
Su

in
t En
oding of Permutationsand its Appli
ations to Text Indexing(2003; Munro, Raman, Raman, Rao)J�er�emy Barbay (University of Waterloo), www.
s.uwaterloo.
a/~jbarbayJ. Ian Munro (University of Waterloo), www.
s.uwaterloo.
a/~imunroentry editor: Paolo FerraginaINDEX TERMS: Su

in
t Data Stru
tures, Permutations, Fun
tions, Text Strings, BinaryRelationsSYNONYMS: None is reported.1 PROBLEM DEFINITIONA su

in
t data stru
ture for a given data type is a representation of the underlying
ombinatorialobje
t that uses an amount of spa
e \
lose" to the information theoreti
 lower bound togetherwith algorithms that supports operations of the data type \qui
kly". A natural example is therepresentation of a binary tree [5℄: an arbitrary binary tree on n nodes
an be represented in2n + o(n) bits while supporting a variety of operations on any node, whi
h in
lude �nding itsparent, its left or right
hild, and returning the size of its subtree, ea
h in O(1) time. As there are�2nn �=(n+ 1) binary trees on n nodes and the logarithm of this term1 is 2n � o(n), the spa
e usedby this representation is optimal to within a lower order term.In the appli
ations
onsidered in this entry, the prin
iple
on
ern is with indexes supportingsear
h in strings and in XML-like do
uments (i.e. tree-stru
tured obje
ts with labels and \freetext" at various nodes). As happens not only labeled trees but also arbitrary binary relations over�nite domains are key building blo
ks for this. Prepro
essing su
h data-stru
tures so as to be ableto perform sear
hes is a
omplex pro
ess requiring a variety of subordinate stru
tures.A basi
 building blo
k for this work is the representation of a permutation of the integersf0; : : : ; n�1g, denoted by [n℄. A permutation � is trivially representable in ndlg ne bits whi
h iswithin O(n) bits of the information theoreti
 bound of lg(n!). The interesting problem is to supportboth the permutation and its inverse: namely, how to represent an arbitrary permutation � on [n℄in a su

in
t manner so that �k(i) (� iteratively applied k times starting at i, where k
an be anyinteger so that ��1 is the inverse of �)
an be evaluated qui
kly.2 KEY RESULTSMunro et al. [7℄ studied the problem of su

in
tly representing a permutation to support
omputing�k(i) qui
kly. They give two solutions: one supports the operations arbitrarily qui
kly, at the
ostof extra spa
e; the other uses essentially optimal spa
e at the
ost of slower evaluation.Given an integer parameter t, the permutations � and ��1
an be supported by simply writingdown � in an array of n words of dlg ne bits ea
h, plus an auxiliary array S of at most n=t short
uts1All logarithms are taken to the base 2. By
onvention, the iterated logarithm is deonted by lg(i) n, hen
e lg lg lg xis lg(3) x. 1

or ba
k pointers. In ea
h
y
le of length at least t, every t-th element has a pointer t steps ba
k.�(i) is simply the i-th value in the primary stru
ture, and ��1(i) is found by moving forward until aba
k pointer is found and then
ontinuing to follow the
y
le to the lo
ation that
ontains the valuei. The tri
k is in the en
oding of the lo
ations of the ba
k pointers: this is done with a simple bitve
tor B of length n, in whi
h a 1 indi
ates that a ba
k pointer is asso
iated with a given lo
ation.B is augmented using o(n) additional bits so that the number of 1's up to a given position and theposition of the r-th 1
an be found in
onstant time (i.e. using the rank and sele
t operations onbinary strings [8℄). This gives the lo
ation of the appropriate ba
k pointer in the auxiliary array S.
5

1

8
7

2

4

6

3

i 1 2 3 4 5 6 7 8�(i) = 4 8 6 3 5 2 1 7B = 1 0 0 0 0 1 1 0S = 7 1 6Figure 1: A permutation on f1; : : : ; 8g, with 2
y
les and 3 ba
k pointers. The full lines
orrespondto the permutation, the dashed lines to the ba
k pointers, the grey lines to the edges traversed to
ompute ��1(3).For example, the permutation � = (4; 8; 6; 3; 5; 2; 1; 7)
onsists of two
y
les, (1; 4; 3; 6; 2; 8;7)and (5) (see Figure 1). For t = 3, the ba
k pointers are
y
ling ba
kward between 1, 6 and 7 inthe largest
y
le (there are none in the other be
ause it is smaller than t). To �nd ��1(3), follow� from 3 to 6, observe that 6 is a ba
k pointer be
ause marked by the se
ond 1 in B, and followthe se
ond value of S to 1, then follow � from 1 to 4 and then to 3: the prede
essor of 3 has beenfound. As there are ba
k-pointer every t elements in the
y
le, �nding the prede
essor requiresO(t) memory a

esses.For arbitrary i and k, �k(i) is supported by writing the
y
les of � together with a bit ve
tor Bmarking the beginning of ea
h
y
le. Observe that the
y
le representation itself is a permutationin \standard form",
all it �. For example, the permutation � = (6; 4; 3; 5; 2; 1) has three
y
lesf(1; 6); (3); (2; 5; 4)g and is en
oded by the permutation � = (1; 6; 3; 2; 5; 4) and the bit ve
torB = (1; 0; 1; 1; 0; 0). The �rst task is to �nd i in the representation: it is in position ��1(i). Therank and sele
t operations on B now enable us to �nd the segment of the representation
ontainingi. From this �k(i) is easily determined by taking k modulo the
y
le length and moving that numberof steps around the
y
le starting at the position of i.Other than the support of the inverse of �, all operations are performed in
onstant time, hen
ethe total time depends on the value
hosen for t.Theorem 1 (Munro et al. 2003). There is a representation of an arbitrary permutation � on[n℄ using at most (1 + ")n lgn +O(n) bits that
an support the operation �k() in time O(1="), forany
onstant " less than 1 and for any arbitrary value of k.It is not diÆ
ult to prove that this te
hnique is optimal under a restri
ted model of pointerma
hine. So, for example, using O(n) extra bits (i.e. O(n= lgn) extra words),
(lgn) time is ne
-essary to
ompute both � and ��1. However, using another approa
h Munro et al. [7℄ demonstratethat the lower bound suggested does not hold in the RAM model. The approa
h is based on theBenes Network, a
ommuni
ation network
omposed of swit
hes that
an be used to implementpermutations.Theorem 2 (Munro et al. 2003). There is a representation of an arbitrary permutation � on[n℄ using at most dlg(n!)e+ O(n) bits that
an support the operation �k() in time O(lgn= lg(2) n).2

While this data-stru
ture uses less spa
e than the other, it requires more time for ea
h operation.It is not known whether this time bound
an be improved using only O(n) \extra spa
e". As a
onsequen
e, the �rst data stru
ture is used in all appli
ations. Obviously, any other solution
anbe used, potentially with a better time/spa
e trade-o�.3 APPLICATIONSThe results on permutations are parti
ularly useful on two lines of resear
h, �rst in the extensionof the results on permutation to arbitrary integer fun
tions; and se
ond, and probably more impor-tantly, in en
oding and indexing text strings, whi
h themselves are used to en
ode sparse binaryrelations and labeled trees. This se
tion summarizes some of these results.3.1 Fun
tionsMunro and Rao [9℄ extended the results on permutations to arbitrary fun
tions from [n℄ to [n℄.Again fk(i) indi
ates the fun
tion iterated k times starting at i. If k is nonnegative, this isstraightforward. The
ase in whi
h k is negative is more interesting as the image is a (possiblyempty) multiset over [n℄ (see Figure 2 for an example). Whereas � is a set of
y
les, f
an beviewed as a set of
y
les in whi
h ea
h node is the root of a tree. Starting at any node (elementof [n℄), the evaluation moves one step toward the root of the tree or one step along a
y
le (e.g.f(8) = 7; f(10) = 11). Moving k steps in a positive dire
tion is straightforward, one moves up atree and perhaps around a
y
le (e.g. f5(9) = f3(9) = 3) When k is negative one must determineall nodes of distan
e k from the starting lo
ation, i, in the dire
tion towards the leaves of the trees(e.g. f�1(13) = f1; 11; 12g, f�1(3) = f4; 5g). The key te
hni
al issue is to run a
ross su

in
t treerepresentations pi
king o� all nodes at the appropriate levels.Theorem 3 (Munro and Rao 2004). For any �xed ", there is a representation of a fun
tionf : [n℄! [n℄ that takes (1+ ")n lgn+O(1) bits of spa
e, and supports fk(i) in O(1+ jfk(i)j) time,for any integer k and for any i 2 [n℄.
2 4 3 5

6

7

8

12

1

13

11

10

9i 1 2 3 4 5 6 7 8 9 10 11 12 13f(i) = 13 2 4 3 3 5 5 7 7 11 13 13 10f�1(i) = fg f2g f4,5g f3g f6,7g fg f8,9g fg fg f13g f10g fg f1,11,12gFigure 2: A fun
tion on f1; : : : ; 13g, with 3
y
les and 2 nontrivial tree stru
tures.3.2 Text StringsIndexing text strings to support the sear
h for patterns is an important general issue. Barbay etal. [2℄
onsider \negative" sear
hes, along the following lines:De�nition 1. Consider a string S[1; n℄ over the alphabet [l℄. A position x 2 [n℄ mat
hes a literal� 2 [l℄ if S[x℄ = �. A position x 2 [n℄ mat
hes a literal �� if S[x℄ 6= �. The set f1; : : : ; lg is denotedby [�l℄. 3

Given a string S of length n over an alphabet of size l, for any position x in the string, anyliteral � 2 [l℄[[�l℄ and any integer r,
onsider the following operators:� string rankS(�; x): the number of o

urren
es of � in S[1::x℄;� string sele
tS(�; r): the position of the r-th o

urren
e of � in S, or 1 if none exists;� string a

essS(x): the label S[x℄;� string predS(�; x): the last o

urren
e of � in S[1 : : :x℄, or 1 if none exists; and� string su

S(�; r): the �rst o

urren
e of � in S[x : : :℄, or 1 if none exists.Golynski et al. [4℄ observed that a string of length l on alphabet [l℄
an be en
oded and indexedby a permutation on [l℄ (whi
h for ea
h label lists the positions of all its o

urren
es) together witha bit ve
tor of length 2l (whi
h signals the end of ea
h sub-list of o

urren
es
orresponding to alabel). For instan
e, the string ACCA on alphabet fA;B;C;Dg is en
oded by the permutation(1; 4; 2; 3) and the bit ve
tor (0; 0; 1; 1; 1; 0; 0; 1). Golynski et al. are then able to support theoperators rank, sele
t and a

ess in time O(lg(2) n), by using a value of t = lg(2) n in the en
odingof permutation of Theorem 1.This en
oding a
hieves fast support for the sear
h operators de�ned above restri
ted to labels(not literals), with a small overhead in spa
e, by integrating the en
odings of the text and theindexing information. Barbay et al. [2℄ extended those operators to literals, and showed how toseparate the su

in
t en
oding of the string S, in a manner that assumes we
an a

ess a word ofS in a �xed time bound, and a su

in
t index
ontaining auxiliary information useful to supportthe sear
h operators de�ned above.Theorem 4 (Barbay et al. 2007). Given a

ess to a label in the raw en
oding of a stringS 2 [l℄n in time f(n; l), there is a su

in
t index using n(1+o(lg l)) bits that supports the operatorsstring rankS, string predS and string su

S for any literal � 2 [l℄ [[�l℄ in O(lg(2) l � lg(3) l �(f(n; l)+ lg(2) l)) time; and the operator string sele
tS for any label � 2 [l℄ in O(lg(3) l � (f(n; l)+lg(2) l)) time.The separation between the en
oding of the string or an XML-like do
ument and its index hastwo main advantages:� The string
an now be
ompressed and sear
hed at the same time, provided that the
om-pressed en
oding of the string supports the a

ess in reasonable time, as does the one des
ribedby Ferragina and Venturini [3℄.� The operators
an be supported for several orderings of the string, for instan
e indu
ed bydistin
t traversals of a labeled tree, with only a small
ost in spa
e. It is important forinstan
e when those orders
orrespond to various traversals of a labeled stru
ture, su
h asthe depth-�rst and DFUDS traversals of a labeled tree [2℄.3.3 Binary RelationsGiven two ordered sets of sizes l and n, denoted by [l℄ and [n℄, a binary relation R between thesesets is a subset of their Cartesian produ
t, i.e. R � [l℄�[n℄. It is used, for instan
e, to representthe relation between a set of labels [l℄ and a set of obje
ts [n℄.Although a string
an be seen as a parti
ular
ase of a binary relation, where the obje
ts arepositions and exa
tly one label is asso
iated to ea
h position, the sear
h operations on binaryrelations are diverse, in
luding operators on both the labels and the obje
ts. For any literal �,obje
t x, and integer r, we
onsider the following operators:4

� label rankR(�; x): the number of obje
ts labeled � pre
eding or equal to x;� label sele
tR(�; r): the position of the r-th obje
t labeled � if any, or 1 otherwise;� label nbR(�), the number of obje
ts with label �;� obje
t rankR(x; �): the number of labels asso
iated with obje
t x pre
eding or equal to label�;� obje
t sele
tR(x; r): the r-th label asso
iated with obje
t x, if any, or 1 otherwise;� obje
t nbR(x): the number of labels asso
iated with obje
t x; and� table a

essR(x; �):
he
ks whether obje
t x is asso
iated with label �.Barbay et al. [1℄ observed that su
h a binary relation,
onsisting of t pairs from [n℄�[l℄,
an been
oded as a text string S listing the t labels, and a binary string B indi
ating how many labels areasso
iated with ea
h obje
t. So sear
h operations on the obje
ts asso
iated with a �xed label areredu
ed to a
ombination of operators on text and binary strings. Using a more dire
t redu
tion tothe en
oding of permutations, the index of the binary relation
an be separated from its en
oding,and even more operators
an be supported [2℄:Theorem 5 (Barbay et al. 2007). Given support for obje
t a

essR in f(n; l; t) time on abinary relation formed by t pairs from an obje
t set [n℄ and a label set [l℄, there is a su

in
t indexusing t(1 + o(lg l)) bits that supports label rankR for any literal � 2 [l℄ [[�l℄ and label a

essRfor any label � 2 [l℄ in O(lg(2) l � lg(3) l � (f(n; l; t) + lg(2) l)) time, and label sele
tR for any label� 2 [l℄ in O(lg(3) l � (f(n; l; t) + lg(2) l)) time.To
on
lude this entry, note that a labeled tree T
an be represented by an ordinal tree
odingits stru
ture [6℄ and a string S listing the labels of the nodes. If the labels are listed in preorder(resp. in DFUDS order) the operator string su

S enumerates all the des
endants (resp.
hildren)of a node mat
hing some literal �. Using su

in
t indexes, a single en
oding of the labels and thesupport of a permutation between orders is suÆ
ient to implement both enumerations, and othersear
h operators on the labels. These issues, along with strings and labeled trees
ompressionte
hniques whi
h a
hieve the entropy of the indexed data, are
overed in more details in otherentries
ited in the Cross Referen
es se
tion.4 OPEN PROBLEMSNone is reported.5 EXPERIMENTAL RESULTSNone is reported.6 DATA SETSNone is reported.7 URL to CODENone is reported. 5

8 CROSS REFERENCESCompressed Text Indexing; Compressed SuÆx Array; Rank and Sele
t over Binary Strings; TextIndexing, Tree Compression and Indexing.9 RECOMMENDED READING[1℄ J. Barbay, A. Golynski, J. I. Munro, and S. S. Rao, Adaptive sear
hing in su

in
tlyen
oded binary relations and tree-stru
tured do
uments, in Pro
eedings of the 17th AnnualSymposium on Combinatorial Pattern Mat
hing (CPM), vol. 4009 of Le
ture Notes in Com-puter S
ien
e (LNCS), Springer-Verlag, 2006, pp. 24{35.[2℄ J. Barbay, M. He, J. I. Munro, and S. S. Rao, Su

in
t indexes for strings, binary rela-tions and multi-labeled trees, in Pro
eedings of the 18th ACM-SIAM Symposium on Dis
reteAlgorithms (SODA), ACM, 2007, pp. 680{689.[3℄ P. Ferragina and R. Venturini, A simple storage s
heme for strings a
hieving entropybounds, in Pro
eedings of the 18th ACM-SIAM Symposium on Dis
rete Algorithms (SODA),ACM, 2007, pp. 690{695.[4℄ A. Golynski, J. I. Munro, and S. S. Rao, Rank/sele
t operations on large alphabets: atool for text indexing, in Pro
eedings of the 17th Annual ACM-SIAM Symposium on Dis
reteAlgorithms (SODA), ACM, 2006, pp. 368{373.[5℄ G. Ja
obson, Spa
e-eÆ
ient stati
 trees and graphs, in Pro
eedings of the 30th IEEE Sym-posium on Foundations of Computer S
ien
e (FOCS), 1989, pp. 549{554.[6℄ J. Jansson, K. Sadakane, and W.-K. Sung, Ultra-su

in
t representation of orderedtrees, in Pro
eedings of the 18th ACM-SIAM Symposium on Dis
rete Algorithms (SODA),ACM, 2007, pp. 575{584.[7℄ J. I. Munro, R. Raman, V. Raman, and S. S. Rao, Su

in
t representations of permu-tations, in Pro
eedings of the 30th International Colloquium on Automata, Languages andProgramming (ICALP), vol. 2719 of Le
ture Notes in Computer S
ien
e (LNCS), Springer-Verlag, 2003, pp. 345{356.[8℄ J. I. Munro and V. Raman, Su

in
t representation of balan
ed parentheses and stati
trees, SIAM Journal on Computing, 31 (2001), pp. 762{776.[9℄ J. I. Munro and S. S. Rao, Su

in
t representations of fun
tions, in Pro
eedings of theInternational Colloquium on Automata, Languages and Programming (ICALP), vol. 3142 ofLe
ture Notes in Computer S
ien
e (LNCS), Springer-Verlag, 2004, pp. 1006{1015.
6

