Our Contribution

Ranking a Stream of News

Gianna M. Del Corso joint work with Antonio Gullì and Francesco Romani

Dipartimento di Informatica, Università di Pisa, Italy

The 14th International World Wide Web Conference May 10-14 2005, Chiba, Japan

G. M. Del Corso, A. Gulli, F. Romani

Ranking a Stream of News

Our Contribution

Conclusions

The Problem

Lot of interest around news engines

News browsing is one of the most important Internet activities.

3

G. M. Del Corso, A. Gullì, F. Romani

Ranking a Stream of News

Our Contribution

 Conclusions

The Problem

Lot of interest around news engines News browsing is one of the most important Internet activities.

3

G. M. Del Corso, A. Gullì, F. Romani

Ranking a Stream of News

Lot of interest around news engines

News browsing is one of the most important Internet activities.

G. M. Del Corso, A. Gullì, F. Romani

Ranking a Stream of News

3

Our Contribution

Conclusions

Commercial and Scientific Scenario

The commercial scenario

Many commercial news engines available: Google News, Yahoo News, MSNBot, AllTheWeb News, AltaVista News, Daypop, Ananova etc ... with news provided by many news agencies.

Personalized services as in NewsBot and Findory

No public information about how do they work!

From our observation they take into account criteria as freshness of a piece of news, authoritativness of sources, replication/aggregation of pieces of news.

Ranking a Stream of News

・ロン ・日 ・ ・ 日 ・ ・ 日 ・

Our Contribution

Conclusions

Commercial and Scientific Scenario

The commercial scenario

Many commercial news engines available: Google News, Yahoo News, MSNBot, AllTheWeb News, AltaVista News, Daypop, Ananova etc ... with news provided by many news agencies.

Personalized services as in NewsBot and Findory

No public information about how do they work!

From our observation they take into account criteria as freshness of a piece of news, authoritativness of sources, replication/aggregation of pieces of news.

Ranking a Stream of News

Our Contribution

Conclusions

Commercial and Scientific Scenario

The commercial scenario

Many commercial news engines available: Google News, Yahoo News, MSNBot, AllTheWeb News, AltaVista News, Daypop, Ananova etc ... with news provided by many news agencies.

Personalized services as in NewsBot and Findory

No public information about how do they work!

From our observation they take into account criteria as freshness of a piece of news, authoritativness of sources, replication/aggregation of pieces of news.

3

Ranking a Stream of News

Our Contribution

Conclusions

Commercial and Scientific Scenario

The commercial scenario

Many commercial news engines available: Google News, Yahoo News, MSNBot, AllTheWeb News, AltaVista News, Daypop, Ananova etc ... with news provided by many news agencies.

Personalized services as in NewsBot and Findory

No public information about how do they work!

From our observation they take into account criteria as freshness of a piece of news, authoritativness of sources, replication/aggregation of pieces of news.

3

COMETOMYHEAD is an academic news search engine developed by A. Gullì (available at http://newsengine.di.unipi.it) for gathering, indexing, searching and classifying news information.

We have used this engine to gather news articles from about 2,000 sources over a period of two months. The pieces of news collected was about 300,000. The news are classified into 13 categories

3

Ranking a Stream of News

COMETOMYHEAD is an academic news search engine developed by A. Gullì (available at http://newsengine.di.unipi.it) for gathering, indexing, searching and classifying news information.

We have used this engine to gather news articles from about 2,000 sources over a period of two months. The pieces of news collected was about 300,000. The news are classified into 13 categories

3

Our Contribution

The Algorithms Experimental Settings

Conclusions

The Goal

Our goal:

Propose ranking strategies for a stream of news information and a set of news sources.

We do not know other algorithms for comparing our results ... moreover ...

... ranking news articles is a different task than ranking web pages

G. M. Del Corso, A. Gullì, F. Romani

Ranking a Stream of News

Our Contribution

The Algorithms Experimental Settings

Conclusions

The Goal

Our goal:

Propose ranking strategies for a stream of news information and a set of news sources.

We do not know other algorithms for comparing our results moreover

... ranking news articles is a different task than ranking web pages

G. M. Del Corso, A. Gullì, F. Romani

Ranking a Stream of News

Our Contribution

The Algorithms Experimental Settings

Conclusions

The Goal

Our goal:

Propose ranking strategies for a stream of news information and a set of news sources.

We do not know other algorithms for comparing our results ... moreover ...

... ranking news articles is a different task than ranking web pages

G. M. Del Corso, A. Gulli, F. Romani

Ranking a Stream of News

Our Contribution

Conclusions

The Goal

Our goal:

Propose ranking strategies for a stream of news information and a set of news sources.

We do not know other algorithms for comparing our results ... moreover ...

... ranking news articles is a different task than ranking web pages

G. M. Del Corso, A. Gulli, F. Romani

Ranking a Stream of News

The Problem	Our Contribution	The Algorithms	Experimental Settings	Conclusions
Some Desiderata				
Some De	siderata			

- Property P1: Ranking for News posting and News sources
- Property P2: Important News articles are Clustered
- Property P3: Mutual Reinforcement between News Articles and News Sources
- Property P4: Time awareness
- Property P5: Online processing

The Problem	Our Contribution	The Algorithms	Experimental Settings	Conclusions
Some Desiderata				
Some Desi	derata			

- Property P1: Ranking for News posting and News sources
- Property P2: Important News articles are Clustered
- Property P3: Mutual Reinforcement between News Articles and News Sources
- Property P4: Time awareness
- Property P5: Online processing

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

The Problem	Our Contribution	The Algorithms	Experimental Settings	Conclusions
	●000			
Some Desiderata				
Some Desig	derata			

- Property P1: Ranking for News posting and News sources
- Property P2: Important News articles are Clustered
- Property P3: Mutual Reinforcement between News Articles and News Sources
- Property P4: Time awareness
- Property P5: Online processing

The Problem	Our Contribution	The Algorithms	Experimental Settings	Conclusions
Some Desiderata				
Some Desi	derata			

- Property P1: Ranking for News posting and News sources
- Property P2: Important News articles are Clustered
- Property P3: Mutual Reinforcement between News Articles and News Sources
- Property P4: Time awareness
- Property P5: Online processing

・ロン ・日 ・ ・ 日 ・ ・ 日 ・

The Problem	Our Contribution	The Algorithms	Experimental Settings	Conclusions
Some Desiderata				
Some Desi	derata			

- Property P1: Ranking for News posting and News sources
- Property P2: Important News articles are Clustered
- Property P3: Mutual Reinforcement between News Articles and News Sources
- Property P4: Time awareness
- Property P5: Online processing

・ロン ・日 ・ ・ 日 ・ ・ 日 ・

The Problem	Our Contribution	The Algorithms	Experimental Settings	Conclusions
Some Desiderata				
Some Desi	derata			

- Property P1: Ranking for News posting and News sources
- Property P2: Important News articles are Clustered
- Property P3: Mutual Reinforcement between News Articles and News Sources
- Property P4: Time awareness
- Property P5: Online processing

=

Our Contribution

The Algorithms Experimental Settings

Conclusions

The Model for News Articles

The Model for News Articles

Let N be the news stream observed and let S be a set of news sources; the news creation process can be represented by means of a undirected graph

$$G = (N \cup S, E)$$

Two kinds of edges:

- undirected edges from nodes in S and nodes in N
- undirected edges with both endpoints in N representing the results of the clustering process

=

The Problem	Our Contribution	The Algorithms	Experimental Settings	Con
	0000			
The Merdel Cou New	and Australian			

The Model for News Articles

Let N be the news stream observed and let S be a set of news sources; the news creation process can be represented by means of a undirected graph

$$G = (N \cup S, E)$$

Two kinds of edges:

- ① undirected edges from nodes in S and nodes in N
- 2 undirected edges with both endpoints in N representing the results of the clustering process

G. M. Del Corso, A. Gullì, F. Romani

The Problem	Our Contribution	The Algorithms	Experimental Settings	Concl
	000			
The Merdel Country	un Antiolog			

The Model for News Articles

Let N be the news stream observed and let S be a set of news sources; the news creation process can be represented by means of a undirected graph

$$G = (N \cup S, E)$$

Two kinds of edges:

- ① undirected edges from nodes in S and nodes in N
- Indirected edges with both endpoints in N representing the results of the clustering process

G. M. Del Corso, A. Gullì, F. Romani

 The Problem
 Our Contribution
 The Algorithms
 Experimental Settings
 Conclusions

 OO
 OO
 OO
 OO
 OO
 OO
 OO
 OO

 The Model for News Articles
 Clustering Technique
 Conclusions
 OO
 OO
 OO

We adopt a continuous measure of the lexical similarity between news posting

In our current implementation

- Similarity between news abstracts is represented using the canonical bag of words paradigm
- The abstracts are filtered out against a list of stop words
- The leadest similarity is expressed as a function of the number of common words.

 The Problem
 Our Contribution
 The Algorithms
 Experimental Settings
 Conclusions

 Oo
 <td

We adopt a continuous measure of the lexical similarity between news posting

In our current implementation

- Similarity between news abstracts is represented using the canonical bag of words paradigm
- The abstracts are filtered out against a list of stop words
- The lexical similarity is expressed as a function of the number of common words

We adopt a continuous measure of the lexical similarity between news posting

In our current implementation

- Similarity between news abstracts is represented using the canonical bag of words paradigm
- The abstracts are filtered out against a list of stop words
- The lexical similarity is expressed as a function of the number of common words

We adopt a continuous measure of the lexical similarity between news posting

In our current implementation

- Similarity between news abstracts is represented using the canonical bag of words paradigm
- The abstracts are filtered out against a list of stop words
- The lexical similarity is expressed as a function of the number of common words

We adopt a continuous measure of the lexical similarity between news posting

In our current implementation

- Similarity between news abstracts is represented using the canonical bag of words paradigm
- The abstracts are filtered out against a list of stop words
- The lexical similarity is expressed as a function of the number of common words

Conclusions

Minimal Requirements

We have designed our ranking algorithm requiring that it will handle correctly two limit cases.

• LC1 Source s_1 emits a stream of news articles with emission rate $1/\Delta$.

We expect $\mathbf{s}_{\mathbf{l}}$ to have a stationary mean rank μ independent of time, but increasing with $1/\Delta$

2 LC2 Two sources s_1 and s_2 , one mirroring the other.

 The Problem
 Our Contribution
 The Algorithms
 Experimental Settings
 Conclusion

 Cool
 Cool

We have designed our ranking algorithm requiring that it will handle correctly two limit cases.

• LC1 Source s_1 emits a stream of news articles with emission rate $1/\Delta$.

We expect s_1 to have a stationary mean rank μ independent of time, but increasing with $1/\Delta$

2 LC2 Two sources s_1 and s_2 , one mirroring the other.

The Problem Our Contribution The Algorithms Experimental Settings Concession Concession

We have designed our ranking algorithm requiring that it will handle correctly two limit cases.

- LC1 Source s₁ emits a stream of news articles with emission rate 1/Δ.
 We expect s₁ to have a stationary mean rank μ independent of time, but increasing with 1/Δ
- 2 LC2 Two sources s₁ and s₂, one mirroring the other. We expect s₁ and s₂ to have a similar rank.

Minimal Requirements

We have designed our ranking algorithm requiring that it will handle correctly two limit cases.

- LC1 Source s₁ emits a stream of news articles with emission rate 1/Δ.
 We expect s₁ to have a stationary mean rank μ independent of time, but increasing with 1/Δ
- LC2 Two sources s₁ and s₂, one mirroring the other.
 We expect s₁ and s₂ to have a similar rank.

Minimal Requirements

We have designed our ranking algorithm requiring that it will handle correctly two limit cases.

- LC1 Source s₁ emits a stream of news articles with emission rate 1/Δ.
 We expect s₁ to have a stationary mean rank μ independent of time, but increasing with 1/Δ
- 2 LC2 Two sources s_1 and s_2 , one mirroring the other. We expect s_1 and s_2 to have a similar rank.

Our Contribution

Conclusions

Non-time-aware algorithms

Non-time-aware algorithms

The naive approach

A news source has a rank proportional to the number of pieces of news released

Behaves poorly for the limit case LC1. The rank of a single source will increase unboundedly

Mutual reinforcement

The second algorithm exploits the mutual reinforcement property between news articles and news sources. Defines the rank as the right eigenvalue of the adjacency matrix of the graph G.

Behaves poorly for the limit case LC1. The rank $\mathbf{r} = \mathbf{0}$ is the only solution.

G. M. Del Corso, A. Gullì, F. Romani

Our Contribution

Conclusions

Non-time-aware algorithms

Non-time-aware algorithms

The naive approach

A news source has a rank proportional to the number of pieces of news released

Behaves poorly for the limit case LC1. The rank of a single source will increase unboundedly

Mutual reinforcement

The second algorithm exploits the mutual reinforcement property between news articles and news sources. Defines the rank as the right eigenvalue of the adjacency matrix of the graph G.

Behaves poorly for the limit case LC1. The rank $\mathbf{r} = \mathbf{0}$ is the only solution.

G. M. Del Corso, A. Gullì, F. Romani

Our Contribution

Conclusions

Non-time-aware algorithms

Non-time-aware algorithms

The naive approach

A news source has a rank proportional to the number of pieces of news released

Behaves poorly for the limit case LC1. The rank of a single source will increase unboundedly

Mutual reinforcement

The second algorithm exploits the mutual reinforcement property between news articles and news sources. Defines the rank as the right eigenvalue of the adjacency matrix of the graph G.

Behaves poorly for the limit case LC1. The rank $\mathbf{r} = \mathbf{0}$ is the only solution.

G. M. Del Corso, A. Gullì, F. Romani
Our Contribution

Conclusions

Non-time-aware algorithms

Non-time-aware algorithms

The naive approach

A news source has a rank proportional to the number of pieces of news released

Behaves poorly for the limit case LC1. The rank of a single source will increase unboundedly

Mutual reinforcement

The second algorithm exploits the mutual reinforcement property between news articles and news sources. Defines the rank as the right eigenvalue of the adjacency matrix of the graph G.

Behaves poorly for the limit case LC1. The rank $\mathbf{r}=\mathbf{0}$ is the only solution.

G. M. Del Corso, A. Gullì, F. Romani

Ranking a Stream of News

Our Contribution

Conclusions

Time-aware algorithms

Time-aware algorithms

- To deal with news data stream we have to design time aware mechanism.
- 2 The importance of a piece of news depends also on the time of its posting.
- We introduce α, a parameter accounting for the decay in freshness of a news story.
- The value of α depends on the category the pieces of news belong.

=

Ranking a Stream of News

Our Contribution

Conclusions

Time-aware algorithms

Time-aware algorithms

- To deal with news data stream we have to design time aware mechanism.
- The importance of a piece of news depends also on the time of its posting.
- We introduce α, a parameter accounting for the decay in freshness of a news story.
- The value of α depends on the category the pieces of news belong.

3

Our Contribution

Conclusions

Time-aware algorithms

Time-aware algorithms

- To deal with news data stream we have to design time aware mechanism.
- The importance of a piece of news depends also on the time of its posting.
- We introduce α, a parameter accounting for the decay in freshness of a news story.
- () The value of α depends on the category the pieces of news belong.

3

Ranking a Stream of News

Our Contribution

Conclusions

Time-aware algorithms

Time-aware algorithms

- To deal with news data stream we have to design time aware mechanism.
- The importance of a piece of news depends also on the time of its posting.
- We introduce α , a parameter accounting for the decay in freshness of a news story.
- The value of α depends on the category the pieces of news belong.

3

The Problem	Our Contribution	The Algorithms	Experimental Settings	Conclusions
Time-aware algorithms				
Decay Rule	2			

R(n, t) is the rank of news n at time t.

Decay Rule:

$$R(n,t+\tau) = e^{-\alpha \tau} R(n,t), \qquad t > t_i,$$

 t_i is the time n_i was posted

3

・ロ・ ・ 西・ ・ 正・

R(n, t) is the rank of news *n* at time *t*.

Decay Rule:

$$R(n,t+\tau)=e^{-\alpha \tau}R(n,t), \qquad t>t_i,$$

 t_i is the time n_i was posted

3

・ロト ・回ト ・モト ・モト

G. M. Del Corso, A. Gullì, F. Romani Ranking a Stream of News

The Problem	Our Contribution	The Algorithms	Experimental Settings	Conclusions
		000000000000000000000000000000000000000		
Time-aware algorithms				
Algorithms	TA1			

$$R(s_k,t) = \sum_{S(n_i)=s_k} R(n_i,t),$$

Possible definitions for the rank of pieces of news:

• $R(n_i, t_i) = 1$

However....

the cank of *m* does not depend on the cask of the generalities

3

G. M. Del Corso, A. Gullì, F. Romani

Ranking a Stream of News

・ロト ・回 ト ・ヨト ・ヨト

$$R(s_k,t) = \sum_{S(n_i)=s_k} R(n_i,t),$$

Possible definitions for the rank of pieces of news:

•
$$R(n_i, t_i) = 1$$

However...

... the rank of *n*; does not depend on the rank of the generating source

G. M. Del Corso, A. Gulli, F. Romani

Ranking a Stream of News

・ロット (日) ・ (日) ・

∃ ⊳

The Problem	Our Contribution	The Algorithms	Experimental Settings	Conclusions
		000000000000000000000000000000000000000		
Time-aware algorithms				
Algorithms	TA1			
/ "50"10"113	17.12			

$$R(s_k,t) = \sum_{S(n_i)=s_k} R(n_i,t),$$

Possible definitions for the rank of pieces of news:

•
$$R(n_i, t_i) = 1$$

However...

... the rank of *n_i* does not depend on the rank of the generating source

3

Ranking a Stream of News

・ロト ・日 ・ ・ 日 ・ ・ 日 ・

$$R(s_k,t) = \sum_{S(n_i)=s_k} R(n_i,t),$$

Possible definitions for the rank of pieces of news:

•
$$R(n_i, t_i) = 1$$

However...

... the rank of n_i does not depend on the rank of the generating source

3

G. M. Del Corso, A. Gullì, F. Romani

Ranking a Stream of News

$$R(s_k,t) = \sum_{S(n_i)=s_k} R(n_i,t),$$

Possible definitions for the rank of pieces of news:

• $R(n_i, t_i) = c \lim_{\tau \to 0^+} R(S(n_i), t_i - \tau), \quad 0 < c < 1,$

It doesn't work for the limit case LC1

AF DICAMANA

G. M. Del Corso, A. Gullì, F. Romani

Ranking a Stream of News

・ロット (四) ・ (田) ・ (日)

$$R(s_k,t) = \sum_{S(n_i)=s_k} R(n_i,t),$$

Possible definitions for the rank of pieces of news:

• $R(n_i, t_i) = c \lim_{\tau \to 0^+} R(S(n_i), t_i - \tau), \quad 0 < c < 1,$

It doesn't work for the limit case LC1

$$R(s_k, t) = \sum_{S(n_i)=s_k} R(n_i, t),$$

Possible definitions for the rank of pieces of news:

• $R(n_i, t_i) = [\lim_{\tau \to 0^+} R(S(n_i), t_i - \tau)]^{\beta}, \quad 0 < \beta < 1.$

 β is similar to the magic ε in PageRank.

3

G. M. Del Corso, A. Gullì, F. Romani

Ranking a Stream of News

・ロト ・日 ・ ・ 日 ・ ・ 日 ・

$$R(s_k, t) = \sum_{S(n_i)=s_k} R(n_i, t),$$

Possible definitions for the rank of pieces of news:

• $R(n_i, t_i) = [\lim_{\tau \to 0^+} R(S(n_i), t_i - \tau)]^{\beta}, \quad 0 < \beta < 1.$

 β is similar to the magic ε in PageRank.

イロン スロン スロン スロン 一日

Our Contribution

Conclusions

Time-aware algorithms

Algorithms TA1

Summarizing

Algorithm TA1

$$R(s_k, t) = \sum_{S(n_i)=s_k} R(n_i, t),$$

$$R(n_i, t_i) = \left[\lim_{\tau \to 0^+} R(S(n_i), t_i - \tau)\right]^{\beta}$$

3

G. M. Del Corso, A. Gullì, F. Romani

Ranking a Stream of News

・ロト ・回ト ・モト ・モト

Our Contribution

Conclusions

Time-aware algorithms

Desiderata

- Property P1: Ranking for News posting and News sources
- Property P2: Important News articles are Clustered
- Property P3: Mutual Reinforcement between News Articles and News Sources
- Property P4: Time awareness
- Property P5: Online processing

=

Ranking a Stream of News

The Problem	Our Contribution	The Algorithms	Experimental Settings	Conclusio
		000000000000000000000000000000000000000		
Time-aware algorithms				

A possible algorithm is

Algorithm TA1

Algorithms TA1

$$R(s_k, t) = \sum_{S(n_i)=s_k} R(n_i, t),$$

$$R(n_i, t_i) = \left[\lim_{\tau \to 0^+} R(S(n_i), t_i - \tau)\right]^{\beta}$$

The Problem Our Contribution The Algorithms Experimental Settings Conclusion

A good news ranking algorithm working on a stream of information should exploit some data stream clustering technique.

$$R(n_i, t_i) = \left[\lim_{\tau \to 0^+} R(S(n_i), t_i - \tau)\right]^{\beta} + \sum_{t_j < t_i} e^{-\alpha(t_i - t_j)} \sigma_{ij} R(n_j, t_j)^{\beta},$$

3

G. M. Del Corso, A. Gullì, F. Romani

Ranking a Stream of News

The Problem	Our Contribution	The Algorithms	Experimental Settings	Conclusions
Time-aware algorith	ms			
Algorithm	ns TA2			

$$R(n_i, t_i) = \left[\lim_{\tau \to 0^+} R(S(n_i), t_i - \tau)\right]^{\beta} + \sum_{t_j < t_i} e^{-\alpha(t_i - t_j)} \sigma_{ij} R(n_j, t_j)^{\beta},$$

3

G. M. Del Corso, A. Gullì, F. Romani

Ranking a Stream of News

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

$$R(n_i, t_i) = \left[\lim_{\tau \to 0^+} R(S(n_i), t_i - \tau)\right]^{\beta} + \sum_{t_j < t_i} e^{-\alpha(t_i - t_j)} \sigma_{ij} R(n_j, t_j)^{\beta},$$

The rank of a piece of news depends on

- the rank of the source
- the rank of "similar" pieces of news

G. M. Del Corso, A. Gullì, F. Romani

Ranking a Stream of News

$$R(n_i, t_i) = \left[\lim_{\tau \to 0^+} R(S(n_i), t_i - \tau)\right]^{\beta} + \sum_{t_j < t_i} e^{-\alpha(t_i - t_j)} \sigma_{ij} R(n_j, t_j)^{\beta},$$

The rank of a piece of news depends on

- the rank of the source
- the rank of "similar" pieces of news

G. M. Del Corso, A. Gullì, F. Romani

Ranking a Stream of News

$$R(n_i, t_i) = \left[\lim_{\tau \to 0^+} R(S(n_i), t_i - \tau)\right]^{\beta} + \sum_{t_j < t_i} e^{-\alpha(t_i - t_j)} \sigma_{ij} R(n_j, t_j)^{\beta},$$

The rank of a piece of news depends on

- the rank of the source
- the rank of "similar" pieces of news

G. M. Del Corso, A. Gullì, F. Romani

Ranking a Stream of News

The Problem	Our Contribution	The Algorithms	Experimental Settings	Conclusions
Time-aware algorithms				
Algorithms	TA2			

Too bad!

LC2 case

A news source mirroring another, gets a finite rank significantly greater than the rank of the mirrored one!

3

G. M. Del Corso, A. Gullì, F. Romani

Ranking a Stream of News

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

Our Contribution

Conclusions

Time-aware algorithms

The Final TA algorithm: TA3

Idea

Modify a posteriori the rank of a source

A source which has emitted in the past news stories highly mirrored in the future, will receive a "bonus" acknowledging the importance

G. M. Del Corso, A. Gullì, F. Romani

Ranking a Stream of News

Our Contribution

Conclusions

Time-aware algorithms

The Final TA algorithm: TA3

Idea

Modify a posteriori the rank of a source

A source which has emitted in the past news stories highly mirrored in the future, will receive a "bonus" acknowledging the importance

Algorithms TA3

The algorithm is

$$\begin{aligned} R(s_k,t) &= \sum_{S(n_i)=s_k} R(n_i,t) + \\ &+ \sum_{S(n_i)=s_k} e^{-\alpha(t-t_i)} \sum_{\substack{t_j \in [t_i,t] \\ S(n_i) \neq s_k}} \sigma_{ij} R(n_j,t_j)^{\beta}, \\ R(n_i,t_i) &= \left[\lim_{\tau \to 0^+} R\left(S(n_i),t_i-\tau\right) \right]^{\beta} + \\ &+ \sum_{t_j < t_i} e^{-\alpha(t_i-t_j)} \sigma_{ij} R(n_j,t_j)^{\beta}. \end{aligned}$$

Ranking a Stream of News

・ロト ・回ト ・モト ・モト

3

The Problem	Our Contribution	The Algorithms	Experimental Settings	Conclusion
		000000000000000000000000000000000000000		
Time-aware algorithms				

The rank of s_k is

Algorithms TA3

$$R(s_k, t) = \sum_{\substack{S(n_i)=s_k \\ S(n_i)=s_k}} R(n_i, t) + \sum_{\substack{t_j \in [t_i, t] \\ S(n_i) \neq s_k}} \sigma_{ij} R(n_j, t_j)^{\beta}$$

- the ranks of the pieces of news generated in the past
- a factor of the rank of news articles similar and posted later on by other sources

G. M. Del Corso, A. Gullì, F. Romani

Ranking a Stream of News

The Problem	Our Contribution	The Algorithms	Experimental Settings	Conclusion
		000000000000000000000000000000000000000		
Time-aware algorithms				

The rank of s_k is

Algorithms TA3

$$R(s_k, t) = \sum_{\substack{S(n_i)=s_k \\ S(n_i)=s_k }} \frac{R(n_i, t)}{e^{-\alpha(t-t_i)}} \sum_{\substack{t_j \in [t_i, t] \\ S(n_i) \neq s_k }} \sigma_{ij} R(n_j, t_j)^{\beta}$$

- the ranks of the pieces of news generated in the past
- a factor of the rank of news articles similar and posted later on by other sources

3

Ranking a Stream of News

The Problem	Our Contribution	The Algorithms	Experimental Settings	Conclusion
		000000000000000000000000000000000000000		
Time-aware algorithms				

The rank of s_k is

Algorithms TA3

$$R(s_k, t) = \sum_{\substack{S(n_i)=s_k \\ S(n_i)=s_k}} R(n_i, t) + \sum_{\substack{S(n_i)=s_k \\ S(n_i)=s_k}} e^{-\alpha(t-t_i)} \sum_{\substack{t_j \in [t_i, t] \\ S(n_i) \neq s_k}} \sigma_{ij} R(n_j, t_j)^{\beta}$$

- the ranks of the pieces of news generated in the past
- a factor of the rank of news articles similar and posted later on by other sources

Ranking a Stream of News

The Problem	Our Contribution	The Algorithms	Experimental Settings	Conclusions
		000000000000000000000000000000000000000		
Time-aware algorithms				

The rank of a single piece of news n_i is still

$$R(n_i, t_i) = \left[\lim_{\tau \to 0^+} R(S(n_i), t_i - \tau)\right]^{\beta} + \sum_{t_j < t_i} e^{-\alpha(t_i - t_j)} \sigma_{ij} R(n_j, t_j)^{\beta}.$$

Note:

Algorithms TA3

If n_i aggregates with a set stories posted in the future, we do not assign to n_i an extra bonus

The idea is that we want to privilege the freshness of a news article rather than its clustering importance

G. M. Del Corso, A. Gullì, F. Romani

Ranking a Stream of News

The Problem	Our Contribution	The Algorithms	Experimental Settings	Conclusions
		000000000000000000000000000000000000000		
Time-aware algorithms				

Algorithms TA3

The rank of a single piece of news n_i is still

$$\begin{split} R(n_i,t_i) &= \left[\lim_{\tau\to 0^+} R\left(S(n_i),t_i-\tau\right)\right]^{\beta} + \\ &+ \sum_{t_j < t_i} e^{-\alpha(t_i-t_j)} \sigma_{ij} R(n_j,t_j)^{\beta}. \end{split}$$

Note:

If n_i aggregates with a set stories posted in the future, we do not assign to n_i an extra bonus

The idea is that we want to privilege the freshness of a news article rather than its clustering importance

・ロト ・回ト ・ヨト ・ヨト

Our Contribution

Conclusions

Time-aware algorithms

Algorithms TA3

• TA3 is coherent with all the desirable properties P1–P5

- 2 unfortunately is more complicated than the others
- it is not easy to write down a formula for the stationary mean value of the sources for the limit cases LC1 and LC2

3

G. M. Del Corso, A. Gullì, F. Romani

Ranking a Stream of News

Our Contributior

 Conclusions

Time-aware algorithms

Algorithms TA3

TA3 is coherent with all the desirable properties P1–P5
unfortunately is more complicated than the others

it is not easy to write down a formula for the stationary mean value of the sources for the limit cases LC1 and LC2

3

G. M. Del Corso, A. Gullì, F. Romani

Ranking a Stream of News

The Problem Our Contribution The Algorithms Experimental Settings Contribution Cont

- TA3 is coherent with all the desirable properties P1-P5
- **2** unfortunately is more complicated than the others
- it is not easy to write down a formula for the stationary mean value of the sources for the limit cases LC1 and LC2

3

G. M. Del Corso, A. Gullì, F. Romani

Ranking a Stream of News

Our Contribution

 The Algorithms
 Experimental Settings

 00000000000000
 000000

Conclusions

Time-aware algorithms

TA3 behavior on the limit cases

Limit cases LC1 and LC2 are satisfied.

3

G. M. Del Corso, A. Gullì, F. Romani

Ranking a Stream of News
Our Contribution

The Algorithms Experimental Settings

Conclusions

Experimental Settings

- Experiments were performed on a PC with a Pentium IV 3GHz, 2.0GB of memory and 512Kb of L2 cache
- The Java code requires few minutes for ranking about 20,000 pieces of news
- The all computation including the clustering of the articles is done online

Our Contribution

The Algorithms Experimental Settings

Conclusions

Sensitivity to the parameters

Sensitivity to the parameters

A first group of experiments address the sensitivity at changes of the parameters ρ and β

Algorithm TA3 is not much sensitive to changes in the parameters involved

G. M. Del Corso, A. Gullì, F. Romani

Ranking a Stream of News

Our Contribution

The Algorithms Experimental Settings

Conclusions

Sensitivity to the parameters

Sensitivity to the parameters

A first group of experiments address the sensitivity at changes of the parameters ρ and β

ho is the half-life decay time, that is

$$e^{-lpha
ho} = rac{1}{2}$$

Algorithm TA3 is not much sensitive to changes in the parameters involved

Ranking a Stream of News

A first group of experiments address the sensitivity at changes of the parameters ρ and β

Algorithm TA3 is not much sensitive to changes in the parameters involved

G. M. Del Corso, A. Gullì, F. Romani

Ranking a Stream of News

< 17 ►

A first group of experiments address the sensitivity at changes of the parameters ρ and β

Algorithm TA3 is not much sensitive to changes in the parameters involved

Our Contribution

Conclusions

Sensitivity to the parameters

TA3 vs NTA1

It is necessary to have such a complicate algorithm?

3

G. M. Del Corso, A. Gullì, F. Romani

Ranking a Stream of News

・ロト ・回ト ・モト ・モト

The Problem	Our Contribution	The Algorithms	Experimental Settings	Conclusions	
Sensitivity to the parameters					
TA3 vs N	ΓA1				

It is necessary to have such a complicate algorithm?

Yes

3

G. M. Del Corso, A. Gullì, F. Romani

Ranking a Stream of News

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

The Problem	Our Contribution	The Algorithms	Experimental Settings	Conclusions
Sensitivity to the parameters				
TA3 vs N	JTA1			

It is necessary to have such a complicate algorithm?

3

G. M. Del Corso, A. Gullì, F. Romani

Ranking a Stream of News

・ロト ・回 ト ・ヨト ・ヨト

Rank evolution over 55 days of the top 4 sources in the category World

3

G. M. Del Corso, A. Gullì, F. Romani

Ranking a Stream of News

Our Contribution

The Algorithms Experimental Settings

Conclusions

Ranking news articles and news sources

Top News Sources

Source	# Postings	
RedNova general	3154	
Yahoo World	1924	
Reuters World	1363	
Yahoo Politics	900	
BBC News world	1368	
Reuters	555	
Xinhua	339	
New York Times world	549	

Remark

Some news agency are considered more important than others even if they release a lower number of pieces of news

G. M. Del Corso, A. Gullì, F. Romani

Our Contribution

The Algorithms Experimental Settings

Conclusions

Ranking news articles and news sources

Top News Sources

Source	# Postings	
RedNova general	3154	
Yahoo World	1924	
Reuters World	1363	
Yahoo Politics	900	
BBC News world	1368	
Reuters	555	
Xinhua	339	
New York Times world	549	

G. M. Del Corso, A. Gullì, F. Romani

Our Contribution

Conclusions

Ranking news articles and news sources

Top News Articles

Posted	News Source	News Abstract
8/17	Reuters	Argentina Wins First
		Olympic Gold for 52 Years
8/18	Reuters	British Stun US in
		Sprint Relay
8/18	NBCOlympics	Argentina wins first
		basketball gold
9/9	Reuters Sports	Monty Seals Record Ryder
		Cup Triumph for Europe
8/18	Reuters Sports	Men's Basketball: Argentina
		Beats Italy, Takes Gold
10/11	Yahoo Sports	Pot Charge May Be Dropped
		Against Anthony (AP)
10/10	Reuters Sports	Record-Breaking Red Sox
		Reach World Series
8/17	China Daily	China's Xing Huina wins Olympic
		women's 10,000m gold
8/17	Reuters Sports	El Guerrouj, Holmes Stride
		Into Olympic History

Ξ

3

G. M. Del Corso, A. Gullì, F. Romani

Our Contribution

The Algorithms Experimental Settings

Conclusions

Ranking news articles and news sources

Top News Articles

Note

For top pieces of news it is common to recognize the same piece of information re-posted by other agencies

The rank of a singular news article is deeply dependent on the rank of the source posting it

G. M. Del Corso, A. Gullì, F. Romani

Ranking a Stream of News

• • • • • • • • • • • •

Our Contribution

The Algorithms Experimental Settings

Conclusions

Ranking news articles and news sources

Top News Articles

Note

For top pieces of news it is common to recognize the same piece of information re-posted by other agencies

The rank of a singular news article is deeply dependent on the rank of the source posting it

G. M. Del Corso, A. Gullì, F. Romani

Ranking a Stream of News

• • • • • • • • • • • •

Our Contribution

Conclusions

Conclusions

• Algorithms for ranking News articles and news agencies

- Step-by-step construction
- Extensive testing on more than 300,000 pieces of news and 2,000 news sources
- The ranking is done online
- Same ideas for ranking publications, authors and scientific journals etc

Ranking a Stream of News

Conclusions

- Algorithms for ranking News articles and news agencies
- Step-by-step construction
- Extensive testing on more than 300,000 pieces of news and 2,000 news sources
- The ranking is done online
- Same ideas for ranking publications, authors and scientific journals etc

Ranking a Stream of News

Conclusions

- Algorithms for ranking News articles and news agencies
- Step-by-step construction
- Extensive testing on more than 300,000 pieces of news and 2,000 news sources
- The ranking is done online
- Same ideas for ranking publications, authors and scientific journals etc

=

Ranking a Stream of News

Conclusions

- Algorithms for ranking News articles and news agencies
- Step-by-step construction
- Extensive testing on more than 300,000 pieces of news and 2,000 news sources
- The ranking is done online
- Same ideas for ranking publications, authors and scientific journals etc

3

Ranking a Stream of News

Conclusions

- Algorithms for ranking News articles and news agencies
- Step-by-step construction
- Extensive testing on more than 300,000 pieces of news and 2,000 news sources
- The ranking is done online
- Same ideas for ranking publications, authors and scientific journals etc

