
the sizes of rec, sa and vc are very close to zero-th order
empirical entropy when the ratio of 1 is very small.

Table 2 shows the sizes of each data structures for
the bit-arrays with 1% and 5% ones. We find that the
sizes of proposed data structures are indeed close to
nH0. We note that sarray is the smallest in both case
because the size of its auxially data structure is o(m)
not o(n) and is small if m is small.

Figure 10, 11 and 12 are the results of 108 rank
operations on the bit vector of 107, 108 and 109 length.
We can see that Kim2, Navarro and da are the fastest,
which is the same as for rank in verbatim. On
the other hand vc is the slowest for rank because it
needs binary search using select functions. Only rec
becomes slower when the ratio of ones is small because
its computation cost is O(log n/m) , depending on the
inverse number of m.

Figure 13, 14 and 15 are the results of 108 select
operations on the bit vector of 107, 108 and 109 length.
Among several methods, sa is the fastest in all condi-
tions. As in the result of rank, rec is slower in the small
ratio of 1. We also find that da shows different behavior
in the small ratio of 1 because it switches data struc-
tures in function of the ratio of 1. We note that the
result of esp for rank and select is fast if the ratio of 1
is small or large because esp employs decoding table for
enumerative code which is only prepared for compress-
ible block, that is the ratio of 1 is small or large.

We also note that Navarro, rec, esp vc which use
binary search in select becomes slower when the size
of bit arrays becomes large because the cache effects
becomes large as discussed in [8].
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tions on a bit vector of 107 length.
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Figure 11: Time for 100,000,000 random rank opera-
tions on a bit vector of 108 length.
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Figure 12: Time for 100,000,000 random rank opera-
tions on a bit vector of 109 length.
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Table 2: The space results for esp, recrank, vcode, sarray and Navarro for the bit arrays of n-bit length with
1% and 5% ones. The values is the percentage of the size of each data structures over an original bit-array.

Ratio of 1’s esp recrank vcode sarray nH0 Navarro
1% 17.02 15.83 15.05 10.13 8.08 137.5
5% 42.67 49.32 62.25 40.59 28.64 137.5

From the results of these experiments, we can
choose data structures as follows. For sparse sets,
sarrayis the smallest among other data structure. For
dense sets darrayis small and this is the fastest in
select queries. We also note that the size of espis small
for all condition.

8 Concluding Remarks

In this paper, we have proposed four novel Rank/Select
dictionaries, esp, recrank, vcode and sdarray. Ex-
perimental results show that the sizes of these data
structures are indeed close to the zero-th order empirical
entropy and support fast queries.

We also note that they are easy to implement
(except esp) because recrank uses reduction which can
employ well-developed dense sets techniques, vcode
converts the problem into the popcount in bytes, and
sdarray separates the problem for dense sets and sparse
sets, which simplifies the problem.

The remaining problem is as follows. Can we
design a entropy-compressed Rank/Select dictionary
which supports not only fast select operation but also
fast rank operation ?

In the next stage of our research, we will extend
our result to more complex data structures, such as
sequences from large alphabets as [7]. We also consider
applications which employ appropriate data structures
and also apply them to data compression as well.
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