
The Miryad Virtues of Wavelet Trees
(Extended Abstract)

Paolo Ferragina1, Raffaele Giancarlo2, and Giovanni Manzini3

1 Dipartimento di Informatica, University of Pisa, Italy.
2 Dipartimento di Matematica ed Applicazioni, Università di Palermo, Italy

3 Dipartimento di Informatica, University of Piemonte Orientale, Italy.

Abstract. Wavelet Trees have been introduced in [Grossi, Gupta and
Vitter, ACM-SIAM SODA 2003] and have been rapidly recognized as
a very flexible tool for the design of compressed full text indexes and
data compression algorithms. Although several papers have investigated
the beauty and usefulness of this data structure in the full-text indexing
scenario, its impact on data compression has not been fully explored. In
this paper we provide a complete theoretical analysis of a wide class of
compression algorithms based on Wavelet Trees. We also show how to
improve their asymptotic performance by introducing a novel framework,
called Red-Black Wavelet Trees, that aims for the best combination of
binary compressors (like, Run-Length encoders) versus non-binary com-
pressors (like, Huffman and Arithmetic encoders) and Wavelet Trees of
properly-designed shapes. As a corollary, we prove high-order entropy
bounds for the challenging combination of Burrows-Wheeler Transform
and Wavelet Trees.

1 Introduction
The Burrows-Wheeler Transform [4] (bwt for short) has changed the way in
which fundamental tasks for string processing and data retrieval, such as com-
pression and indexing, are designed and engineered (see e.g. [5, 6, 8, 10, 11]). The
transform reduces the problem of high-order entropy compression to the appar-
ently simpler task of designing and engineering good order-zero (or memoryless)
compressors. This point has lead to the paradigm of compression boosting pre-
sented in [5]. However, despite nearly 60 years of investigation in the design of
good memoryless compressors, no general theory for the design of order-zero
compressors suited for the bwt is available, since it poses special challenges. In-
deed, bwt is a string in which symbols following the same context (substring)
are grouped together, giving raise to clusters of nearly identical symbols. A good
order-zero compressor must both adapt fast to those rapidly changing contexts
and compress efficiently the runs of identical symbols. By now it is understood
that one needs a clever combination of classic order-zero compressors and run
length encoding techniques. However, such a design problem is mostly open. Re-
cently Grossi et al. [8, 9] proposed an elegant and effective solution to the posed
design problem: the Wavelet Tree. It is a binary tree data structure that reduces
the compression of a string over a finite alphabet to the compression of a set of

binary strings. The latter problem is then solved via Run Length Encoding or
Gap Encoding techniques. A formal definition is given in Section 2.1.

Wavelet Trees are remarkably natural since they use a well known decompo-
sition of entropy in terms of binary entropy and, in this respect, it is surprising
that it took so long to define and put them to good use. The mentioned ground-
breaking work by Grossi et al. highlights the beauty and usefulness of this data
structure mainly in the context of full-text indexing, and investigates a few of its
virtues both theoretically and experimentally in the data compression setting.
Yet, it is still open the fundamental question of whether Wavelet Trees can pro-
vide a data structural paradigm based on which one can design good order-zero
compression algorithms for the Burrows-Wheeler Transform.

Our main contribution is to answer this question in the affirmative by pro-
viding the first general paradigm, and associated analytic tools, for the design
of good order-zero compressors for the bwt. It is also rather fortunate that a
part of our theoretical results either strengthen the ones by Grossi et al. or fully
support the experimental evidence presented by those researchers and cleverly
used in their engineering choices. The remaining part of our results highlight
new virtues of Wavelet Trees. More specifically, in this paper:

(A) We provide the first complete theoretical analysis of Wavelet Trees as stand-
alone, general purpose, order-zero compressors for an arbitrary string σ. We con-
sider both the case in which binary strings associated to the tree are compressed
using Run Length Encoding (Rle), and refer to it as Rle Wavelet Tree, and
the case in which Gap Encoding (Ge) is used, and refer to it as Ge Wavelet
Tree. In both cases, a generic prefix-free encoding of the integers is used as a
subroutine, thus dealing with the typical scenario of use for Wavelet Trees (see
[7–9]). Our analysis is done in terms of the features of these prefix-free encodings
and H∗

0 (σ), the modified order-zero entropy of the string σ, defined in Section 2.
As a notable Corollary, we also obtain the first analysis of Inversion Frequencies
coding [2] offering a theoretical justification of the better compression observed
in practice by this technique with respect to Move-to-Front coding [3].

(B) We study the use of Wavelet Trees to compress the output of the bwt. We
show that Rle Wavelet Trees achieve a compression bound in terms of H∗

k(σ).
The technical results are in Section 4 and, although related to results in [9]
(namely, cfr. Theorem 3.2), they are somewhat more general and accurate. We
also show that Ge Wavelet Trees cannot achieve analogous bounds. A striking
consequence of our analytic results is to give full theoretic support to the engi-
neering choices made in [9] (see also [7]) where, based on a punctual experimental
analysis of the data, the former method is preferred to the latter to compress
the output of the bwt.

(C) We define Red-Black Wavelet Trees. They generalize Wavelet Trees and add
to this class of data structures in several ways. In order to present our results
here, we need to mention some facts about Wavelet Trees, when they are used as
stand-alone order-zero compressors. The same considerations apply when they
are used in (B). Wavelet Trees reduce the problem of compressing a string to
that of compressing a set of binary strings. That set is uniquely identified by:

(C.1) the shape (or topology) of the binary tree underlying the Wavelet Tree;
(C.2) an assignment of alphabet symbols to the leaves of the tree. How to choose
the best Wavelet Tree, in terms of number of bits produced for compression, is
open. Grossi et al. establish worst-case bounds that hold for the entire family of
Wavelet Trees and therefore they do not depend on (C.1) and (C.2). They also
bring some experimental evidence that choosing the “best” Wavelet Tree may
be difficult [9, Sect. 3.1]. In Section 5 we exhibit an infinite family of strings
over an alphabet Σ for which changing the Wavelet Tree shape (C.1) influences
the coding cost by a factor Θ(log |Σ|), and changing the assignment of symbols
to leaves (C.2) influences the coding cost by a factor Θ(|Σ|). So, the choice of
the best tree cannot be neglected and remains open. Moreover, (C.3) Wavelet
Trees commit to binary compressors, losing the potential advantage that might
come from a mixed strategy in which only some strings are binary and the
others are defined on an arbitrary alphabet (and compressed via general purpose
order-zero compressors, such as Arithmetic and Huffman coding). We exhibit an
infinite family of strings for which a mixed strategy yields a constant factor
improvement over standard Wavelet Trees. So, (C.3) is relevant and open.

We introduce the new paradigm of Red-Black Wavelet Trees that allows us to
reduce the compression of a string σ to the identification of a set of strings, where
only a part may be binary, which are compressed via the mixed strategy sketched
above. We develop a combinatorial optimization framework so that one can ad-
dress points (C.1)-(C.3) simultaneously. Moreover, we provide a polynomial-time
algorithm for finding the optimal mixed strategy for a Red-Black Wavelet Tree
of fixed shape (Theorem 5). In addition, we provide a polynomial-time algorithm
for selecting the optimal tree-shape for Red-Black Wavelet Trees when the size of
the alphabet is constant and the assignment of symbols to the leaves of the tree
is fixed (Theorem 6). Apart from their intrinsic interest, being Wavelet Trees
a special case, those two results shed some light on a problem implicitly posed
in [9], where it is reported that a closer inspection of the data did not yield
any insights as to how to generate a space-optimizing tree, even with the use of
heuristics.

Due to space limitations, all proofs of technical lemmas are in Appendix A,
while proofs of Theorems are either sketched or reported in Appendix A.

2 Background and Notation
Let s be a string over the alphabet Σ = {a1, . . . , ah} and, for each ai ∈ Σ, let ni

be the number of occurrences of ai in s. Throughout this paper we assume that
all logarithms are taken to the base 2 and 0 log 0 = 0. The 0-th order empirical
entropy of the string s is defined as H0(s) = −∑h

i=1(ni/|s|) log(ni/|s|). It is
well known that H0 is the maximum compression we can achieve using a fixed
codeword for each alphabet symbol. We can achieve a greater compression if the
codeword we use for each symbol depends on the k symbols preceding it, since
the maximum compression is now bounded by the k-th order entropy Hk(s)
(see [11] for the formal definition).

For highly compressible strings, |s|Hk(s) fails to provide a reasonable bound
to the performance of compression algorithms (see discussion in [5, 11]). For that

reason, [11] introduced the notion of 0-th order modified empirical entropy:

H∗
0 (s) =

0 if |s| = 0
(1 + blog |s|c)/|s| if |s| 6= 0 and H0(s) = 0
H0(s) otherwise.

(1)

Note that for a non-empty string s, |s|H∗
0 (s) is at least equal to the number

of bits needed to write down the length of s in binary. The k-th order modified
empirical entropy H∗

k is then defined in terms of H∗
0 as the maximum compression

we can achieve by looking at no more than k symbols preceding the one to be
compressed.

2.1 Wavelet trees

To simplify the exposition of our results we use a slightly more verbose notation
that the one in [8] since we need to distinguish between the base alphabet Σ
and the set of symbols that actually appear in a given string.

Let TΣ be a complete binary tree with |Σ| leaves. We associate one-to-one
the symbols in Σ to the leaves of TΣ and refer to it as an alphabetic tree. Given
a string s over Σ the full Wavelet Tree Wf (s) is the labeled tree returned by the
procedure TreeLabel of Fig. 1 (see also Fig. 2). Note that to each internal node
u ∈ Wf (s) we associate two strings of equal length. The first one, assigned in
Step 1, is a string over Σ and we denote it by s(u). The second one, assigned
in Step 3, is a binary string and we denote it by s01(u). Note that the length of
these strings is equal to the number of occurrences in s of the symbols associated
to the leaves of the subtree rooted at u.

In this paper we use Σ(s) to denote the set of symbols that appear in s. If
Σ(s) = Σ, the Wavelet Tree Wf (s) has the same shape as TΣ and is therefore
a complete binary tree. If Σ(s) ⊂ Σ, Wf (s) is not necessarily a complete binary
tree since it may contain unary paths. By contracting all unary paths we obtain
a pruned Wavelet Tree Wp(s) which is a complete binary tree with |Σ(s)| leaves
and |Σ(s)| − 1 internal nodes (see Fig. 2).

Procedure TreeLabel(u, s)

1. Assign string s to node u. If u has no children return.
2. Let uL (resp. uR) denote the left (resp. right) child of u. Let Σ(uL) (reps. Σ(uR)) be

the set of symbols associated to the leaves of the subtree rooted at uL (resp. uR).
3. Assign to node u the binary string obtained from s replacing the symbols in Σ(uL)

with 0, and the symbols in Σ(uR) with 1.
4. Let sL denote the string obtained from s removing the symbols in Σ(uR). If |sL| >

0, TreeLabel(uL, sL).
5. Let sR denote the string obtained from s removing the symbols in Σ(uL). If |sR| >

0, TreeLabel(uR, sR).

Fig. 1. Procedure TreeLabel for building the full Wavelet Tree Wf (s) given the alpha-
betic tree TΣ and the string s. The procedure is called with u = root(T).

Fig. 2. An alphabetic tree (left) for the alphabet Σ = {a,b,c,d,e,f}. The correspond-
ing full Wavelet Tree (center) for the string s = fcdcfcffd. The pruned Wavelet Tree
(right) for the same string.

As observed in [8], we can always retrieve s given the binary strings s01(u)
associated to the internal nodes of a Wavelet Tree and the mapping between
leaves and alphabetic symbols. Hence, Wavelet Trees are a tool for encoding
arbitrary strings using only an encoder for binary strings. Let C denote any
algorithm for encoding binary strings. For any internal node u we denote by
C∗(u) the length of the encoding of s01(u) via C, that is, C∗(u) = |C(s01(u))|.
With a little abuse of notation we write C∗(Wp(s)) to denote the total cost of
encoding the Wavelet Tree Wp(s). Namely, C∗(Wp(s)) =

∑
u∈Wp(s) C∗(u), where

the sum is done over the internal nodes only. C∗(Wf (s)) is defined similarly. The
following fundamental property of pruned Wavelet Trees was established in [8]
and shows that there is essentially no loss in compression performance when we
compress an arbitrary string s using Wavelet Trees and a binary encoder.

Theorem 1 (Grossi et al., ACM Soda 2003). Let C be a binary encoder
such that for any binary string z the bound |C(z)| ≤ λ|z|H0(z) + η|z| + µ holds
with constant λ, η, µ. Then, for a string s drawn from any alphabet Σ(s), we
have C∗(Wp(s)) =

∑
u∈Wp(s) |C(s01(u))| ≤ λ|s|H0(s)+ η|s|+(|Σ(s)| − 1)µ. The

bound holds regardless of the shape of Wp(s). The same result holds when the
entropy H0 is replaced by the modified entropy H∗

0 . ut

3 Achieving 0-th order entropy with Wavelet Trees

This section contains a technical outline of the results claimed in (A) of the Intro-
duction, where Wavelet Trees are used as stand alone, general purpose, order-zero
compressors. In particular, we analyze the performance of Rle Wavelet Trees
(Section 3.1) and Ge Wavelet Trees (Section 3.2) showing that Ge is superior
to Rle as an order-zero compressor over Wavelet Trees. Nevertheless, we will
show in Section 4 that Ge Wavelet Trees, unlike Rle Wavelet Trees, are un-
able to achieve the k-th order entropy when used to compress the output of the

Burrows-Wheeler Transform. This provides a theoretical ground to the practical
choices and experimentation made in [7, 9]. Moreover, a remarkable corollary of
this section is the first theoretical analysis of Inversion Frequencies coding [2].

Let CPF denote a prefix-free encoding of the integers having logarithmic cost,
namely |CPF (n)| ≤ a log n + b, for n ≥ 1. Note that since |CPF (1)| ≤ b we must
have b ≥ 1. Also note that for γ codes we have a = 2 and b = 1. This means
that it is worthwhile to investigate only prefix codes with a ≤ 2. Indeed, a code
with a > 2 (and necessarily b ≥ 1) would be worse than γ codes for any n and
therefore not interesting. Hence in the following we assume a ≤ 2, b ≥ 1 and
thus a ≤ 2b and a ≤ b + 1.

3.1 Analysis of Rle Wavelet Trees
For any binary string s = a`1

1 a`2
2 · · · a`k

k , with ai ∈ {0, 1} and ai 6= ai+1, we define
CRLE(s) = a1CPF (`1)CPF (`2) · · · CPF (`k). Note that we need to store explicitly
the bit a1 since the values `1, . . . , `k alone are not sufficient to retrieve s.

Lemma 1. For any binary string s = a`1
1 a`2

2 · · · a`k

k , with ai ∈ {0, 1} and ai 6=
ai+1, we have |CRLE(s)| = 1+

∑
i=1,k |CPF (`i)| ≤ 2max(a, b)|s|H∗

0 (s)+b+1. ut
Combining the above Lemma with Theorem 1 we immediately get:

Corollary 1. For any string s over the alphabet Σ(s), if the internal nodes of
the Wavelet Tree Wp(s) are encoded using Rle we have

C∗(Wp(s)) ≤ 2max(a, b)|s|H∗
0 (s) + (|Σ(s)| − 1)(b + 1). ut

Consider now the algorithm rle wt defined as follows. We first encode |s| using
|CPF (|s|)| ≤ a log |s|+ b bits. Then we encode the internal nodes of the Wavelet
Tree using Rle. The internal nodes are encoded in a predetermined order—for
example heap order—such that the encoding of a node u always precedes the
encoding of its children (if any).1 This ensures that from the output of rle wt we
can always retrieve s. To see this, we observe that when we start the decoding of
the string s01(u) we already know its length |s01(u)| and therefore no additional
bits are needed to mark the end of the run-length encoding. Since the output of
rle wt consists of |CPF (|s|)|+ C∗(Wp(s)) bits, by Corollary 1 we get:

Theorem 2. For any string s over the alphabet Σ(s) we have

|rle wt(s)| ≤ 2 max(a, b)|s|H∗
0 (s) + (b + 1)|Σ(s)|+ a log |s| − 1. ut

3.2 Analysis of Ge Wavelet Trees
For any binary string s with exactly r 1’s, let p1, p2, . . . , pr denote their positions
in s, and let g1, . . . , gr be defined by g1 = p1, gi = pi − pi−1 for i = 2, . . . , r. We
denote by CGap(s) the concatenation CPF (g1)CPF (g2) · · · CPF (gr).

Lemma 2. Let s be a binary string with r 1’s. If 1 ≤ r ≤ |s|/2, we have

|CGap(s)| = |CPF (g1)|+ · · ·+ |CPF (gr)| ≤ max(a, b)|s|H0(s). ut

Fig. 3. The skewed Wavelet Tree for the string s = dabbdabc. Symbol b is the most
frequent one and is therefore associated to the leftmost leaf.

Let s be a string over the alphabet Σ(s). Consider the following algorithm called
ge wt. First we encode the length of s using a log |s| + b bits and the number
of occurrences of each symbol using a total of |Σ(s)| dlog |s|e bits. Then, we
build a Wavelet Tree completely skewed to the left such that the most frequent
symbol is associated to the leftmost leaf. The other symbols are associated to
the leaves in reverse alphabetic order (see Fig. 3). Finally, we use Ge to encode
the strings s01(u1), . . . , s01(u|Σ(s)|−1) associated to the internal nodes of such
Wavelet Tree. Note that this information is sufficient to reconstruct the input
string s. The crucial point is that the decoding starts with the retrieval of the
number of occurrences of each symbol. Hence, we can immediately determine
the association between leaves and symbols and when we later decode a string
s01(ui) we already know its length and the number of 1’s in it.

Theorem 3. For any string s, it is

|ge wt(s)| ≤ max(a, b)|s|H0(s) + |Σ(s)| dlog |s|e+ a log |s|+ b.

Proof. We only need to show that
∑

i |CGap(s01(ui))| ≤ max(a, b)|s|H0(s). To
this end we observe that assigning the most frequent symbol to the leftmost
leaf ensures that each s01(ui) contains more 0’s than 1’s. The thesis follows by
Lemma 2 and Theorem 1. ut

Let us give a closer look to the ge wt algorithm when Σ = {a1, a2, . . . , ah}
and ah is the most frequent symbol. In this case, when we encode s01(ui) we
are encoding the positions of the symbol ai in the string s with the symbols
a1, . . . , ai−1 removed. In other words, we are encoding the number of occurrences
of ai+1, . . . , ah between two consecutive occurrences of ai. This strategy is known
as Inversion Frequencies (If) and was first suggested in [2] as an alternative to
Move-to-Front (MTF) encoding. We have therefore the following result.

Corollary 2. The variant of If-coding in which the most frequent symbol is
processed last produces a sequence of integers that we can encode with CPF in at
most max(a, b)|s|H0(s) bits. ut
1 We are assuming that the Wavelet Tree shape is hard-coded in the (de)compressor.

The standard analysis of MTF tells us that combining CPF with MTF produces
an output bounded by a|s|H0(s) + b|s| bits. Hence, the above corollary is the
first theoretical justification of the fact, observed by practitioners, that If-coding
is superior to MTF [1, 2]. Corollary 2 also provides a theoretical justification for
the strategy, suggested in [1], of processing the symbols in order of increasing
frequency.

4 Achieving H∗
k with Rle Wavelet Trees and bwt

This section provides the technical details about the results claimed in (B) of
the Introduction. In particular, we show that by using Rle Wavelet Trees as a
post-processor of the bwt one can achieve higher order entropy compression. We
also show that the same result cannot hold for Ge Wavelet Trees.

We need to recall a key property of the Burrows-Wheeler Transform of a
string σ [11]: If s = bwt(σ) then for any k ≥ 0 there exists a partition s =
s1s2 · · · st such that2 t ≤ |Σ|k and |σ|H∗

k(σ) =
∑t

i=1 |si|H∗
0 (si). In other words,

the bwt is a tool for achieving the k-th order entropy H∗
k provided that we can

achieve the entropy H∗
0 on each si. An analogous result holds for Hk as well.

The proof idea is to show that compressing the whole s via one Rle Wavelet
Tree is not much worse than compressing each string si separately. In order to
prove such a result, some care is needed. We can assume without loss of generality
that Σ(s) = Σ. However, Σ(si) will not, in general, be equal to Σ(s) and this
creates some technical difficulties and forces us to consider both full and pruned
Wavelet Trees. Indeed, if we “slice” the Wavelet Tree Wp(s) according to the
partition s = s1 · · · st we get full Wavelet Trees for the strings si’s.

Our first lemma states that, for full Rle Wavelet Trees, partitioning a string
does not improve compression.

Lemma 3. Let α = α1α2 be a string over the alphabet Σ. We have C∗(Wf (α)) ≤
C∗(Wf (α1)) + C∗(Wf (α2)). ut

Since Theorem 1 bounds the cost of pruned Wavelet Trees, in order to use
Lemma 3 we need to bound C∗(Wf (αi)) in terms of C∗(Wp(αi)), for i = 1, 2.

Lemma 4. Let β be a string over the alphabet Σ. We have

C∗(Wf (β)) ≤ C∗(Wp(β)) + (|Σ| − 1)(a log |β|+ b + 1). ut

We are now able to bound the size of a Rle Wavelet Tree over the string s =
bwt(σ) in terms of the k-th order entropy of σ.

Theorem 4. Let σ denote a string over the alphabet Σ = Σ(s), and let s =
bwt(σ). For any k ≥ 0 we have

C∗(Wp(s)) ≤ 2max(a, b)|σ|H∗
k(σ) + |Σ|k+1(2b + 2 + a log(|s|)). (2)

2 For simplicity we ignore the end-of-file symbol and the first k symbols of σ that do
not belong to any si. We will take care of these details in the full version.

In addition, if |Σ| = O(polylog(n)), for all k ≤ α log|Σ| n, constant 0 < α < 1,
we have

C∗(Wp(s)) ≤ 2max(a, b)|σ|H∗
k(σ) + o(|σ|). (3)

Proof. Let s = s1 · · · st denote the partition of s such that |σ| H∗
k(σ) =∑t

i=1 |si| H∗
0 (si). By Lemma 3, and the fact that Σ = Σ(s), we have that

C∗(Wp(s)) = C∗(Wf (s)) ≤ ∑t
i=1 C∗(Wf (si)). By Lemma 4, we get

C∗(Wp(s)) ≤
t∑

i=1

C∗(Wp(si)) + (|Σ| − 1)
t∑

i=1

(a log |si|+ b + 1)

=
t∑

i=1

C∗(Wp(si)) + (|Σ| − 1)
t∑

i=1

a log |si|+ t(|Σ| − 1)(b + 1)

Since
∑t

i=1 log |si| ≤ t log(|s|/t) and t ≤ |Σ|k, using Corollary 1 we get

C∗(Wp(s)) ≤ 2max(a, b)
(∑t

i=1
|si|H∗

0 (si)
)

+t(|Σ| − 1)a log(|s|/t) + 2t(|Σ| − 1)(b + 1) (4)
≤ 2max(a, b)|σ|H∗

k(σ) + t(|Σ| − 1)(2b + 2 + a log(|s|/t))

which implies the bound (2). To prove (3) we start from (4) and note that |Σ|’s
size and the inequality t ≤ |Σ|k imply t|Σ| log(|s|/t) = o(|s|). ut
Theorem 4 shows that Rle Wavelet Trees achieve the k-th order entropy with the
same multiplicative constant 2 max(a, b) that Rle achieves with respect to H∗

0

(Lemma 1). Thus, Wavelet Trees are a sort of booster for Rle (cfr. [5]). It is
possible to prove (details in the full paper) that if we apply the Compression
Boosting algorithm [5] to Rle we get slightly better bounds than the ones of
Theorem 4, the improvement being in the term not containing H∗

k . However,
Compression Boosting makes use of a non trivial (even if linear time) partitioning
algorithm. It is therefore not obvious which approach is preferable in practice.

In proving Theorem 4 we have used some rather coarse upper bounds and we
believe that the result can be significantly improved. However, there are some
limits to the possible improvements. The following example shows that, even for
constant size alphabets, the o(|σ|) term in (3) cannot be reduced to Θ(1).

Example 1. Let Σ = {1, 2, . . . , m}, and let σ = (123 · · ·m)n. We have
|σ| H∗

1 (σ) ≈ m log n and s = bwt(σ) = mn1n2n · · · (m − 1)n. Consider a bal-
anced Wavelet Tree of height dlog me. It is easy to see that there exists an
alphabet ordering such that the internal nodes of the Wavelet Tree all consist of
alternate sequences of 0n and 1n. Even encoding these sequences with log n bits
each would yield a total cost of ≈ (m log m) log n ≈ (log m)|s|H∗

1 (s) bits. ut
Finally, it is natural to ask whether we can repeat the above analysis and

prove a bound for Ge Wavelet Trees in terms of the k-th order entropy. Unfor-
tunately the answer is no! The problem is that when we encode s with Ge

we have to make some global choices—e.g., the shape of the tree in ge wt,
the role of zeros or ones in each internal node in the algorithm of [9]—
and these are not necessarily good choices for every substring si. Hence, we
can still split Wf (s) into Wf (s1), . . . , Wf (st), but it is not always true that
Wf (si) ≤ λ|si|H0(si) + o(|si|). As a more concrete example, consider the string
σ = (01)n. We have |σ| H∗

1 (σ) = Θ(log n) and s = bwt(σ) = 1n0n. Wp(s) has
only one internal node—the root—with associated string 1n0n. We can either
encode the gaps between 1’s or the gaps between 0’s. In both cases the output
will be of Θ(n) bits, thus exponentially larger than |σ|H∗

1 (σ).

5 Red-Black Wavelet Trees
In point (C) of the Introduction we discussed the impact on the cost of a Wavelet
Tree of: (C.1) its (binary) shape, (C.2) the assignment of alphabet symbols to
its leaves, (C.3) the possible use of non-binary compressors to encode the strings
associated to internal nodes. Here we provide some concrete examples showing
that these issues cannot be neglected. In the following we consider Rle Wavelet
Trees but similar examples can be given for Ge Wavelet Trees as well.

For (C.1) let us consider the infinite family of strings sN = aN
1 a2a3 · · · a|Σ|.

For large N the encoding cost is dominated by the Θ(log N) cost of encoding
aN
1 . If the Rle Wavelet Tree is balanced we pay this cost Θ(log |Σ|) times. If the

leaf corresponding to a1 is at depth 1, we pay this cost only once. This means
that the Rle Wavelet Tree shape may impact the output size by a multiplicative
factor Θ(log |Σ|). For (C.2) consider again sN = aN

1 a2a3 · · · a|Σ| and a skewed
Wavelet Tree in which leaves have depth 1, 2, . . . , |Σ|−1. It is easy to see that the
overall cost increases by a factor Θ(|Σ|) if a1 is assigned to a leaf of depth |Σ|−1
rather than to the leaf of depth 1. Note that the symbol-leaf mapping is critical
even for balanced Wavelet Trees: Consider the string aNcNbNdN and a balanced
tree of height 2. If leaves are labelled a, b, c, d (left to right) the encoding cost is
≈ 8a log N , whereas for the ordering a, c, b, d the encoding cost is ≈ 6a log N .

As for (C.3) let us consider the infinite family of strings sN = aN (bbcc)N

and the balanced Wavelet Tree for sN where the leaf corresponding to a is
the left child of the root r while b, c are assigned to the leaves descending
from the right child u of the root. We have s01(r) = 0N14N , s(u) = (bbcc)N ,
and s01(u) = (0011)N . We compress s01(r) via Rle in Θ(log N) bits, and we
compress s01(u) either via Huffman or via Rle. The former takes 4N bits while
the latter takes 2N |CPF (2)| bits, which is at least 6N bits for all representations
of the integers for which |CPF (2)| > 2 (this includes γ and δ codes and all
Fibonacci representations of order > 1). This shows that a mixed encoding
strategy may save a constant multiplicative factor on the output size.

Motivated by these examples, we introduce and discuss Red-Black Wavelet
Trees, a new paradigm for the design of effective order-zero compressors. Let C01

and CΣ be two compression algorithms such that C01 is a compressor specialized
to binary strings while CΣ is a generic compressor. We assume that C01 and
CΣ satisfy the following property, which holds—for example—when C01 is Rle
(with γ codes or order-2 Fibonacci codes used for the coding of integers, see e.g.
Lemma 1) and CΣ is Arithmetic or Huffman coding.

Property 1. (a) For any binary string x, |C01(x)| ≤ α|x|H∗
0 (x) + β bits, where

α and β are constants; (b) For any string y, |CΣ(y)| ≤ |y|H0(y) + η|y|+ µ bits,
where η and µ are constants; (c) the running time of C01 and CΣ is a convex
function (say T01 and TΣ) and their working space is a non decreasing function
(say S01 and SΣ). ut

Given the Wavelet Tree Wp(s), a subset L of its nodes is a leaf cover if every
leaf of Wp(s) has a unique ancestor in L (see [5, Sect. 4]). Let L be a leaf cover
of Wp(s) and let WL

p (s) be the tree obtained by removing all nodes in Wp(s)
descending from nodes in L. We assign colors to nodes of WL

p (s) as follows:
all leaves are black and the remaining nodes red. We use C01 to compress all
binary strings s01(u), u ∈ WL

p (s) and red, while we use CΣ to compress all
strings s(u), u ∈ WL

p (s) and black. Nodes that are leaves of Wp(s) are ignored
(as usual). It is a simple exercise to work out the details on how to make this
encoding decodable.3 The cost C∗(WL

p (s)) is the total number of bits produced
by the encoding process just described. In particular, a red node u contributes
|C01(s01(u))| bits, while a black node contributes |CΣ(s(u))| bits.

Example 2. When L = root(Wp(s)) we compress s using CΣ only. By Prop-
erty 1(b) we have C∗(WL

p (s)) ≤ |s|H0(s) + η|s| + µ. The other extreme case is
when L consists of all the leaves of Wp(s). In this case we never use CΣ and we
have C∗(WL

p (s)) ≤ α|s|H∗
0 (s)+β(|Σ|−1) by Property 1(a) and Theorem 1. ut

We note that when the algorithms C01 and CΣ are fixed, the cost C∗(WL
p (s))

depends on two factors: the shape of the alphabetic tree TΣ , and the leaf cover L.
The former determines the shape of the Wavelet Tree, the latter determines the
assignment of C01 and CΣ to the nodes of Wp(s). It is natural to consider the
following two optimization problems.

Problem 1. Given a string s and a Wavelet Tree Wp(s), find the optimal leaf
cover Lmin that minimizes the cost function C∗(WL

p (s)). Let C∗opt(Wp(s)) be the
corresponding optimal cost.

Problem 2. Given a string s, find an alphabetic tree TΣ and a leaf cover Lmin

for that tree giving the minimum of the function C∗opt(Wp(s)). That is, we are
interested in finding both a shape of the Wavelet Tree, and an assignment of C01

and CΣ to the Wavelet Tree nodes, so that the resulting compressed string is the
shortest possible.

Problem 2 is a global optimization problem, while Problem 1 is a much
more constrained local optimization problem. Note that by Example 2 we have
C∗opt(Wp(s)) ≤ min(|s|H∗

0 (s) + η|s|+ µ, α|s|H∗
0 (s) + β(|Σ| − 1)).

5.1 Optimization Algorithms (Sketch)

The first algorithm we sketch is an efficient algorithm for the solution of Prob-
lem 1. The pseudo-code is given in Figure 4. We have
3 Note that we need to encode which compressor is used at each node and (possibly)

the tree shape. For simplicity in the following we ignore this Θ(|Σ|) bits overhead.

(1) If r is the only node, let Copt(r) ← |C01(s)| and L(r) ← {r}.
(2) Else, visit Wp(s) in post-order. Let u be the currently visited node.

(2.1) If u is a leaf, let Z(u) ← 0 and L(u) ← {u}. Return.
(2.2) Compute Z(u) ← min {|CΣ(s(u))|, |C01(s

01(u))|+ Z(uL) + Z(uR)}.
(2.3) If Z(u) = |CΣ(s(u))| then L(u) ← {u}, else L(u) ← L(uL) ∪ L(uR).

(3) Set Lmin ← L(root(T)).

Fig. 4. The pseudocode for the linear-time computation of an optimal leaf cover Lmin

for a given decomposition tree Ts.

Theorem 5. Given two compressors satisfying Property 1 and a Wavelet Tree
Wp(s), the algorithm in Figure 4 solves Problem 1 in O(|Σ|(T01(|s|) + TΣ(|s|)))
time and O(|s| log |s|+ max(S01(|s|), SΣ(|s|))) bits of space.

Proof. (Sketch) The correctness of the algorithm hinges on a decomposability
property of the cost functions associated to Lmin with respect to the subtrees
of Wp(s). Such a property is essentially the same used in [5, Sect. 4.5], here
exploited to devise an optimal Red-Black Wavelet Tree. As for the time analysis,
it is based on the convexity of the functions T01(·) and TΣ(·) which implies that
on any Wavelet Tree level we spend O(T01(|s|) + TΣ(|s|)) time. ut

Since we are assuming that the alphabet is of constant size, the algorithm
of Figure 4 can be turned into an exhaustive search procedure for the solution
of Problem 2. The time complexity would be polynomial in |s| but at least
exponential in |Σ|. Although we are not able to provide algorithms for the global
optima with time complexity polynomial both in |Σ| and |s|, we are able to settle
the important special case in which the ordering of the alphabet is assigned.
Using Dynamic Programming techniques, we can show:

Theorem 6. Consider a string s and fix an ordering ≺ of the alphabet symbols
appearing in the string. Then, one can solve Problem 2 constrained to that or-
dering of Σ, in O(|Σ|4(T01(|s|) + Tgen(|s|)) time. ut

References

1. J. Abel. Improvements to the Burrows-Wheeler compression algorithm: After BWT
stages. http://citeseer.ist.psu.edu/abel03improvements.html.

2. Z. Arnavut and S. Magliveras. Block sorting and compression. In DCC: Data
Compression Conference, pages 181–190. IEEE Computer Society TCC, 1997.

3. J. Bentley, D. Sleator, R. Tarjan, and V. Wei. A locally adaptive compression
scheme. Communications of the ACM, 29(4):320–330, 1986.

4. M. Burrows and D. Wheeler. A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, 1994.

5. P. Ferragina, R. Giancarlo, G. Manzini, and M. Sciortino. Boosting textual com-
pression in optimal linear time. Journal of the ACM, 52:688–713, 2005.

6. P. Ferragina and G. Manzini. Indexing compressed text. Journal of the ACM,
52(4):552–581, 2005.

7. L. Foschini, R. Grossi, A. Gupta, and J. Vitter. Fast compression with a static
model in high order entropy. In DCC: Data Compression Conference, pages 62–71.
IEEE Computer Society TCC, 2004.

8. R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes. In
Proc. 14th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA ’03), pages
841–850, 2003.

9. R. Grossi, A. Gupta, and J. Vitter. When indexing equals compression: Experi-
ments on compressing suffix arrays and applications. In Proc. 15th Annual ACM-
SIAM Symp. on Discrete Algorithms (SODA ’04), pages 636–645, 2004.

10. R. Grossi and J. Vitter. Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. SIAM Journal on Computing, 35:378–407,
2005.

11. G. Manzini. An analysis of the Burrows-Wheeler transform. Journal of the ACM,
48(3):407–430, 2001.

A Appendix: Technical Lemmas

Proof of Lemma 1: Let n = |s| and let r denote the number of occurrences of
the less frequent symbol of s (hence, r ≤ n/2). For simplicity in this proof we
assume that |CRLE(s)| = ∑k

i=1 |CPF (`i)| =
∑k

i=1(a log `i + b), that is, we ignore
the cost—one bit—of encoding a1. Note that this additional bit is accounted for
in the statement of the lemma. Moreover we define c(x) = a log x + b, and we
recall that we can assume a ≤ 2b.

Case r = 0. We have |CRLE(s)| = a log n + b. The thesis follows observing that
by (1) we have |s|H∗

0 (s) ≥ log n.

Case 1 ≤ r < n/4. This is the most complex case. Assume that 1 is the less
frequent symbol. We start by proving that for a string s with r 1’s and n− r 0’s
|CRLE(s)| is maximized when there are no consecutive 1’s. Assume for example
that there is a group of y ≥ 2 consecutive 1’s. Since r < n/4 there must be a
group of z ≥ 4 consecutive 0’s. Then, we can rearrange the symbols so that the
group of y 1’s is split into a group of size y− 1 and one singleton, and the group
of z 0’s is split into a group of size z − 2 and a group of size 2. Call s′ this new
string. Recalling that a ≤ 2b we have

|CRLE(s)| − |CRLE(s′)| = c(y) + c(z)− [c(y − 1) + c(1) + c(z − 2) + c(2)]
= a log(yz) + 2b− [a log(y − 1)(z − 2) + a + 4b]
≤ a log(yz)− [a log(y − 1)(z − 2) + 2a]
= a[log(yz)− log(4(y − 1)(z − 2))].

To prove our claim we observe that log(yz)− log(4(y−1)(z−2)) ≤ 0 since y ≥ 2
and z ≥ 4 imply y ≤ 2(y − 1) and z ≤ 2(z − 2).

We have therefore established that |CRLE(s)| is maximized when there are
no consecutive 1’s. We now observe that under this assumption the n− r 0’s are
split into k groups with r − 1 ≤ k ≤ r + 1 (depending on whether the string
starts/ends with 1). By the concavity of the logarithm we have

|CRLE(s)| ≤ k c((n− r)/k) + rc(1) ≤ ak log(n/k) + kb + rb.

Using the facts that r < n/4 and a ≤ 2b, one can easily prove that the function
f(k) = ak log(n/k) + kb is increasing for k ≤ r + 1. Hence, we get

|CRLE(s)| ≤ a(r + 1) log(n/(r + 1)) + (2r + 1)b
≤ 2ar log(n/r) + (2r + 1)b
≤ 2max(a, b)r(log(n/r) + 1) + b.

The thesis follows since |s| H∗
0 (s) = r log(n/r) + (n − r) log(n/(n − r)) ≤

r(log(n/r) + 1).

Case n/4 ≤ r ≤ n/2. Assume for example s = 0`11`2 · · · 0`k . We have

|CRLE(s)| =
k∑

i=1

c(`i), where
k∑

i=1

`i = n.

By the concavity of the logarithm and the fact that k ≤ n we get

|CRLE(s)| = a

k∑

i=1

log(`i) + kb ≤ ak log(n/k) + nb.

The function k log(n/k) has its maximum for k = n/e hence

|CRLE(s)| ≤ a(n/e) log e + nb ≤ n max(a, b)[(log e)/e + 1].

Since H∗
0 (s) ≥ H(1/4) = −(1/4) log(1/4) − (3/4) log(3/4), the thesis follows

observing that
[(log e)/e + 1]

H(1/4)
= 1.88 . . . < 2.

ut
Proof of Lemma 2: Let n = |s|. We have

|CGap(s)| =
r∑

i=1

(a log(gi) + b) = a +

[
r∑

i=1

log(gi)

]
+ rb.

Since
∑r

i=1 gi ≤ n, by the concavity of the logarithm we have

|CGap(s)| ≤ ar log(n/r) + rb ≤ max(a, b)r(log(n/r) + 1).

The thesis follows since r ≤ n/2 implies |s|H0(s) ≤ r(log(n/r) + 1). ut
Proof of Lemma 3: Let u be an internal node of Wf (α) and let Σ(u) denote
the set of symbols associated to node u. If the string αi, for i = 1, 2, contains
at least one of the symbols in Σ(u) then Wf (αi) contains an internal node ui

that has Σ(u) as the associated set of symbols. Assume first that the symbols of
Σ(u) appear only in α1. In this case we have that s01(u) coincides with s01

1 (u1),
which is the binary string associated to u1 in Wf (α1). Hence, C∗(u) = C∗(u1).
Similarly, if the symbols of Σ(u) appear only in α2 we have C∗(u) = C∗(u2).

Assume now that u1 and u2 both exist, and define the cost function c(x) =
a log x + b in which a ≤ b + 1 (see comment at the beginning of Sect. 3). In this
case s01(u) is the concatenation of s01

1 (u1) and s01
2 (u2). Hence, if `1, `2, . . . , `k

are the run lengths of s01(u), there exist an index j, 1 ≤ j ≤ k, and a value δ,
0 ≤ δ < `j , such that C∗(u) = 1+

∑k
i=1 c(`i), and C∗(u1) = 1+

∑j−1
i=1 c(`i) + c(δ)

and C∗(u2) = 1 + c(`j − δ) +
∑k

i=j+1 c(`i) (recall that we need one bit to
determine the first symbol of each string). Using elementary calculus and the
fact that a ≤ b + 1, we can easily prove that c(`j) ≤ c(δ) + c(`j − δ). Hence
C∗(u) ≤ C∗(u1) + C∗(u2) and the lemma follows. ut
Proof of Lemma 4: We observe that an internal node u ∈ Wf (β) is pruned
if and only if s01(u) contains only 0’s or only 1’s. Hence, u contributes to the
difference C∗(Wf (β))−C∗(Wp(β)) by an amount 1 + CPF (|s01(u)|). The lemma
follows since CPF (|s01(u)|) ≤ a log |β|+ b and the number of pruned nodes is at
most |Σ| − 1. ut

