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Preface

The use of randomization in design and analysis of algorithms as well as in computational complexity

has been very popular in the last few years. Randomized algorithms have been used in a number of

different fields in theoretical computer science and applied mathematics. The adoption of randomization

for algorithm design has produced a lot of very interesting results nowadays, especially for discrete

problems. However, randomized algorithms were originally proposed to solve continuous problems.

That was during the Manhattan project in 1949 where Metropolis and Ulam coined the name of Monte

Carlo method and presented a randomized algorithm for multivariate integration.

This thesis deals with the study of randomized algorithms for estimating eigenvalues and eigenvec-

tors. This is a new field of application of randomized methods. In particular, we consider the problem

of estimating the largest eigenvalue and a corresponding eigenvector of a symmetric matrix. For this

specific problem, iterative methods are generally preferred to methods based on matrix factorization.

The goal of this thesis is to study if the use of randomized techniques helps for the problem of

estimating an eigenpair. We tackle this problem following the two different approaches.

The first consists of studying randomized algorithms whose cost is less than that of an efficient

deterministic method. We propose an algorithm that computes an approximation of the largest eigen-

value, and whose parallel cost is lower than that of the best available deterministic implementation of

the power method.

The second is the error analysis of very well known methods such as the power and Lanczos methods,

when the starting vector is chosen randomly. The interest for this problem arises since the above

mentioned methods are not convergent to the quantities we want to estimate in the worst deterministic

case. In practical cases, the choice of the initial vector is done at random, and by analyzing the

randomized error, we can determine the actual speed of convergence. Together with the study of the

randomized error for a complete class of error parameters, we study the possibility of bounding the

randomized error by a quantity that approaches zero as the number of iterations increases, and that

does not depend on the matrix. This is a very attractive question: indeed, if we are able to bound

the error by a value that does not depend on the matrix, we can give an a priori estimate of the

number of steps that guarantees the error to be lower than a given threshold. Clearly, this is not

possible in the deterministic case, since there are matrices for which these methods, for a fixed starting

vector, do not converge to the largest eigenvalue and to a corresponding eigenvector. In the randomized

setting, we prove that the problem of estimating an eigenvector is more difficult than that of estimating

an eigenvalue. In fact, while for the eigenvalue case it is possible to give bounds independent of the

distribution of the eigenvalues, for the eigenvector this is not the case. This means that randomization

helps for eigenvalue estimate but not for eigenvector.

This thesis is organized as follows. Chapter 1 contains a general introduction to the subject as well

as the definition of the randomized error in the sense of Lp, p ∈ [1,+∞].

In Chapter 2 we present results about the estimate of the largest eigenvalue and of a corresponding
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eigenvector by the power method with a random start. In particular, we give distribution-free bounds

for eigenvalue approximation and we show that, on the contrary, for eigenvector estimate we cannot get

bounds independent of the eigenvalues of the matrix. In fact, there are matrices for which the method

does not converge to the desired eigenvector, for a random starting vector. We achieve also upper and

lower bounds that do depend on the spectrum of the matrix to which we apply the method. These

bounds are asymptotically optimal, as it can be proven by analyzing the asymptotic randomized error.

Moreover, we show that the speed of convergence depends on the particular error parameter and on the

multiplicity of the largest eigenvalue.

Chapter 3 presents similar results for Lanczos method and for other polynomial methods. We prove

a general negative results that holds for any polynomial method for eigenvector estimate. More precisely,

we show that, for any polynomial method, there exists a symmetric positive definite matrix for which

the method fails in estimating an eigenvector belonging to the largest eigenvalue when less than n steps

are performed. This should be contrasted with eigenvalue estimate. For this problem we can indeed

give bounds that do not depend on the eigenvalues of the matrix, and that approaches zero when the

number of iteration increases. For Lanczos method we also give upper bounds on the error that depend

on the distribution of the eigenvalues.

Both power and Lanczos methods have been tested on several matrices with different eigenvalue

distributions. The results of these numerical tests are reported in the last section of each chapter.

In Chapter 4 we propose a fully randomized algorithm. The parallel cost of this algorithm is lower

than the cost of the best deterministic implementation of the power method on a CREW-PRAM. The

crucial part of our analysis is the study of the probabilistic error.

Chapter 5 contains the conclusions and some final remarks.
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Chapter 1

Introduction

In this thesis we consider the problem of estimating the largest eigenvalue and a corresponding eigenvec-

tor of a symmetric matrix. There are many algorithms for approximating eigenvalues of n×n symmetric

matrices. For a complete list of methods see for example [Par80] [Saa92] [Wil65]. Algorithms based

on factorizations of A cost Θ
(
n3
)

operations, and are not convenient when we want to estimate only

an eigenpair since they compute unnecessarily the complete spectrum of the matrix. Moreover, these

algorithms do not take advantage of the possible sparsity of the matrix. Methods based on Krylov in-

formation are more convenient for our purposes since matrix-vector products can be performed cheaply,

and we can exploit the structure of the matrix.

Krylov information can be viewed as a n × k matrix, whose columns are the matrix-vector multi-

plications of the first k − 1 powers of the matrix A times a unit vector b. Among algorithms that use

Krylov information we find the well known power method and the far superior Lanczos method. These

methods are iterative and they need a starting vector. It is well known that both these methods fails to

converge to the largest eigenvalue and to a corresponding eigenvector if the starting vector is orthogonal

to the eigenspace of the largest eigenvalue λ1. As we will see in Section 1.2 this negative result can be

easily extended to all Krylov methods (see Section 1.1 for the definition) as long as the starting vector b

is chosen deterministically and independently on the matrix A. Moreover, also if Krylov information is

replaced by any other k matrix-vector multiplications, the problem is still unsolvable in the deterministic

setting as long as the number of iterations k is less then n (see Section 1.2).

This motivates the choice of a random starting vector b and the study of the “randomized error”.

This means to analyze the behavior of these methods when the initial vector is distributed according

to a probability measure µ. This approach has been taken in [KW92a], [KW94], [dCM96] for the

approximation to the largest eigenvalue and in [dCo96], [LW96] and [dCM96] for the approximation to

a normalized eigenvector.

It is well known that when the starting vector is chosen deterministically, the speed of convergence

of the power and Lanczos methods, depends dramatically on the ratio between the first two largest

eigenvalues. Kuczyński and Woźniakowski [KW92a] analyzed the randomized error for estimating the

largest eigenvalue and they gave bounds on the randomized error that do not depend on the distribution
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of the eigenvalues. Distribution-free bounds can be used to determine the number of steps that, for

every matrix, guarantees the randomized error to be lower than a positive threshold ε. In this thesis

we refined and generalized distribution-free as well as distribution dependent randomized error bounds

proposed in the literature.

For the approximation of an eigenvector it is possible to prove that it is not possible to give bound of

the error that do not depend on the eigenvalues. We first prove this for the power method (Chapter 2)

and than for a generic polynomial method (Chapter 3).

In the last chapter of this thesis we propose a parallel randomized version of the power method for

eigenvalue estimate. The approach is different from that adopted in the other chapters. In fact, while

in Chapter 2 and 3 the use of randomization is limited at the first step of the algorithms, in Chapter 4

we develop a fully randomized algorithm, in the sense that randomization is used during the algorithm

execution to make non-deterministic choices.

The thesis is organized as follows. This chapter is devoted to introduce the problem and the termi-

nology. Chapter 2 presents results about the randomized error of power method with a random start. In

Chapter 3, we bound the randomized error for eigenvalue and eigenvector estimate by Lanczos method.

Chapter 4 contains a randomized parallel algorithm for estimating the largest eigenvalue of a matrix.

This algorithm is based on the power method and its parallel cost as well as the probabilistic error are

analyzed. Chapter 5 contains some conclusions.

1.1 Definitions and Notation

Let A be an n× n symmetric matrix. Without loss of generality we assume that A is positive definite.

Indeed, if β is a constant, such that β > ‖A‖, then the matrix A + βI is positive definite and its

eigenvalues are in a one-to-one correspondence with those of A. Here one can choose an arbitrary norm,

but it is convenient to use ‖ ·‖1 or ‖ ·‖∞ to have an easy upper bound of ‖A‖. In this thesis ‖ ·‖ denotes

the Euclidean norm unless otherwise specified.

Let λ1 ≥ λ2 ≥ . . . ≥ λn > 0 denote the eigenvalues of A and let z1, z2, . . . , zn be the corresponding

orthonormal eigenvectors.

Assume r, r < n, is the multiplicity of the largest eigenvalue λ1 and Z1 the eigenspace corresponding

to λ1, i.e.

Z1 = span {z : Az = λ1z} .

We consider the problem of approximating λ1 and a vector in Z1. This problem is often solved

using iterative methods. As already pointed out, when we want to compute only few eigenvalues and

eigenvectors, iterative methods are preferable to QR or QL algorithms for their lower computational

cost. Without loss of generality (see Section 1.2) we restrict ourselves to algorithms that use Krylov

information, that is, the set Nk(A,b) given by

Nk(A,b) = {b, Ab, . . . , Ak−1b},
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where b is a vector with unit norm. We define the Krylov subspace as

Kk = span
{
b, Ab, . . . , Ak−1b

}
,

and we call Krylov subspace methods or simply Krylov methods, those methods that extract approxi-

mation from the Krylov subspace.

A polynomial algorithm [LW96] is an algorithm that produces at the k-th step a vector uk =

u(A,b, k) such that uk belongs to Kk and ‖uk‖ = 1. Hence, uk can be written as

uk = c0b + c1Ab + · · ·+ ck−1A
k−1b = P (A)b,

where P is a polynomial of degree at most k− 1 such that ‖uk‖ = 1. Within this class the most widely

used algorithms are the power method and the Lanczos method.

We use the following notation. For any polynomial method M, ξMk = ξMk (A) and uMk = uMk (A)

denote the approximation to λ1 and z ∈ Z1 returned by the method M after k steps.

We can define the power method as

xk = Axk−1,

uPow
k =

AuPow
k−1

‖AuPow
k−1‖

,

ξPow
k =

xTk−1Axk−1

xTk−1xk−1
,

(1.1)

where uPow
0 = x0 = b is the initial vector.

For the Lanczos method we have

ξLan
k = max

{
xTAx
xTx

,x ∈ Kk

}
(1.2)

and uLan
k is the unit norm vector such that

RkAuLan
k = ξLan

k uLan
k ,

where Rk is the orthogonal projector onto Kk (for more details see [LW96]). Although this definition

cannot be used in practice, there exists a very efficient formulation of the method that makes Lanczos

method one of the most widely used method for the computation of extremal eigenvalues (see for

example [Saa92] [Wil65] [BCM88]).

The value ξLan
k can be seen as the “best” approximation to λ1 we can obtain using vectors in Kk. A

similar property does not hold for uLan
k . For this reason we introduce the best polynomial method B for

eigenvector estimate. At step k this algorithm returns the vector uBk , with ‖uBk ‖ = 1, such that

inf
v∈Z1

‖uBk − v‖ = inf
u∈Kk
‖u‖=1

inf
v∈Z1

‖u− v‖. (1.3)
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Although the computation of uBk is not feasible, the method B has a significant theoretical interest

since important properties of Lanczos method can be derived from the study of the method B (see for

example [CL75], [Saa80]).

It can be shown that all polynomial methods fail to converge to λ1 and to a corresponding eigenvector

when the starting vector b is orthogonal to the eigenspace Z1. In fact, in that case, the starting vector

b has all zero component in the direction of the eigenspace Z1, and we cannot recover information

about λ1 and a corresponding eigenvector from Nk(A,b). Moreover, the analysis of the deterministic

speed of convergence (assuming b 6⊥ Z1) shows that the convergence depends on the distribution of the

eigenvalues (see [Par80], [Saa80], [Saa92], [Wil65]).

In [dCo96], [dCM96], [KW92a] and [LW96] is analyzed the behavior of these methods assuming the

starting vector b to be randomly chosen with uniform distribution µ on the n-dimensional sphere of

radius one, µ({b ∈ IRn : ‖b‖ = 1}) = 1. The convenience of this measure, as it has been underlined

in [KW92a], is due to the facts that the values ξMk and uMk are independent of the norm of the

starting vector b and are invariant for multiplication by orthogonal matrices. Hence, it is wise to use

a distribution that is concentrated on the unit sphere of IRn and that is orthogonal invariant as the

measure µ.

In this thesis we analyze the randomized error in the Lp sense, defined as follows. Let 1 ≤ p < +∞,

and let Sn = {b ∈ IRn : ‖b‖ = 1}. The randomized error in the Lp case for the approximation to an

eigenvector is defined as

eran (uMk , A, p) =
(∫

Sn

inf
v∈Z1

‖uMk (b)− v‖p µ(db)
)1/p

, (1.4)

that is the Lp norm of the minimum distance between the vector uMk (b) and the eigenspace Z1. The

randomized error in the sense of Lp for the approximation to the largest eigenvalue λ1 is

eran (ξMk , A, p) =

(∫
Sn

∣∣∣∣∣λ1 − ξMk (b)
λ1

∣∣∣∣∣
p

µ(db)

)1/p

, (1.5)

i.e. the Lp norm of the relative error of the method M for the approximation to λ1.

The study of the randomized error for all possible p emphasizes the importance of the choice of the

error parameter for the convergence of the method. In fact, it turns out that the value of the parameter

p and, in particular, its relation with the multiplicity r of the largest eigenvalue λ1, determines the

speed of convergence of the randomized algorithms.

In the thesis we report also some numerical tests in order to evaluate the sharpness of the bounds

provided. Of course, we had to simulate the randomized behavior of the power and Lanczos methods

with vectors uniformly distributed over the unit sphere of IRn. Such vectors can be generated in

accordance with a method first proposed in [Bro56]. It can be described as follows.

1. For every component generate uniformly and independently two random numbers U1, U2 in [0, 1].

2. For every component compute Y =
√
−2 ln(U1) ∗ cos(2πU2). Then Y is normally distributed over

(0, 1).
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3. Let Y1, Y2, . . . Yn be n independent number normally distributed over (0, 1) generated in accordance

with previous steps. Then the vector X = (Y1/‖Y ‖, Y2/‖Y ‖, . . . , Yn/‖Y ‖) is uniformly distributed

over the unit sphere Sn.

In the rest of the thesis we make use of the following notation. cm denotes the Lebesgue measure of

the unit ball over IRm, that is

cm =
πm/2

Γ (m/2 + 1)
, (1.6)

see [8.310, 1] of [GR94] for the definition of the gamma function Γ (x). We will also use the following

relation between the beta and gamma functions

B (i, j) = 2
∫ 1

0
t2i−1(1− t2)j−1 dt =

Γ (i) Γ (j)
Γ (i+ j)

. (1.7)

We will denote by F (a, b; c;x) the hypergeometric function, see [9.10] of [GR94] for the definition and the

properties of this function. Tk(x) is the k-th Chebyshev polynomial of first kind, that can be recursively

defined as follows:

Tk(t) = 2tTk−1(t)− Tk−2(t), (1.8)

where T2(t) = t and T1(t) = 1. Chebyshev polynomials are very powerful because of this theorem.

Theorem 1.1.1 (Minimax Theorem) Let [α, β] be a non-empty interval in IR, and let γ be a real

number such that γ ≥ β. We have

min
P∈Pk,P (γ)=1

max
t∈[α,β]

|P (t)| = 1∣∣∣Tk (1 + 2 γ−ββ−α

)∣∣∣ .
2

Let Bn denote the unit ball of IRn and let f : Bn → IR be a measurable function such that

f(b) = f(αb) for every α > 0, that is f does not depend on the norm of b. Moreover assume f does

not depend on the signs of b, that is f(s1b1, s2b2, . . . , snbn) = f(b1, b2, . . . , bn), for si ∈ {−1, 1}. For any

of such functions we have ∫
Sn

f(b)µ(db) =
1
cn

∫
Bn

f(b) db. (1.9)

Equality (1.9) is often used in the rest of the thesis.

1.2 Some Remarks about Krylov Methods

In this section we present some interesting considerations about algorithms based on Krylov information.

These results are due to Kuczyński and Woźniakowski in [KW92a].

We already pointed out that, for methods as the power or Lanczos methods, the choice of the initial

vector b is very crucial since if b is orthogonal to the eigenspace Z1 these methods are not convergence

to the quantities we would like to estimate. It is natural to ask if there exists an algorithm M based

on Krylov information for which for all symmetric positive matrices and for some ε ∈ [0, 1) we have∣∣∣∣∣ξMk − λ1

λ1

∣∣∣∣∣ ≤ ε.
9



Unfortunately this is not the case 1. In order to prove this let us denote by d = d(A,b, k) the dimension

of the space Kk. Of course 1 ≤ d ≤ min{k, n}. Assume first d ≤ n− 1. In this case, we claim that there

exists a positive definite matrix Ā such that ξMk (A) = ξMk (Ā) and∣∣∣∣∣ξMk (Ā)− λ1(Ā)
λ1(Ā)

∣∣∣∣∣ > ε, (1.10)

that is,M fail to approximate λ1(Ā). To prove this we construct a matrix Ā with the above properties.

Let Ā = A + αuuT , where α is a positive constant and u is a nonzero vector orthogonal to Kk. Since

d ≤ n − 1 such vector exists and moreover it is easy to prove by induction that Nk(A,b) = Nk(Ā,b).

This implies ξMk (A) = ξMk (Ā). Observe that

trace(Ā) = trace(A) + α‖u‖2,

and it goes to infinity as α goes to infinity. This means that λ1(Ā) goes to infinity. We have∣∣∣∣∣ξMk (Ā)− λ1(Ā)
λ1(Ā)

∣∣∣∣∣ =

∣∣∣∣∣ξMk (A)− λ1(Ā)
λ1(Ā)

∣∣∣∣∣→ 1, as α→ +∞.

Hence there exists an α such that (1.10) is satisfied as claimed. We can notice that for large α, the

largest eigenvalue of Ā is very close to α, while the information Nk(Ā,b) is almost independent of u,

so it cannot well approximate λ1(Ā) or a corresponding eigenvector with a relative error at most ε.

This proves that among the class of algorithm that uses Krylov information with k ≤ n − 1 there

always exists a symmetric positive definite matrix that shares the same information with A but for

which it is impossible to estimate the largest eigenvalue with relative error at most ε. If d = n then Kk
spans all the space, then we have enough information to compute the largest eigenvalue.

If more than n steps are performed, we cannot always guarantee d = n, this happens for example

when the starting vector b is an eigenvector of A. In this case d(A,b, k) = 1 for every k and we cannot

compute λ1(A) with the required accuracy.

Note that in order to have d = n we need the starting vector b to have nonzero component in the

direction of every eigenvector zi for i = 1, 2, . . . , n. This cannot be guaranteed for all the possible vectors

b, but for a vector chose uniformly over the unit sphere of IRn, this holds with probability 1 if and only

if A has n distinct eigenvalues. This observation allows one to expect that, even if, in the deterministic

setting, there are vectors for which methods based on Krylov information are not convergent, in the

randomized setting this problem can be solved.

So far we proved that Krylov information is not strong enough for computing an ε-approximation to

the largest eigenvalue and to a corresponding eigenvector. It is natural to ask if there are other methods

that using matrix-vector multiplications lead to positive results. Using matrix-vector multiplications we

can compute N(A) = [Aq1, Aq2, . . . , Aqk], where q1 = b and where each qi is an arbitrary function of

the vectors Aq1, Aq2, . . . , Aqi−1. Unfortunately it can be proved [TWW88] that the minimal number of

matrix-vector multiplications to compute an ε-approximation of λ1 for all the positive definite matrix

is still n.
1We report the proof only for the approximation to the largest eigenvalue but it is straightforward to extend these

results for eigenvectors estimate.
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Chapter 2

The Power Method with a Random

Start

2.1 Introduction and Preliminaries

In this chapter we consider the problem of estimating the largest eigenvalue and a corresponding eigen-

vector of a positive definite matrix by the power method with a random start. We already underlined

that this method as well as the other methods based on Krylov information may not converge to the

desired quantities when the starting vector is chosen deterministically. It happens if the starting vector

has zero component in the direction of the eigenspace corresponding to the largest eigenvalue. In this

case we may have convergence to the second largest eigenvalue and to a corresponding eigenvector. An-

other problem that arises using the power method is that the speed of convergence depends dramatically

on the ratio between the two largest eigenvalues (see [GL89], [Par80], [Saa92], [Wil65]). In particular,

if we denote by r the multiplicity of λ1, we have that the speed of convergence for the approximation

of λ1 is given by (λr+1/λ1)2k while the rate of convergence for estimating a dominant eigenvector is

(λr+1/λ1)k. This shows that, when the eigenvalues are badly separated, the convergence is very slow.

With the study of the randomized error of the method we aim to explore also if it is possible to get

bounds of the randomized error that does not depend on the matrix to which the method is applied.

Surprisingly the power method behaves differently for the approximation to λ1 and to an eigenvector

of Z1.

We briefly comment on related work on approximate computation of eigenpairs. The idea of using

random starting vectors for the power method can be found in the paper of Shub [Shu86]. Shub applies

the power method to the matrix e−A, and approximates an eigenvector of A which is not necessarily a

largest eigenvector. Although for this problem the power method is globally convergent, the random

start is used to improve efficiency. Shub shows, however, that even for n = 2 there are matrices for

which this problem is very hard. In this thesis we apply the power method to the matrix A and we are

only interested in approximating a largest eigenvector.

Kostlan [Kos88] studies the randomized performance of the power method. In particular, in that
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paper he bounds the number of steps that allows the error to be lower than a fixed threshold ε. We

discuss those bounds in Section 2.5 comparing with the bounds proposed in this thesis.

Wright [Wri89] and Kostlan [Kos91] analyzed the problem of approximating a largest eigenvector

by the power method in a different setting. They considered the average case setting over a class of

matrices, whereas we consider the randomized setting. In particular, they estimate the average time

needed for computing a vector whose relative distance from the eigenspace of largest eigenvectors is less

than ε. In our paper the matrix is fixed while the starting vector is chosen at random.

This chapter is organized as follows. Section 2.2 is devoted to the study of the randomized error

for eigenvalue approximation. In particular we present a sharp upper and lower bound for the L1

case (due to Kuczyński and Woźniakowski in [KW92a]) that does not depend on the distribution of the

eigenvalues. Moreover we show that if we know the multiplicity of λ1 distribution free bounds for the Lp
case can be given. Then we give upper and lower bounds for eigenvalue approximation that do depend

on the particular matrix. In Section 2.3 we analyze the randomized error for eigenvector approximation.

We first show that it is impossible to achieve distribution free bounds and then we show sharp upper

and lower bounds. In Section 2.5 we discuss the bounds provided in the chapter. Section 2.6 contains

numerical tests that allows us to explain and comment the results of this chapter.

The results of this chapter have been presented also in [dCo96] and in [dCM96].

The main technical difficulties are in the computation of integrals of the kind∫
Sn

(
a
∑n
i=q+1 b

2
i∑q

i=1 b
2
i + a

∑n
i=q+1 b

2
i

)s
µ(db).

over the n-dimensional sphere of radius one. In order to simplify the exposition, the solution of this

integrals as well as tight upper and lower bounds are given below.

Let b be a real n-vector, such that ‖b‖2 =
∑n
i=1 b

2
i . Let a ∈ (0, 1), s ∈ [1/2,+∞), and q an integer

such that 1 ≤ q < n. We compute the following integral

I =
∫
Sn

(
a
∑n
i=q+1 b

2
i∑q

i=1 b
2
i + a

∑n
i=q+1 b

2
i

)s
µ(db). (2.1)

Setting the parameters s and q conveniently one can get bounds on the randomized error estimate for

eigenvalue and eigenvector approximation. We have the following lemma.

Lemma 2.1.1 Let a ∈ (0, 1), s ∈ [1/2,+∞), and let q be an integer 1 ≤ q < n. Then the integral in

equation (2.1) is given by

I = as
Γ ((n− q)/2 + s) Γ (n/2)

Γ ((n− q)/2 + 1) Γ (n/2 + s)
F

(
n− q

2
+ s, s;

n

2
+ s; 1− a

)
.

Proof. Due to equation (1.9), it is possible to rewrite this integral as an integral over the unit ball Bn.

We have

I =
1
cn

∫
Bn

(
a
∑n
i=q+1 b

2
i∑q

i=1 b
2
i + a

∑n
i=q+1 b

2
i

)s
db. (2.2)

12



Rewriting (2.2) as an integral over the unit ball Bn−q and the q-dimensional ball B′q of radius d =(
1−

∑n
i=q+1 b

2
i

)1/2
, we get

I =
as

cn

∫
Bn−q

 n∑
i=q+1

b2i

s ∫
B′q

1(∑q
i=1 b

2
i + a

∑n
i=q+1 b

2
i

)s db. (2.3)

Applying formula [4.642] of [GR94] we reduce the second integral of (2.3) to a one-dimensional integral.

We get

I = as
qcq
cn

∫
Bn−q

 n∑
i=q+1

b2i

s ∫ d

0

tq−1(
t2 + a

∑n
i=q+1 b

2
i

)s dt db. (2.4)

Changing variables by setting t2 = u, we get

I = as
q cq
2 cn

∫
Bn−q

( ∑n
i=q+1 b

2
i

a
∑n
i=q+1 b

2
i

)s ∫ d2

0

uq/2−1(
u/(a

∑n
i=q+1 b

2
i ) + 1

)s du db
=

q cq
2 cn

∫
Bn−q

2
q

1−
n∑

i=q+1

b2i

q/2 F (s, q
2

;
q

2
+ 1;−

1−
∑n
i=q+1 b

2
i

a
∑n
i=q+1 b

2
i

)
db, (2.5)

where equation (2.5) is obtained applying formula [3.194,1] on [GR94]. We apply again formula [4.642]

to equation (2.5). We have

I = γ

∫ 1

0
bn−q−1(1− b2)q/2F

(
s,
q

2
;
q

2
+ 1;−1− b2

a b2

)
db, (2.6)

where γ = cq(n− q)cn−q/cn. Changing variables by setting z = (1− b2)/(a b2) equation (2.6) becomes

I =
γ

2 a(n−q)/2

∫ +∞

0

zq/2

(z + 1/a)n/2+1
F

(
s,
q

2
;
q

2
+ 1;−z

)
dz.

Applying formula [7.512, 10] of [GR94] and the transformation formula of hypergeometric function

[9.131, 1] of [GR94] we get

I =
γ

2 a(n−q)/2
Γ (q/2 + 1) Γ ((n+ 2s− q)/2) Γ (n/2)

Γ (n/2 + 1) Γ (n/2 + s)
F

(
n+ 2s− q

2
,
n

2
;
n

2
+ s; 1− 1

a

)
= as

Γ ((n+ 2s− q)/2) Γ (n/2)
Γ ((n− q)/2 + 1) Γ (n/2 + s)

F

(
n+ 2s− q

2
, s;

n

2
+ s; 1− a

)
.

2

Lemma 2.1.1 gives the solution of the integral (2.1). Unfortunately, because of the hypergeometric

function, it is difficult to estimate what is the order of convergence to zero of I as a→ 0. However, note

that, since a > 0, the hypergeometric series that defines the hypergeometric function is convergent.

We prove the following upper bound

13



Lemma 2.1.2 Under the same hypothesis of lemma 2.1.1 we have

I ≤



as
Γ ((q − 2s)/2) Γ ((n− q + 2s)/2)

Γ (q/2) Γ ((n− q)/2)
for 2s < q

as
Γ (n/2)

Γ (s) Γ ((n− 2s)/2)
ln
(

1
a

)
+ as

Γ (n/2)
Γ (s) Γ ((n− 2s)/2)

(
2 +

2
n

)
for 2s = q

aq/2
Γ (n/2) Γ ((2s− q)/2)

Γ ((n− q)/2) Γ (s)
for s > q

(2.7)

Proof. Consider first the case 2s < q. Let ‖b‖2q =
∑q
i=1 b

2
i and let ti = bi/(1−‖b‖2)1/2 for i = q+1, . . . , n

with ‖t‖2n−q =
∑n
i=q+1 t

2
i . From (2.2), we have

I =
as

cn

∫
Bq

∫
Bn−q

‖t‖2sn−q(1− ‖b‖2q)(n−q)/2+s(
‖b‖2q + a‖t‖2n−q(1− ‖b‖2q)

)s dt db.
Applying twice formula [4.642] of [GR94] we reduce the previous integral to a two-dimensional integral.

We get

I = as γ

∫ 1

0

∫ 1

0

tn+2s−q−1bq−1(1− b2)(n−q)/2+s

(b2 + a t2(1− b2))s
db dt, (2.8)

where γ = qcq(n− q)cn−q/cn. Since b2 + at2(1− b2) ≥ b2, from (2.8) we get

I ≤ asγ

∫ 1

0
tn+2s−q−1 dt

∫ 1

0
bq−2s−1(1− b2)(n+2s−q)/2 db

= as
γ

2(n− q + 2s)
B

(
q − 2s

2
,
n− q + 2s

2
+ 1

)
. (2.9)

Substituting into (2.9) the expression for γ and simplifying, we have

I ≤ asΓ ((q − 2s)/2) Γ ((n− q + 2s)/2)
Γ (q/2) Γ ((n− q)/2)

.

Consider now the case 2s = q. Equation (2.2) can be rewritten with respect to the ball Bn−q and

to the ball B′q = {b :
∑q
i=1 b

2
i ≤ 1−

∑n
i=q+1 b

2
i }. We have

I =
aq/2

cn

∫
Bn−q

‖b‖qn−q
∫
B′q

1(
‖t‖2q + a‖b‖2n−q

)q/2 dt db,
where ‖b‖2n−q =

∑n
i=q+1 b

2
i and ‖t‖2q =

∑q
i=1 b

2
i . Applying twice formula [4.642] of [GR94], we get

I = aq/2
qcq(n− q)cn−q

cn

∫ 1

0
bn−1

∫ √1−b2

0

tq−1

(t2 + a b2)q/2
dt db. (2.10)

We have two cases, q = 1 or q ≥ 2. Let us consider first the case q = 1 and s = 1/2. Equation (2.10)

becomes

I = a1/2 2(n− 1)cn−1

cn

∫ 1

0
bn−1

∫ √1−b2

0

1√
t2 + a b2

dt db.

Integrating with respect to t we get

I = a1/2 2(n− 1)cn−1

cn

∫ 1

0
bn−1 ln

(√
1− b2 +

√
1− (1− a)b2

b
√
a

)
db.

14



Since a < 1, we have
√

1− b2 ≤
√

1− (1− a)b2. We upper bound I as follows

I ≤ a1/2 2(n− 1)cn−1

cn

∫ 1

0
bn−1 ln

(
2
√

1− (1− a)b2

b
√
a

)
db

≤ a1/2 Γ (n/2)
Γ (1/2) Γ ((n− 1)/2)

ln
(

1
a

)
+ a

Γ (n/2)
Γ (1/2) Γ ((n− 1)/2)

(
2 +

2
n

)
.

This proves the case q = 1.

Finally, consider the case q ≥ 2 and s ≥ 1. From (2.10), since

(t2 + a b2)q/2 ≥ tq + (q/2) t2(q/2−1)a b2,

we have

I ≤ aq/2γ

∫ 1

0
bn−1

∫ √1−b2

0

tq−1

tq + (q/2)t2(q/2−1)a b2
dt db

= aq/2γ

∫ 1

0
bn−1

∫ √1−b2

0

t

t2 + (q/2)a b2
dt db.

where γ = (qcq(n− q)cn−q)/cn. Solving last integral, we get

I ≤ aq/2
γ

2

∫ √1−b2

0

tq−1

tq + (q/2)t2(q/2−1)a b2
dt db

= aq/2γ

∫ 1

0
bn−1

∫ √1−b2

0

t

t2 + (q/2)a b2
dt db.

where γ = (qcq(n− q)cn−q)/cn. Solving last integral, we get

I ≤ aq/2
γ

2

∫ 1

0
bn−1 ln

(
1− (1− q/2 a)b2

q/2a b2

)
db

= aq/2
γ

2n
ln
(

2
qa

)
+ aq/2

γ

n2
+ aq/2

γ

2

∫ 1

0
bn−1 ln

(
1− (1− q/2a)b2

)
db. (2.11)

If a ≤ 2/q, then ln(1− (1− q/2 a)b2) ≤ 0. We upper bound previous equation as

I ≤ aq/2 Γ (n/2)
Γ (q/2) Γ ((n− q)/2)

ln
(

1
a

)
+ aq/2

Γ (n/2)
Γ (q/2) Γ ((n− q)/2)

2
n
.

If a ≥ 2/q, then ln(1− (1− q/2 a) b2) ≤ ln(q/2). From (2.11), we have

I ≤ aq/2
γ

2n
ln
(

2
q a

)
+ aq/2

γ

n2
+ aq/2

γ

2

∫ 1

0
bn−1 ln

(
q

2

)
db

= aq/2
γ

2n
ln
(

2
q a

)
+ aq/2

γ

n2

= aq/2
Γ (n/2)

Γ (q/2) Γ ((n− q)/2)
ln
(

1
a

)
+ aq/2

Γ (n/2)
Γ (q/2) Γ ((n− q)/2)

2
n
.

The case 2s = q is completed by rewriting the above equation in terms of s.

We examine the case 2s > q. Let ‖b‖2n−q =
∑n
i=q b

2
i , and ‖t‖2q =

∑q
i=1 b

2
i , and let B′q the q-dimensional

ball of radius
√

1− ‖b‖2n−q. We have

I =
as

cn

∫
Bn−q

‖b‖2sn−q
∫
B‘q

1(
‖t‖2q + a‖b‖2n−q

)sdt db
= γ

∫ 1

0
bn−q−1

∫ √1−b2

0

tq−1

(t2/(ab2) + 1)s
dt db
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where γ = q(n− q)cqcn−q/cn. Changing variables by setting z = t2/(a b2), we get

I = aq/2
γ

2

∫ 1

0
bn−1

∫ (1−b2)/(ab2)

0

zq/2−1

(z + 1)s
dz db,

≤ aq/2
γ

2

∫ 1

0
bn−1

∫ ∞
0

zq/2−1

(z + 1)s
dz db = aq/2

γ

2n

∫ ∞
0

zq/2−1

(z + 1)s
dz.

Applying formula [3.194, 3] of [GR94] and simplifying, we get

I = aq/2
Γ (n/2) Γ ((2s− q)/2)

Γ ((n− q)/2) Γ (s)
.

2

We prove the following lower bound on integral (2.1).

Lemma 2.1.3 Under the same hypothesis of lemma 2.1.1 we have

I ≥



as
Γ ((q − 2s)/2) Γ ((n− q + 2s)/2)

Γ (q/2) Γ ((n− q)/2)
− γ for 2s < q

as
Γ (n/2)

Γ (s) Γ ((n− 2s)/2)
ln
(

1
a

)
− γ′ for 2s = q

aq/2
Γ (n/2) Γ ((2s− q)/2)

Γ ((n− q)/2) Γ (s)
− γ′′ for 2s > q,

(2.12)

where

γ =



aq/2
Γ ((q − 2s)/2) Γ ((n+ 4s− q)/2) Γ (n/2)

Γ (q/2) Γ (n/2 + s) Γ ((n− q)/2)
F

(
n

2
,
q − 2s

2
;
n+ 2s

2
; 1− a

)
if s < 1

aq/2
2s(n+ 2s− q)

n

Γ ((q − 2s)/2) Γ ((n+ 2s− q)/2)
Γ (q/2) Γ ((n− q)/2)

F

(
n

2
,
q − 2s

2
;
n+ 2

2
; 1− a

)
, if s ≥ 1

γ′ = as
Γ (n/2)

Γ (s) Γ ((n− q)/2)

[
2n− 2n ln 2− 2

n
+

s− 1
(n+ 2)(n+ 4)

F

(
1,
n

2
;
n

2
+ 2; 1− a

)]
, (2.13)

γ′′ = aq/2+1 qΓ (n/2 + 1) Γ ((2s− q)/2)
2sΓ (s) Γ ((n− q)/2)

F

(
1,
q

2
+ 1; s+ 1; 1− a

)
.

Proof. Using formula [4.642] of [GR94], from (2.2) we get

I = γ

∫ 1

0
bn−q−1

∫ √1−b2

0
tq−1

(
a b2

t2 + a b2

)s
dt db, (2.14)

where γ = q(n− q)cqcn−q/cn. Let α = ab2 and f(α) denote the second integral in equation (2.14).

f(α) =
∫ √1−b2

0
tq−1

(
α

t2 + α

)s
dt. (2.15)

First consider the case 2s < q. We rewrite f(α) as

f(α) = αs
(∫ √1−b2

0
tq−2s−1 dt−

∫ √1−b2

0
g(t) dt

)
, (2.16)
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where

g(t) = tq−2s−1

(
1−

(
t2

t2 + α

)s)
.

By setting y = t2/α, we have∫ √1−b2

0
g(t) dt =

α(q−2s)/2

2

∫ (1−b2)/α

0
y(q−2s)/2−1 (y + 1)s − ys

(y + 1)s
dy. (2.17)

We consider two cases: s < 1 and s ≥ 1. Let us start with s < 1. Notice that (y + 1)s − ys ≤ 1. Then

from (2.17) we get∫ √1−b2

0
g(t) dt ≤ α(q−2s)/2

2

∫ (1−b2)/α

0

y(q−2s)/2−1

(y + 1)s
dy

=
(1− b2)(q−2s)/2

q − 2s
F

(
s,
q − 2s

2
;
q − 2s

2
+ 1;−1− b2

α

)
,

due to formula [3.194, 1] of [GR94]. Substituting into (2.16) and solving the first integral, we have

f(α) ≥ αs (1− b2)(q−2s)/2

q − 2s
− αs (1− b2)(q−2s)/2

q − 2s
F

(
s,
q − 2s

2
;
q − 2s

2
+ 1;−1− b2

α

)
.

Substituting a b2 to α, (2.14) becomes

I ≥ as γ

q − 2s

∫ 1

0
bn+2s−q−1(1− b2)(q−2s)/2 db−

− as
γ

q − 2s

∫ 1

0
bn+2s−q−1(1− b2)(q−2s)/2F

(
s,
q − 2s

2
;
q − 2s

2
+ 1;−1− b2

a b2

)
db.

By definition of the beta function (1.7) and by setting z = (1− b2)/(a b2) in the second integral, we get

I ≥ as γ

2(q − 2s)
B

(
n+ 2s− q

2
,
q − 2s

2
+ 1

)
−

− γ

2(q − 2s)a(n−q)/2

∫ +∞

0

z(q−2s)/2

(z + 1/a)n/2+1
F

(
s,
q − 2s

2
;
q − 2s

2
+ 1;−z

)
dz.

Applying formula [7.512, 10] of [GR94], substituting γ and simplifying, we have

I ≥ as
Γ ((n+ 2s− q)/2) Γ ((q − 2s)/2)

Γ (q/2) Γ ((n− q)/2)
−

− a−(n−q)/2 Γ ((q − 2s)/2) Γ ((n+ 4s− q)/2) Γ (n/2)
Γ (q/2) Γ ((n+ 2s)/2) Γ ((n− q)/2)

F

(
n+ 4s− q

2
,
n

2
;
n+ 2s

2
; 1− 1

a

)
.

We conclude the case s < 1 by applying transformation formula [9.131, 1] of [GR94] to the hypergeo-

metric function.

Let s ≥ 1. By Lagrange’s Theorem there exists a value ξ, y ≤ ξ ≤ y + 1, such that (y + 1)s − ys =

s ξs−1. Since ξs−1 ≤ (y + 1)s−1, from equation (2.17) we get∫ √1−b2

0
g(t) dt ≤ α(q−2s)/2 s

2

∫ (1−b2)/α

0

y(q−2s)/2−1

y + 1
dy

= (1− b2)(q−2s)/2 s

q − 2s
F

(
1,
q − 2s

2
;
q − 2s

2
+ 1;−1− b2

α

)
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which follows from formula [3.194, 1] of [GR94]. Substituting into (2.16), we get

f(α) ≥ αs (1− b2)(q−2s)/2

q − 2s
− αs s(1− b

2)(q−2s)/2

q − 2s
F

(
1,
q − 2s

2
;
q − 2s

2
+ 1;−1− b2

α

)
.

Equation (2.14) becomes

I ≥ as γ

q − 2s

∫ 1

0
bn+2s−q−1(1− b2)(q−2s)/2 db−

− as
γ s

q − 2s

∫ 1

0
bn+2s−q−1(1− b2)(q−2s)/2F

(
1,
q − 2s

2
;
q − 2s

2
+ 1;−1− b2

a b2

)
.

Solving the first integral, setting z = (1− b2)/(ab2) in the second integral and using formula [7.512, 10]

of [GR94] we get

I ≥ asΓ ((n+ 2s− q)/2) Γ ((q − 2s)/2)
Γ (q/2) Γ ((n− q)/2)

− aq/2δ,

where

δ =
2s (n+ 2s− q)

n

Γ ((q − 2s)/2) Γ ((n+ 2s− q)/2)
Γ (q/2) Γ ((n− q)/2)

F

(
n

2
,
q − 2s

2
;
n

2
+ 1; 1− a

)
.

This concludes the proof for 2s < q.

Let 2s = q. The function f(α) in (2.15) becomes

f(α) =
∫ √1−b2

0
t2s−1

(
α

t2 + α

)s
dt.

We rewrite f(α) as

f(α) = αs
(∫ √1−b2

0

t

t2 + α
dt−

∫ √1−b2

0
g(t) dt

)
, (2.18)

where

g(t) =
t

t2 + α
− t2s−1

(t2 + α)s
. (2.19)

We analyze separately the case s = 1/2 and the case s ≥ 1. Let us start with s = 1/2. Since g(t) < 0,

we get

f(α) ≥ α1/2
∫ √1−b2

0

t

t2 + α
dt =

α1/2

2
ln

(
1− b2 + α

α

)
.

Substituting into (2.14) we have

I ≥ a1/2γ

2

∫ 1

0
bn−1 ln

(
1− (1− a)b2

a b2

)
db

which yields

I ≥ a1/2γ

2

(∫ 1

0
bn−1 ln(1− (1− a)b2) db+

∫ 1

0
bn−1 ln

(
1
a b2

)
db

)
. (2.20)

We note that ln(1 − (1 − 1/2 a)b2) ≥ ln(1 − b2). In order to bound the first integral in (2.20), we use

the fact that bn−1 ln(1− b2) ≥ ln(1− b2) since 1− b2 ≤ 1. We get∫ 1

0
bn−1 ln(1− (1− 1/2 a)b2) db ≥

∫ 1

0
ln(1− b2) = 2 ln 2− 2.
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Substituting into (2.20) we obtain

I ≥ a1/2γ

2

(
2 ln 2− 2 +

2
n2

+
1
n

ln
(

1
a

))
= a1/2 Γ (n/2)

Γ (1/2) Γ ((n− 1)/2)
ln
(

1
a

)
+ a1/2 Γ (n/2)

Γ (1/2) Γ ((n− 1)/2)

(
2n ln 2− 2n+

2
n

)
,

that concludes the proof of the case s = 1/2, q = 1. Consider now the case q ≥ 2 and s ≥ 1. By (2.19)it

follows

g(t) ≤ t (t2 + α)s−1 − t2s−1

(t2 + α)s
.

Setting y = t2/α and using Lagrange’s theorem, we have∫ √1−b2

0
g(t) dt ≤

∫ (1−b2)/α

0

(y + 1)s−1 − ys−1

2 (y + 1)s
dy

≤ s− 1
2

∫ (1−b2)/α

0

1
(y + 1)2

dy =
s− 1

2
1− b2

1− b2 + α
.

Substituting into (2.18) we get

f(α) ≥ αs
(∫ √1−b2

0

t

t2 + α
dt− s− 1

2
1− b2

1− b2 + α

)

=
αs

2
ln

(
1− b2 + α

α

)
− αs (s− 1)

2
1− b2

1− b2 + α
.

Since α = a b2, substituting into (2.14) we have

I ≥ asγ
2

∫ 1

0
bn−1 ln

(
1− (1− a)b2

a b2

)
db− as (s− 1)γ

2

∫ 1

0
bn−1 1− b2

1− (1− a)b2
db. (2.21)

Since ln(1− (1− a)b2) ≥ ln(1− (1− a)b2), we get

I ≥ asγ
2

∫ 1

0
ln(1− b2) + as

γ

2n
ln
(

1
a

)
+ as

γ

n2
− a2γ (s− 1)

4
B

(
n

2
, 2
)
F

(
1,
n

2
;
n

2
+ 2; 1− a

)
,

where the last integral of (2.21) is solved by using formula [3.197, 3] of [GR94]. Note that
∫ 1

0 ln(1−b2) =

2− 2 ln 2. Simplifying we obtain

I ≥ as Γ (n/2)
Γ (s) Γ ((n− q)/2)

ln
(

1
a

)
−

− as
Γ (n/2)

Γ (s) Γ ((n− q)/2)

[
2n− 2n ln 2− 2

n
+

s− 1
(n+ 2)(n+ 4)

F

(
1,
n

2
;
n

2
+ 2; 1− a

)]
,

which concludes the proof of the case 2s = q.

Finally, consider the case 2s > q. Setting y = t2/α, equation (2.15) becomes

f(α) =
αq/2

2

∫ (1−b2)/α

0

yq/2−1

(y + 1)s
dy.

It can be rewritten as

f(α) =
αq/2

2

[∫ ∞
0

yq/2−1

(y + 1)s
dy −

∫ ∞
(1−b2)/α

yq/2−1

(y + 1)s
dy

]
. (2.22)
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The two integrals in (2.22) can be solved by using formula [3.194, 3] and [3.194, 2] of [GR94] respectively.

We have

f(α) =
αq/2

2
B

(
q

2
,
2s− q

2

)
− αs

(2s− q) (1− b2)(2s−q)/2 F

(
s,

2s− q
2

;
2s− q

2
+ 1;− α

1− b2
)
.

Substituting into (2.14) we get

I ≥ aq/2γ
2
B

(
q

2
,
2s− q

2

)∫ 1

0
bn−1 db−

− as
γ

2s− q

∫ 1

0

bn+2s−q−1

(1− b2)

(2s−q)/2
F

(
s,

2s− q
2

;
2s− q

2
+ 1;− a b2

1− b2

)
db.

Solving the first integral and changing variables in the second by setting z = a b2/(1− b2), we get

I ≥ aq/2 γ

2n
B

(
q

2
,
2s− q

2

)
− aq/2+1 γ

4s− 2q

∫ +∞

0

z(n+2s−q)/2−1

(z + a)n/2+1
F

(
s,

2s− q
2

;
2s− q

2
+ 1;−z

)
dz.

(2.23)

Since
z(n+2s−q)/2−1

(z + a)n/2+1
≤ z(2s−q)/2

(z + a)2
,

substituting into (2.23) and using [7.51, 10] of [GR94] we have

I ≥ aq/2 γ

2n
B

(
q

2
,
2s− q

2

)
− aq/2+1γ Γ ((2s− q)/2 + 1) Γ (q/2 + 1)

(4s− 2q) Γ (s+ 1)
F

(
1,
q

2
+ 1; s+ 1; 1− a

)
.

Substituting the constant γ we get

I ≥ aq/2 Γ (n/2) Γ ((2s− q)/2)
Γ ((n− q)/2) Γ (s)

− aq/2+1 q Γ (n/2 + 1) Γ ((2s− q)/2)
2sΓ (s) Γ ((n− q)/2)

F

(
1,
q

2
+ 1; s+ 1; 1− a

)
.

This completes the proof of the lemma. 2

2.2 Eigenvalues Approximation by the Power Method

In this section we analyze the behavior of the randomized error of the power method for eigenvalue

approximation, that is, we study the following n-dimensional integral

eran (ξPow
k , A, p) =

(∫
Sn

(
λ1 − ξPow

k

λ1

)p
µ(db)

)1/p

=

∫
Sn

∑n
i=r+1 b

2
iλ

2(k−1)
i (1− λi/λ1)∑r

i=1 b
2
i +

∑n
i=r+1 b

2
iλ

2(k−1)
i

p µ(db)

1/p

=

∫
Sn

 ∑n
i=r+1 b

2
ix

2(k−1)
i (1− xi)∑r

i=1 b
2
i +

∑n
i=r+1 b

2
ix

2(k−1)
i

p µ(db)

1/p

, (2.24)

where xi = λi/λ1, and 1 = x1 = · · · = xr > xr+1 ≥ · · · ≥ xn > 0.

The first part of this section is devoted to prove bounds independent of the particular matrix to

which the algorithm is applied. In the second part, we give bounds that depend on the eigenvalues of

the matrix.
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2.2.1 Distribution free bounds

In [KW92a] a sharp bound for the power method is given for the L1 norm. These bounds do not depend

on the distribution of eigenvalues and show that, for any matrix, the randomized error vanishes as the

number of iteration grows. We report briefly these results.

Theorem 2.2.1 [KW92a] Let ξPow
k be the k-th value returned by the power method defined by (1.1).

For any symmetric positive definite matrix A and for any k ≥ 2, we have

a)

eran (ξPow
k , A, 1) ≤ α(n)

lnn
k − 1

,

where π−1/2 ≤ α(n) ≤ 0.871 and for large n, α(n) ≈ π−1/2. Moreover, for any k > 1 + 1
2 ln(n/ lnn), let

A be a matrix with exactly two distinct eigenvalues λ1 > 0 and λi = λ1(1− ln(n/ lnn)/(2(k − 1))), for

i = 2, 3, . . . , n. Then, for large n and k,

b)

eran (ξPow
k , A, 1) ≥ 0.5

lnn
k − 1

(1 + o(1)).

Proof. See the proof of Theorem 3.1 in [KW92a]. 2

This theorem states that no matter what the distribution of eigenvalues is nor how poorly separated

the two largest eigenvalues are, the randomized error of the power method for eigenvalue approximation

is bounded by a quantity that goes to zero as lnn/(k − 1). Part b) states that this upper bound is

sharp since for every k we can find a symmetric positive definite matrix that essentially achieves that

bound. However, numerical experiments show that these estimates, pricisly because they are general,

are not always very accurate. Moreover, these bounds hold in the case the L1 norm is studied. The

generalization to the Lp case is not easy. In fact, the techniques used in [KW92a] for p = 1 cannot

be used for an arbitrary p. The main difficulty is that we have to deal with hypergeometric functions

instead of logarithms and arctangents.

We now assume to know the multiplicity r of the largest eigenvalue λ1. We show how this knowledge

allows us very offen to get tighter bounds then those in [KW92a]. This fits with the general paradigm

that knowing more about the problem allows us to get better bounds. These bounds can be considered

as independent of the distribution of the eigenvalues since they hold for all the matrices that have the

largest eigenvalue with a given multiplicity.

Theorem 2.2.2 Let ξPow
k be the value returned by the power method after k steps as approximation of

λ1. Let r, r < n, be the multiplicity of λ1. Let C = (1− 1/(2k − 1))2(k−1), e−1 ≤ C ≤ 0.45. For every
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k ≥ 2 we have

eran (ξPow
k , A, p) ≤



C
1

2k − 1

(
Γ ((r − 2p)/2) Γ ((n− r + 2p)/2)

Γ (r/2) Γ ((n− r)/2)

)1/p

for 2p < r

C
ln1/p(2k − 1)

2k − 1

(
Γ (n/2)

Γ (p) Γ ((n− 2p)/2)

)1/p

+ β for 2p = r

Cr/(2p)
(

1
2k − 1

)r/(2p) (Γ (n/2) Γ ((2p− r)/2)
Γ (p) Γ ((n− r)/2)

)1/p

for 2p > r,

where

β = C
1

2k − 1

(
Γ (n/2)

Γ (p) Γ ((n− r)/2)

(
3 +

2
n

))1/p

.

Moreover, there exists a positive definite matrix with only two distinct eigenvalues for which we have

eran (ξPow
k , A, p) ≥



C
1

2k − 1

(
Γ ((r − 2p)/2) Γ ((n− r + 2p)/2)

Γ (r/2) Γ ((n− r)/2)

)1/p

− 1
2k − 1

γ for 2p < r

C
1

2k − 1
ln1/p

(
1
C

)(
Γ (n/2)

Γ (p) Γ ((n− 2p)/2)

)1/p

− 1
2k − 1

γ′ for 2p = r

Cr/(2p)
1

2k − 1

(
Γ (n/2) Γ ((2p− r)/2)

Γ (p) Γ ((n− r)/2)

)1/p

− 1
2k − 1

γ′′ for 2p > r,

where γ, γ′, γ′′ are lower order terms (with respect to k) defined accordingly with lemma 2.1.3 (equa-

tion (2.13)).

Proof. By definition of the randomized error (2.24) we have

eran (ξPow
k , A, p) =

∫
Sn

 ∑n
i=r+1 b

2
ix

2(k−1)
i (1− xi)∑r

i=1 b
2
i +

∑n
i=r+1 b

2
ix

2(k−1)
i

p db
1/p

. (2.25)

Since (1− xi) ≤ 1, we have

[eran (ξPow
k , A, p)]p ≤

∫
Sn

 ∑n
i=r+1 b

2
ix

2(k−1)
i (1− xi)∑r

i=1 b
2
i +

∑n
i=r+1 b

2
ix

2(k−1)
i (1− xi)

p db
=

∫
Sn

1−
∑r
i=1 b

2
i∑r

i=1 b
2
i +

∑n
i=r+1 b

2
ix

2(k−1)
i (1− xi)

p db. (2.26)

Note that

x
2(k−1)
i (1− xi) ≤ max

x∈(0,1)
x2(k−1)(1− x) =

(
1− 1

2k − 1

)2(k−1) 1
2k − 1

.

Then we upper bound equation (2.26) as follows

[eran (ξPow
k , A, p)]p ≤

∫
Sn

(
1−

∑r
i=1 b

2
i∑r

i=1 b
2
i + a

∑n
i=r+1 b

2
i

)p
db

=
∫
Sn

(
a
∑n
i=r+1 b

2
i∑r

i=1 b
2
i + a

∑n
i=r+1 b

2
i

)p
db,
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where a = (1− 1/(2k − 1))2(k−1) /(2k − 1). The theorem is proven by observing that 0 < a < 1 and

applying the bounds proved in lemma 2.1.2 (see formula (2.7)).

We now prove the existence of a matrix for which the randomized error is lower bounded by the

lower bound in Theorem 2.2.2. Let A be a n × n matrix whose eigenvalues are as follows. A has only

two distinct eigenvalues, λ1 with multiplicity r and λr+1 with multiplicity n− r. For this matrix we get

[eran (ξPow
k , A, p)]p =

1
cn

(1− xr+1)p
∫
Bn

 x
2(k−1)
r+1

∑n
i=r+1 b

2
i∑r

i=1 b
2
i + x

2(k−1)
r+1

∑n
i=r+1 b

2
i

p db. (2.27)

We can apply to the integral (2.27) the lower bounds proved in lemma 2.1.3. We get

eran (ξPow
k , A, p) ≥



(1− xr+1)

[
x

2(k−1)
r+1

(
Γ (n+ 2p− r)/2) Γ ((r − 2p)/2)

Γ (r/2) Γ ((n− r)/2)

)1/p

− γ
]

2p < r

(1− xr+1)

x2(k−1)
r+1 ln1/p

 1

x
2(k−1)
r+1

( Γ (n/2)
Γ (p) Γ ((n− r)/2)

)1/p

− γ′
 2p = r

(1− xr+1)

[
x
r(k−1)/p
r+1

(
Γ (n/2) Γ ((2p− r)/2)

Γ (p) Γ ((n− r)/2)

)1/p

− γ′′
]

2p > r,

where γ, γ′ and γ′′ are as in lemma 2.1.3. By setting xr+1 = 1− 1/(2k− 1) we conclude the proof. 2

Note that for 2p < r the upper bound is sharp. For the other cases, 2p = r and 2p > r, we have

not been able to produce a matrix which achieves the upper bound. For p = 1 it is possible to compare

these bounds with those reported in Theorem 2.2.1. We have that for small r the bounds in 2.2.1 are

better, while for r ≥ n/ lnn our bounds are tighter. We have anyway to underline that these bounds

estimate the randomized error in the Lp case, while Kuczyński and Woźniakowski dealt with the easier

L∞ case.

2.2.2 Distribution Dependent Bounds

In this section we give upper and lower bounds on the randomized error for eigenvalue approximation

with the power method. In [KW92a] the randomized error for the power method has been studied

considering the L1 norm. In that paper the authors study the rate of convergence as the number of

iterations k goes to infinity. The following theorems establish upper and lower bounds on the randomized

error for all k ≥ 1 and for every p ∈ [1,∞).

Theorem 2.2.3 Let A be a symmetric positive definite matrix, and let r < n be the multiplicity of the
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largest eigenvalue λ1 of A. For every p, 1 ≤ p <∞ and for every k ≥ 1, we have

eran (ξPow
k , A, p) ≤



x2k
r+1 (1− xn)

(
Γ ((r − 2p)/2) Γ ((n− r + 2p)/2)

Γ ((n− r)/2) Γ (r/2)

)1/p

if 2p < r,

k1/px2k
r+1 (1− xn)

(
ln
(

1
xr+1

)
2Γ (n/2)

Γ ((n− 2p)/2) Γ (p)

)1/p

+ β if 2p = r,

x
kr/p
r+1 (1− xn)

(
Γ ((2p− r)/2) Γ (n/2)

Γ (p) Γ ((n− r)/2)

)1/p

if 2p > r

where xi = λi/λ1, and

β = x2k
r+1

(
1− λn

λ1

)(
Γ (n/2)

Γ ((n− 2p)/2) Γ (p)

(
2 +

2
n

))1/p

.

Proof. By equation (2.24) we get

[eran (ξPow
k , A, p)]p =

∫
Sn

( ∑n
i=r+1 b

2
ix

2k
i (1− xi)∑r

i=1 b
2
i +

∑n
i=r=1 b

2
ix

2k
i

)p
µ(db)

≤ (1− xn)p
∫
Sn

( ∑n
i=r+1 b

2
ix

2k
i∑r

i=1 b
2
i +

∑n
i=r+1 b

2
ix

2k
i

)p
µ(db)

≤ (1− xn)p
∫
Sn

(
x2k
r+1

∑n
i=r+1 b

2
i∑r

i=1 b
2
i + x2k

r+1

∑n
i=r+1 b

2
i

)p
µ(db).

The theorem now follows by using the upper bounds (2.7) in lemma 2.1.2. 2

Using the same arguments, and the lower bounds (2.12) in lemma 2.1.3, we get the following result.

Theorem 2.2.4 Let A be a symmetric positive definite matrix, and let r < n be the multiplicity of the

largest eigenvalue λ1 of A. Then, for every p, 1 ≤ p <∞ and for every k ≥ 1, we have

eran (ξPow
k , A, p) ≥



x2k
r+1(1− xr+1)

(
Γ ((r − 2p)/2) Γ ((2p+ 1)/2)

Γ (1/2) Γ (r/2)

)1/p

− xkr/pr+1 γ for 2p < r,

k1/px2k
r+1(1− xr+1)

(
ln
(

1
xr+1

)
2Γ ((2p+ 1)/2)

Γ (1/2) Γ (p)

)1/p

− x2k
r+1γ

′ for 2p = r,

x
kr/p
r+1 (1− xr+1)

(
Γ ((2p− r)/2) Γ ((r + 1)/2)

Γ (p) Γ (1/2)

)1/p

− x(kr+2)/p
r+1 γ′′ for 2p > r

where xr+1 = λr+1/λ1 and γ, γ′, γ′′ are lower order terms (with respect to k) defined accordingly to

lemma 2.1.3 (equation (2.13)) as follows

γ = (1− xr+1)
(
p(2p+ 1)
r + 1

Γ ((r − 2p)/2) Γ ((2p+ 1)/2)
Γ (r/2) Γ (1/2)

F

(
r + 1

2
,
r − 2p+ 2

2
;
r + 3

2
; 1− x2k

r+1

))1/p

,

γ′ = (1− xr+1)
(

Γ ((2p+ 1)/2)
Γ (p) Γ (1/2)

(
2

2p+ 1
− 2(p+ 1)

2p+ 3
+ (ln 2− 1)(4p+ 2) + ln 2

))1/p

,

γ′′ = (1− xr+1)
(

Γ ((r + 3)/2) Γ ((2p− r)/2)
2pΓ (p) Γ (1/2)

F

(
1,
r

2
+ 1; p+ 1; 1− x2k

r+1

))1/p

.

24



Proof. By (2.24) we have

[eran (ξPow
k , A, p)]p =

∫
Sn

( ∑n
i=r+1 b

2
ix

2k
i (1− xi)∑r

i=1 b
2
i +

∑n
i=r+1 b

2
ix

2k
i

µ(db)

)p

≥ (1− xr+1)p
∫
‖b‖=1

(
x2k
r+1b

2
r+1∑r

i=1 b
2
i + x2k

r+1b
2
r+1

)p
µ(db)

≥ (1− xr+1)p
∫
‖b‖r+1=1

(
x2k
r+1b

2
r+1∑r

i=1 b
2
i + x2k

r+1b
2
r+1

)p
µ(db),

where ‖b‖2r+1 =
∑r+1
i=1 b

2
i . We then apply the lower bound of lemma 2.1.3 remembering that the above

integral is over the unit sphere of dimension r + 1. 2

We note that the upper and lower bounds of the previous two theorems have the same behavior (up

to a multiplicative constant) with respect to k. Using similar techniques, we can derive the formulas

for the asymptotic rate of convergence for all p ∈ [1,+∞). These formulas show that the constants

in the previous theorems are asymptotically optimal. The existence of tight upper and lower bounds

shows that for the power method the speed of convergence of the randomized error does depend on

the relation between r and p. In other words, the existence of three different cases is intrinsic for the

problem. A similar phenomenon holds also for the randomized error for eigenvector estimate with the

power method as we will see in the following section.

We already comment on the fact that we were not able to find sharp distribution free bounds for

the general Lp case. The behavior of the power method underlined by Theorems 2.2.3 and 2.2.4 gives

us the intuition that, probably, we have the same dpendence on p and r also for the bounds that do

not depend on λr+1/λ1. In fact, we believe that, in order to get matching upper and lower bounds,

we have to make some effort to improve the lower bound rather than the upper bound. In fact, from

Theorem 2.2.2 we have that the lower bound goes to zero as 1/(2k + 1) independently of the relation

between p and r.

2.3 Eigenvector approximation by the Power Method

We now analyze the randomized error of the power method for eigenvector estimate. The randomized

error in the sense of Lp, 1 ≤ p < +∞, for eigenvector approximation by the power method can be

defined as follows

eran (uPow
k , A, p) =

(∫
Sn

inf
v∈Z1

‖uPow
k − v‖pµ(db)

)1/p

=

∫
Sn

( ∑n
i=r+1 b

2
ix

2k
i∑r

i=1 b
2
i +

∑n
i=r+1 b

2
ix

2k
i

)p/2
µ(db)

1/p

, (2.28)

where xi = λi/λ1. We note that the minimum distance between the vector uPow
k and the eigenspace Z1

corresponds to the sine of the angle αk(b) between the vector uPow
k and the its orthogonal projection

on the subspace Z1. In the same way we define the randomized error in the L∞ space to be

eran (uPow
k , A,∞) = sup

b∈Sn

inf
v∈Z1

‖uPow
k − v‖ = sup

b∈Sn

| sin(αk(b)|
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= sup
‖b‖=1

√√√√ ∑n
i=r+1 b

2
ix

2k
i∑r

i=1 b
2
i +

∑n
i=r+1 b

2
ix

2k
i

. (2.29)

It is easy to see that the supremum in (2.29) is achieved by setting
∑r
i=1 b

2
i = 0. From (2.29), we get

eran (uPow
k , A,∞) = 1. (2.30)

We first show that, on the countrary of what happen for eigenvalue, it is impossible to find sharp

bounds that are independent of the matrix to which the method is applied. Then, we give sharp upper

and lower bounds that essentially depend on the ratio between the two largest eigenvalue.

2.3.1 Worst Case Matrices

As we pointed out in Section 2.2.1, the randomized error for eigenvalue estimate by the power method

can be bounded by a quantity that goes to zero as fast as ln(n)/k independently of the distribution of

the eigenvalues. Our first goal is to analyze the possibility of obtaining distribution-free bounds for the

problem of approximating a largest eigenvector. To this extent, we will deal with “worst case matrices”.

Let us denote by s(k, p) the supremum of the randomized error in the Lp sense over all positive

definite matrices A, i.e.,

s(k, p) = sup
A=A∗>0

eran (uPow
k , A, p).

Since the randomized error increases with xi, see (2.28), it is easy to show that the supremum is achieved

by setting xi = 1 for every i ≥ 2 and for every p, 1 ≤ p <∞. Then we get

s(k, p) =

∫
Sn

( ∑n
i=2 b

2
i

b21 +
∑n
i=2 b

2
i

)p/2
db

1/p

=

∫
Sn

(
1− b21∑n

i=1 b
2
i

)p/2
db

1/p

. (2.31)

Hence, s(k, p) is independent of k and cannot go to zero. This shows that there are no distribution-free

bounds. In fact, s(k, p) are pretty close to 1. We first consider the case p = 1. Using (2.31) and

symmetry argument, we have

s(k, 1) =
∫
Sn

(
1− b21∑n

i=1 b
2
i

)1/2

db ≥
∫
Sn

(
1− b21∑n

i=1 b
2
i

)
db =

(
1− 1

n

)
. (2.32)

We obtain estimates on s(k, p) by the following proposition.

Proposition 2.3.1 For every k and p, 1 ≤ p <∞, we have(
1− 1

n

)
≤ s(k, p) ≤ 1.

Proof. The right-hand side inequality is trivial. Let us prove the left-hand side. For p = 1 it follows

immediatly by (2.32). For p > 1, applying Hölder’s inequality to (2.31) we get

∫
Sn

(
1− b21∑n

i=1 b
2
i

)1/2

db ≤

∫
Sn

(
1− b21∑n

i=1 b
2
i

)p/2
db

1/p [∫
Sn

db

]1/q

,

where p and q are the conjugate exponents, i.e., 1/p + 1/q = 1. The proof is completed by observing

that
∫
Sn
db = 1. 2
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Proposition 2.3.1 states that for every k there are matrices for which the randomized error is close to

one. These matrices have the largest eigenvalue of multiplicity one, and the second largest eigenvalue

has multiplicity n−1 and is pathologically close to λ1. In this case, even if the starting vector is random,

the sequence {uPow
i } for i = 1, 2 . . . , k does not approximate a largest eigenvector.

2.4 Non Asymptotic Behavior

So far we have seen that if λr+1/λ1 ≈ 1 then the power method behaves badly even for a random

starting vector. We now analyze the relationship between the ratio λr+1/λ1 and the rate of convergence

of the power method for approximating a largest eigenvector. We first show upper and lower bounds on

the randomized error eran (uPow
k , A, p). These bounds depend on the distribution of the eigenvalues of

the matrix A and on the norm used. In particular, we prove that the rate of convergence is slower when

the multiplicity of λ1 is smaller than the value of the parameter p of the norm. What seems interesting

about these results is that they hold for a complete class of norms, and we are able to show how the

speed of convergence of the power method depends on the norm.

2.4.1 Upper Bounds

We now show how the rate of convergence depends on the multiplicity r of the largest eigenvalue and

on the value of the parameter p of the norm. Theorem 2.4.1 shows that the rate of convergence depends

on the relation between the parameters r and p. In particular the speed of convergence increases with

r and decreases with p.

Theorem 2.4.1 Let A be a symmetric positive definite matrix, and let r, r < n, denote the multiplicity

of the largest eigenvalue λ1 of A. Let

β =
[

Γ (n/2)
Γ (p/2) Γ ((n− p)/2)

(
2 +

2
n

)]1/p

.

Then, for every p, 1 ≤ p <∞, and for every k we have

eran (uPow
k , A, p) ≤



xkr+1

(
Γ ((r − p)/2) Γ ((n+ p− r)/2)

Γ (r/2) Γ ((n− r)/2)

)1/p

for p < r,

xkr+1 (2k)1/p
[
ln
(

1
xr+1

)]1/p ( Γ (n/2)
Γ (p/2) Γ ((n− p)/2)

)1/p

+ β xkr+1 for p = r,

x
kr/p
r+1

(
Γ ((p− r)/2) Γ (n/2)
Γ (p/2) Γ ((n− r)/2)

)1/p

for p > r,

where xr+1 = λr+1/λ1.

Proof. By equation (2.28) we have

[eran (uPow
k , A, p)]p =

∫
Sn

( ∑n
i=r+1 b

2
ix

2k
i∑r

i=1 b
2
i +

∑n
i=r+1 b

2
ix

2k
i

)p/2
db.
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Observe that the integrand is an increasing function of
∑n
i=r+1 b

2
ix

2k
i . The upper bound is then obtained

by replacing xi by xr+1 for i > r + 1,

[eran (uPow
k , A, p)]p ≤

∫
Bn

(
xkpr+1

∑n
i=r+1 b

2
i∑r

i=1 b
2
i + x2k

r+1

∑n
i=r+1 b

2
i

)p/2
db. (2.33)

The theorem is proven by applying the same reasoning as in the proof of Lemma 2.1.2. 2

Note that, when p = r, the bound is composed of two terms. The first term depends on k through

xkr+1k
1/p, the second term depends on k through xkr+1. We remark that for large k the influence of the

second term is negligible. Nevertheless, numerical tests show that this term can affect the bound when

the value of xr+1 is close to 1.

2.4.2 Lower Bounds

In this section we find lower bounds on the randomized error eran (uPow
k , A, p). As in Section 2.4.1, we

show that these lower bounds depend on the multiplicity of the largest eigenvalue and on the value of

the parameter p of the norm. Upper and lower bounds show the same dependence on the ratio between

the two largest eigenvalues and on the relation between p and r.

Below we define some constants that are used in Theorem 2.4.2.

γ =



(
Γ ((r − p)/2) Γ (p+ 1/2) Γ ((r + 1)/2)

2Γ (r/2) Γ (1/2) Γ ((r + p+ 1)/2)
F

(
r + 1

2
,
r − p

2
;
r + p+ 1

2
; 1− x2k

r+1

))1/p

, for p < 2,

(
pΓ ((r − p)/2) Γ ((p+ 3)/2)

2(r + 1)Γ (r/2) Γ (1/2)
F

(
r + 1

2
,
r − p

2
;
r + 3

2
; 1− x2k

r+1

))1/p

, for p ≥ 2.

γ′ =

(
Γ ((p+ 1)/2)

Γ (p/2) Γ (1/2)

(
log

(
p2 + 3p

4

)
− 2
p+ 1

+
2p− 4
p+ 3

F

(
1,
p+ 1

2
;
p+ 5

2
; 1− x2k

r+1

)))1/p

,

γ′′ =
(
r Γ ((r + 1)/2 + 1) Γ ((p− r)/2)

4pΓ (1/2) Γ (p/2 + 1)
F

(
r

2
+ 1, 1;

p

2
+ 1; 1− x2k

r+1

))1/p

.

Theorem 2.4.2 Let A be a symmetric positive definite matrix, and let r, r < n, denote the multiplicity

of the largest eigenvalue λ1 of A. Then, for every p, 1 ≤ p <∞, and for every k we have

eran (uPow
k , A, p) ≥



xkr+1

(
Γ ((r − p)/2) Γ ((p+ 1)/2)

Γ (r/2) Γ (1/2)

)1/p

− γ xkr/pr+1 for p < r,

xkr+1(2k)1/r
[
ln
(

1
xr+1

)]1/r ( Γ ((p+ 1)/2)
Γ (p/2) Γ (1/2)

)1/p

− γ′xkr+1 for p = r,

x
kr/p
r+1

(
Γ ((p− r)/2) Γ ((r + 1)/2)

Γ (p/2) Γ (1/2)

)1/p

− γ′′xk(r+2)/p
r+1 for p > r,

where xr+1 = λr+1/λ1.
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Proof. From equation (2.28) and (1.9) we have

[eran (uPow
k , A, p)]p =

1
cn

∫
Bn

( ∑n
i=r+1 b

2
ix

2k
i∑r

i=1 b
2
i +

∑n
i=r+1 b

2
ix

2k
i

)p/2
db.

Notice that the integrand is an increasing function of
∑n
i=r+1 b

2
ix

2k
i . Hence, the lower bound is obtained

by replacing xi by 0 for i > r + 1,

[eran (uPow
k , A, p)]p ≥

xkpr+1

cn

∫
Bn

bpr+1(∑r
i=1 b

2
i + x2k

r+1b
2
r+1

)p/2 db.
Let a = xkr+1. Writing the last integral as an integral over the ball Bn−r and the r dimensional ball of

radius q =
√

1−
∑n
i=r+1 b

2
i , and applying [4.642] of [GR94], we get

[eran (uPow
k , A, p)]p ≥ rcr

cn

∫
Bn−r

∫ q

0
tr−1

(
a2 b2r+1

t2 + a2 b2r+1

)p/2
dt db. (2.34)

Let us denote a2 b2r+1 by α, and consider the integral

f(α) =
∫ q

0
tr−1

(
α

t2 + α

)p/2
dt. (2.35)

We have three cases depending on the relation between p and r.

Consider first the case p < r. It is convenient to split f(α) as follows

f(α) = αp/2
(∫ q

0
tr−p−1 dt−

∫ q

0
g(t) dt

)
, (2.36)

where

g(t) = tr−1

(
1
tp
−
(

1
t2 + α

)p/2)
.

We can conveniently rewrite g(t) as

g(t) = tr−p−1

1−
(

t2

t2 + α

)p/2 .
Setting y = t2/α, we have∫ q

0
g(t) dt =

α(r−p)/2

2

∫ q2/α

0
y(r−p)/2−1 (y + 1)p/2 − yp/2

(y + 1)p/2
dy. (2.37)

We consider two cases: p < 2 and p ≥ 2. Let us start with p < 2. Notice that (y + 1)p/2 − yp/2 ≤ 1.

Then from (2.37) we get ∫ q

0
g(t) dt ≤ α(r−p)/2

2

∫ q2/α

0

y(r−p)/2−1

(y + 1)p/2
dy

=
qr−p

r − p
F

(
p

2
,
r − p

2
;
r − p

2
+ 1;−q

2

α

)
,

due to formula [3.194, 1] of [GR94] (see also [GR94] for the definition and the properties of the hyper-

geometric function F (a, b; c;x)). Substituting it into (2.36) and solving the first integral, we have

f(α) ≥ αp/2 q
r−p

r − p
− αp/2 q

r−p

r − p
F

(
p

2
,
r − p

2
;
r − p

2
+ 1;−q

2

α

)
.
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Hence, (2.34) becomes

[eran (uPow
k , A, p)]p ≥ rcr

(r − p)cn

∫
Bn−r

apbpr+1

1−
n∑

i=r+1

b2i

(r−p)/2

db−

− rcr
(r − p)cn

∫
Bn−r

apbpr+1

1−
n∑

i=r+1

b2i

(r−p)/2

F

(
p

2
,
r − p

2
;
r − p

2
+ 1;−

1−
∑n
i=r+1 b

2
i

a2b2r+1

)
db.

Using [4.642] of [GR94], we get

[eran (uPow
k , A, p)]p ≥ apΓ ((p+ 1)/2) Γ ((r − p)/2)

Γ (1/2) Γ (r/2)
−

−ap (r + 1)Γ ((r + 1)/2)
(r − p)Γ (r/2) Γ (1/2)

∫ 1

0
tp(1− t2)(r−p)/2F

(
p

2
,
r − p

2
;
r − p

2
+ 1;−1− t2

a2t2

)
dt. (2.38)

After setting y = (1− t2)/(a2t2), we can rewrite the integral in (2.38) as∫ 1

0
tp(1− t2)(r−p)/2F

(
p

2
,
r − p

2
;
r − p

2
+ 1;−1− t2

a2t2

)
dt =

=
a−p−1

2

∫ ∞
0

y(r−p)/2

(y + 1/a2)(r+3)/2
F

(
p

2
,
r − p

2
;
r − p

2
+ 1;−y

)
dy.

From the last equation and using formula [7.512, 10] of [GR94], we have∫ 1

0
tp(1− t2)(r−p)/2F

(
p

2
,
r − p

2
;
r − p

2
+ 1;−1− t2

a2t2

)
dt =

=
a−p−1

2
Γ ((r − p)/2 + 1) Γ (p+ 1/2) Γ ((r + 1)/2)

Γ ((r + 3)/2) Γ ((p+ r + 1)/2)
F

(
p+

1
2
,
r + 1

2
;
p+ r + 1

2
; 1− 1

a2

)
.(2.39)

Applying transformation formula to the hypergeometric function, see [9.131, 1] of [GR94], we have

F

(
p+

1
2
,
r + 1

2
;
p+ r + 1

2
; 1− 1

a2

)
= ar+1 F

(
r + 1

2
,
r − p

2
;
p+ r + 1

2
; 1− a2

)
.

Substituting it into (2.39) and then into (2.38), we get

[eran (uPow
k , A, p)]p ≥ apΓ ((p+ 1)/2) Γ ((r − p)/2)

Γ (1/2) Γ (r/2)
− arγ,

where

γ =
Γ ((r − p)/2) Γ (p+ 1/2) Γ ((r + 1)/2)

2Γ (r/2) Γ (1/2) Γ ((r + p+ 1)/2)
F

(
r + 1

2
,
r − p

2
;
r + p+ 1

2
, 1− a2

)
.

This concludes the proof of the case p < 2.

Let p ≥ 2. Observe that, from Lagrange’s Theorem, there exists a value ξ, y ≤ ξ ≤ y + 1, such that

(y + 1)p/2 − yp/2 = p/2 ξp/2−1. Since ξp/2−1 ≤ (y + 1)p/2−1, we obtain the bound∫ q

0
g(t) dt ≤ α(r−p)/2 p

4

∫ q2/α

0

y(r−p)/2−1

y + 1
dy

= qr−p
p

2(r − p)
F

(
1,
r − p

2
;
r − p

2
+ 1;−q

2

α

)
(2.40)
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which follows from formula [3.194, 1] of [GR94]. Proceeding exactly as before, we get

f(α) ≥ αp/2 q
r−p

r − p
− αp/2 qr−pp

2(r − p)
F

(
1,
r − p

2
;
r − p

2
+ 1;−q

2

α

)
.

Using this bound in (2.34), we get

[eran (uPow
k , A, p)]p ≥ rcr

(r − p)cn

∫
Bn−r

apbpr+1

1−
n∑

i=r+1

b2i

(r−p)/2

db−

− rpcr
2(r − p)cn

∫
Bn−r

apbpr+1

1−
n∑

i=r+1

b2i

(r−p)/2

F

(
1,
r − p

2
;
r − p

2
+ 1;−

1−
∑n
i=r+1 b

2
i

a2b2r+1

)
db. (2.41)

Solving the integral in (2.41) as before, and applying the transformation formula [9.131] of [GR94] to

the hypergeometric function, we have

[eran (uPow
k , A, p)]p ≥ apΓ ((p+ 1)/2) Γ ((r − p)/2)

Γ (1/2) Γ (r/2)
− arγ,

where

γ =
pΓ ((r − p)/2) Γ ((p+ 3)/2)

2(r + 1)Γ (r/2) Γ (1/2)
F

(
r + 1

2
,
r − p

2
;
r + 1

2
+ 1, 1− a2

)
.

This concludes the proof for p < r.

Let p = r. The integral denoted by f(α) in (2.35) becomes

f(α) = αp/2
∫ q

0
tp−1

(
1

t2 + α

)p/2
dt, (2.42)

and can be rewritten as

f(α) = αp/2
(∫ q

0

t

t2 + p/2α
dt−

∫ q

0
g(t) dt

)
, (2.43)

where

g(t) =
t

t2 + p/2α
− tp−1

(t2 + α)p/2
.

Since p = r, we have that p is an integer between 1 and n. We analyze separately the cases p = 1 and

p ≥ 2. If p = 1, then g(t) ≤ 0 and

f(α) ≥ α1/2
(∫ q

0

t

t2 + 1/2α
dt

)
=

α1/2

2
ln

(
q2 + 1/2α

1/2α

)
.

From (2.34) and since q =
√

1−
∑n
i=2 b

2
i , we get

[eran (uPow
k , A, 1)]1 ≥ 1

cn

∫
Bn−1

α1/2 ln

(
1−

∑n
i=2 b

2
i + 1/2α

1/2α

)
db.
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Let ‖b‖ =
∑n
i=3 b

2
i , and t = b2/(1− ‖b‖2)1/2. Since α = a2 b22, using [4.642] of [GR94], we have

[eran (uPow
k , A, 1)] ≥ a

2
cn

∫
Bn−2

∫ 1

0
t
(
1− ‖b‖2

)
ln

(
1− (1− 1/2 a2)t2

1/2 a2t2

)
dt db

= a
(n− 2)cn−2

cn
B

(
n

2
− 1, 2

)∫ 1

0
t ln

(
1− (1− 1/2 a2)t2

1/2a2t2

)
dt

= a
(n− 2)cn−2

cn
B

(
n

2
− 1, 2

)
1

2(1− 1/2 a2)
ln
(

2
a2

)
≥ a

(n− 2)cn−2

2cn
B

(
n

2
− 1, 2

)
ln
(

1
a2

)
+ a

(n− 2)cn−2

2cn
B

(
n

2
− 1, 2

)
ln(2),

from which we have

eran (uPow
k , A, 1) ≥ a

π
ln
(

1
a2

)
+
a

π
ln(2).

This provides the proof for p = r = 1.

Let now p ≥ 2. We notice that t2 + p/2α ≥ t2 + α. Then

g(t) ≤ t(t2 + α)p/2−1 − tp−1

(t2 + α)p/2
.

Setting y = t2/α, we have ∫ q

0
g(t) dt ≤

∫ q2/α

0

(y + 1)p/2−1 − yp/2−1

2(y + 1)p/2
dy

≤ 1
2

(
p

2
− 1

)∫ q2/α

0

1
(y + 1)2

dy

=
1
2

(
p

2
− 1

)
q2

α+ q2
.

We substitute this inequality into (2.43). We have

f(α) ≥ αp/2
(∫ q

0

t

t2 + p/2α
dt− 1

2

(
p

2
− 1

))
=

αp/2

2
ln

(
q2 + p/2α
p/2α

)
− αp/2

2

(
p

2
− 1

)
q2

α+ q2
.

Since q =
√

1−
∑n
i=p+1 b

2
i and p = r, we obtain the lower bound

[eran (uPow
k , A, p)]p ≥ pcp

2cn

∫
Bn−p

αp/2 ln

(
1−

∑n
i=p+1 b

2
i + p/2α

p/2α

)
db−

− pcp
2cn

(
p

2
− 1

)∫
Bn−p

αp/2
1−

∑n
i=r b

2
i

α+ 1−
∑n
i=r b

2
i

db.

Let ‖b‖2 =
∑n
i=p+2 b

2
i , and t = bp+1/(1 − ‖b‖2)1/2. Then from the definition of α and using [4.642]

of [GR94], we have

[eran (uPow
k , A, p)]p ≥ ap

pcp
cn

∫
Bn−p−1

∫ 1

0
tp(1− ‖b‖2)(p+1)/2 ln

(
1− (1− p/2 a2)t2

p/2 a2t2

)
dt db−

− ap
pcp
cn

(
p

2
− 1

)∫
Bn−p−1

∫ 1

0
tp(1− ‖b‖2)(p+1)/2 (1− t2)

1− (1− a2)t2)
dt db.
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Using again [4.642] we get

[eran (uPow
k , A, p)]p ≥ apγB

(
n− p− 1

2
,
p+ 1

2
+ 1

)∫ 1

0
tp ln

(
1− (1− p/2 a2)t2

p/2 a2t2

)
dt−

− apγ
p− 2

2
B

(
n− p− 1

2
,
p+ 1

2
+ 1

)∫ 1

0

tp(1− t2)
1− (1− a2)t2

dt, (2.44)

where γ = p(n− p− 1)cpcn−p−1/(2cn). Observe that

∫ 1

0
tp ln

(
1− (1− p/2 a2)t2

p/2 a2t2

)
dt =

=
1

p+ 1
ln
(

2
pa2

)
+

2
(p+ 1)2

+
∫ 1

0
tp ln

(
1−

(
1− p

2
a2
)
t2
)
dt. (2.45)

Notice that if a2 > 2/p then ln(1 − (1 − p/2 a2)t2) ≥ ln(1) = 0. Hence, from (2.45) and using formula

[3.197, 3] of [GR94] to solve the integral in (2.44), we have

[eran (uPow
k , A, p)]p ≥ ap

γ′

p+ 1
ln
(

2
pa2

)
−

− apγ′
2(p− 2)
(p+ 3)

F

(
1,
p+ 1

2
;
p+ 5

2
; 1− a2

)
+ apγ′

2
p+ 1

,

where γ′ = γB ( (n− p− 1)/2, (p+ 1)/2 + 1). Using (1.6), we can express ci in terms of the gamma

function, and we get

[eran (uPow
k , A, p)]p ≥ ap Γ ((p+ 1)/2)

Γ (p/2) Γ (1/2)
ln
(

1
a2

)
− (2.46)

− ap
Γ ((p+ 1)/2)

Γ (p/2) Γ (1/2)

[
2(p− 2)
p+ 3

F

(
1,
p+ 1

2
;
p+ 5

2
; 1− a2

)
− ln

(
2
p

)
− 2
p+ 1

]
.

Otherwise, when a2 ≤ 2/p, we use the fact that

ln(1− ct2) = −
∞∑
i=1

(ct2)i

i
,

where c is a constant such that −1 ≤ ct2 < 1. Setting c = (1− p/2a2), and using previous relation, the

integral in (2.45) becomes∫ 1

0
tp ln

(
1−

(
1− p

2
a2
)
t2
)
dt = −

∞∑
i=1

(1− p/2 a2)i

i(2i+ p+ 1)
≥ − 1

p+ 1
ln
(
p+ 3

2

)
.

In this case, from (2.45) we have∫ 1

0
tp ln

(
1− (1− p/2a2)t2

p/2a2t2

)
dt ≥ 1

p+ 1
ln
(

2
pa2

)
− 1
p+ 1

ln
(
p+ 3

2

)
+

2
(p+ 1)2

,

and then

[eran (uPow
k , A, p)]p ≥ ap Γ ((p+ 1)/2)

Γ (p/2) Γ (1/2)
ln
(

1
a2

)
−

− ap
Γ ((p+ 1)/2)

Γ (p/2) Γ (1/2)

[
2(p− 2)
p+ 3

F

(
1,
p+ 1

2
;
p+ 5

2
; 1− a2

)
+ ln

(
p+ 3

2

)
− ln

(
2
p

)
− 2
p+ 1

]
,
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which concludes the proof for p = r.

The last case is p > r. Setting y = t2/α, the integral f(α) defined by (2.35) becomes

f(α) =
αr/2

2

∫ q2/α

0

yr/2−1

(y + 1)p/2
dy.

It can be rewritten as

f(α) =
αr/2

2

[∫ ∞
0

yr/2−1

(y + 1)p/2
dy −

∫ ∞
q2/α

yr/2−1

(y + 1)p/2
dy

]
. (2.47)

The first integral of the right hand side of (2.47) can be solved using formula [3.194, 3] of [GR94] and is

equal to B(r/2, (p−r)/2). The second integral of (2.47) can be solved using formula [3.194, 2] of [GR94]

and is equal to (
α

q2

)(p−r)/2 2
p− r

F

(
p

2
,
p− r

2
;
p− r

2
+ 1;− α

q2

)
.

Hence, (2.47) becomes

f(α) =
αr/2

2
B

(
r

2
,
p− r

2

)
− αp/2

(p− r) qp−r
F

(
p

2
,
p− r

2
;
p− r

2
+ 1;− α

q2

)
. (2.48)

By substituting (2.48) into (2.34), and from the definition of α and q we have

[eran (uPow
k , A, p)]p ≥ ar rcr

2cn
B

(
r

2
,
p− r

2

)∫
Bn−r

brr+1 db−

− ap
rcr

(p− r)cn

∫
Bn−r

bpr+1(
1−

∑n
i=r+1 b

2
i

)(p−r)/2F
(
p

2
,
p− r

2
;
p− r

2
+ 1;−

a2b2r+1

1−
∑n
i=r+1 b

2
i

)
db.

Using again the technique of reducing integrals to one-dimensional integrals, we get

[eran (uPow
k , A, p)]p ≥ ar γ

2
B

(
r

2
,
p− r

2

)
B

(
r + 1

2
,
n− r − 1

2
+ 1

)
−

− apγ′
∫ 1

0

tp

(1− t2)(p−r)/2 F

(
p

2
,
p− r

2
;
p− r

2
+ 1;−a2 t2

1− t2

)
dt, (2.49)

where γ = rcrcn−r−1/cn and γ′ = Γ ((r + 1)/2 + 1) / ((p− r)Γ (1/2) Γ (r/2)). Consider the integral

in (2.49). By setting z = t2/(1− t2), we obtain∫ 1

0

tp

(1− t2)(p−r)/2 F

(
p

2
,
p− r

2
;
p− r

2
+ 1;−a2 t2

1− t2

)
dt =

=
1

2ap−r−2

∫ ∞
0

z(p−1)/2

(a2 + z)(r+3)/2
F

(
p

2
,
p− r

2
;
p− r

2
+ 1;−z

)
dz. (2.50)

We notice that
z(p−1)/2

(a2 + z)(r+3)/2
≤ z(p−r)/2

(a2 + z)2
.

Using this inequality and formula [7.51, 10] of [GR94], (2.50) can be bounded as follows

1
2ap−r−2

∫ ∞
0

z(p−1)/2

(a2 + z)(r+3)/2
F

(
p

2
,
p− r

2
;
p− r

2
+ 1;−z

)
dz ≤

≤ 1
2ap−r−2

∫ ∞
0

z(p−r)/2

(a2 + z)2
F

(
p

2
,
p− r

2
;
p− r

2
+ 1;−z

)
dz

=
1

2ap−r−2

Γ ((p− r)/2 + 1) Γ (r/2 + 1)
Γ (p/2 + 1)

F

(
r

2
+ 1, 1;

p

2
+ 1; 1− a2

)
. (2.51)
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Substituting (2.51) in (2.49), we get

[eran (uPow
k , A, p)]1/p ≥ arΓ ((p− r)/2) Γ ((r + 1)/2 + 1)

Γ (p/2) Γ (1/2)
−

− ar+2 rΓ ((r + 1)/2 + 1) Γ ((p− r)/2)
Γ (p/2 + 1) Γ (1/2)

F

(
r

2
+ 1, 1;

p

2
+ 1; 1− a2

)
.

This concludes the proof. 2

2.4.3 Asymptotic Behavior

In Section 2.4.1 and 2.4.2 we provide upper and lower bounds for the randomized error of the power

method at each step k. These bounds differ only by multiplicative constants and by lower order terms.

We notice that only for upper bounds the constants depend on the size of the matrix, while for the

lower bounds they depend only on p and r. Moreover, if A is a large matrix, the constants of the upper

bound become huge. So, it is natural to ask if these constants are sharp. We answer this question by

analyzing the asymptotic behavior of the randomized error eran (uPow
k , A, p).

Theorem 2.4.3 Let A be a symmetric positive definite matrix, let r, r < n, and s denote the mul-

tiplicities of the two largest eigenvalues λ1 and λr+1 of A. Let xr+1 = λr+1/λ1. Then for every p,

1 ≤ p <∞, we have

lim
k→+∞

eran (uPow
k , A, p)
xkr+1

=
(

Γ ((r − p)/2) Γ ((p+ s)/2)
Γ (r/2) Γ (s/2)

)1/p

for p < r,

lim
k→+∞

eran (uPow
k , A, p)

xkr+1 (2k)1/r [ln (1/xr+1)]1/r
=
(

Γ ((p+ s)/2)
Γ (p/2) Γ (s/2)

)1/p

for p = r,

lim
k→+∞

eran (uPow
k , A, p)

x
kr/p
r+1

=
(

Γ ((p− r)/2) Γ ((r + s)/2)
Γ (p/2) Γ (s/2)

)1/p

for p > r.

Proof. From (2.28) we have

eran (uPow
k , A, p) =

 1
cn

∫
Bn

( ∑n
i=r+1 b

2
ix

2k
i∑r

i=1 b
2
i +

∑n
i=r+1 b

2
ix

2k
i

)p/2
db

1/p

.

We can rewrite the previous equation as follows

eran (uPow
k , A, p) =

 1
cn

∫
Bn

( x2k
r+1

∑r+s
i=r+1 b

2
i∑r

i=1 b
2
i + x2k

r+1

∑r+s
i=r+1 b

2
i

)1/2

+ rk(b)

p db
1/p

,

where

rk(b) =

( ∑n
i=r+1 b

2
ix

2k
i∑r

i=1 b
2
i +

∑n
i=r+1 b

2
ix

2k
i

)1/2

−
(

x2k
r+1

∑r+s
i=r+1 b

2
i∑r

i=1 b
2
i + x2k

r+1

∑r+s
i=r+1 b

2
i

)1/2

. (2.52)

Let

ẽran
k (A, p) =

 1
cn

∫
Bn

(
x2k
r+1

∑r+s
i=r+1 b

2
i∑r

i=1 b
2
i + x2k

r+1

∑r+s
i=r+1 b

2
i

)p/2
db

1/p

.
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We want to show that

lim
k→+∞

eran (uPow
k , A, p) = lim

k→+∞
ẽran
k (A, p). (2.53)

Notice that

ẽran
k (A, p) ≤ eran (uPow

k , A, p) ≤ ẽran
k (A, p) + ‖rk‖p,

where

‖rk‖p =
(

1
cn

∫
Bn

rk(b)p db
)1/p

.

Since rk(b)→ 0 pointwise almost everywhere, and |rk(b)| ≤ 1 for the Lp-dominated convergence Theo-

rem (see [Lan69], p. 312) we have limk→+∞ ‖rk‖p = 0. This proves (2.53).

Equation (2.53) shows that the asymptotic behavior of eran (uPow
k , A, p) can be studied by analyzing

ẽran
k (A, p). Let a = xkr+1. Integrating with respect to br+s+1, . . . , bn, we have

[ẽran
k (A, p)]p = ap

cn−r−s
cn

∫
Br+s

( ∑r+s
i=r+1 b

2
i∑r

i=1 b
2
i + a2

∑r+s
i=r+1 b

2
i

)p/2 (
1−

r+s∑
i=1

b2i

)(n−r−s)/2

db

Let ‖b‖2 =
∑r
i=1 b

2
i and let ti = bi/(1 − ‖b‖2)1/2 for i = r + 1, . . . , r + s, and ‖t‖2 =

∑r+s
i=r+1 t

2
i . If we

rewrite the last integral as an integral over the balls Br and Bs, we have

[ẽran
k (A, p)]p = ap

cn−r−s
cn

∫
Br

∫
Bs

‖t‖p(1− ‖b‖2)(n+p−r)/2(1− ‖t‖2)(n−r−s)/2

[‖b‖2 + a2‖t‖2(1− ‖b‖2)]p/2
dt db.

Using [4.642] of [GR94] for both integrals, we get

[ẽran
k (A, p)]p =

= apγ

∫ 1

0

∫ 1

0

ts−1 br−1 tp(1− b2)(n+p−r)/2 (1− t2)(n−r−s)/2

[b2 + a2t2(1− b2)]p/2
dt db

= apγ

∫ 1

0
tp+s−1(1− t2)(n−r−s)/2

[∫ 1

0

br−1(1− b2)(n+p−r)/2

[b2 + a2t2(1− b2)]p/2
db

]
dt, (2.54)

where γ = rscn−r−scrcs/cn.

We have now three cases depending on the relation between p and r. Consider first the case p < r.

Then the last integral of (2.54) is finite even for a = 0. Substituting a = 0, we get

[ẽran
k (A, p)]p = apγ

∫ 1

0
tp+s−1(1− t2)(n−r−s)/2 dt

∫ 1

0
br−p−1(1− b2)(n+p−r)/2 db.

From the definition of the beta function (1.7) we have

[ẽran
k (A, p)]p = ap

γ

4
B

(
p+ s

2
,
n− r − s

2
+ 1

)
B

(
r − p

2
,
n+ p− r

2
+ 1

)
.

Using (1.6), we can express ci in terms of the gamma function. We obtain

[ẽran
k (A, p)]p = ap

Γ ((r − p)/2) Γ ((p+ s)/2)
Γ (r/2) Γ (s/2)

.

This proves that for p < r, by using (2.53) we have

lim
k→+∞

eran (uPow
k , A, p)
xkr+1

=
(

Γ ((r − p)/2) Γ ((p+ s)/2)
Γ (r/2) Γ (s/2)

)1/p

.
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Consider now the case p = r. From (2.54) we have

[ẽran
k (A, p)]p = apγ

∫ 1

0
tp+s−1(1− t2)(n−p−s)/2

[∫ 1

0

bp−1(1− b2)n/2

[b2 + a2t2(1− b2)]p/2
db

]
dt, (2.55)

We expand bp−1(1 − b2)n/2 as bp−1 − (n/2)bp+1 + O
(
bp+3

)
. Since [b2(1 − a2t2) + a2t2]p/2 behaves as

bp + o
(
a2t2

)
, it is sufficient to consider the first two terms of the expansion. As a approaches zero, we

have ∫ 1

0

bp−1(1− b2)n/2

[b2(1− a2t2) + a2t2]p/2
db =

=
∫ 1

0

bp−1

[b2(1− a2t2) + a2t2]p/2
db+O

(∫ 1

0

bp+1

[b2(1− a2t2) + a2t2]p/2
db

)

=
∫ 1

0

bp−1

(b2 + a2t2)p/2
db+O

(∫ 1

0
b db

)
Observe that (b2 + a2t2)p/2 = bp + (p/2)b2(p/2−1)a2t2(1 + o (1)) as a → 0. Then from the last equation

we have ∫ 1

0

bp−1

(b2 + a2t2)p/2
db+O

(∫ 1

0
b db

)
=

=
∫ 1

0

bp−1

bp−2 (b2 + p/2 a2t2)
db+O (1)

=
∫ 1

0

b

b2 + p/2 a2t2
db+O (1)

=
1
2

ln
(
b2 +

p

2
a2t2

)∣∣∣∣1
0

+O (1)

= ln

(√
2

pa2t2

)
(1 + o (1)).

Substituting this equality into (2.55) we get

[ẽran
k (A, p)]p = apγ

∫ 1

0
tp+s−1(1− t2)(n−p−s)/2 ln

(√
2

pa2t2

)
dt

= ap
γ

4
ln
(

2
pa2

)
B

(
p+ s

2
,
n− p− s

2
+ 1

)
+O (ap) .

If we replace the expression for γ in the last equation, from (2.53) we obtain

lim
k→+∞

eran (uPow
k , A, p)

xkr+1(2k)1/r [ln (1/xr+1)]1/r
=
(

Γ ((p+ s)/2)
Γ (p/2) Γ (s/2)

)1/p

.

The last case is p > r. We want to compute the limit

lim
x→+∞

eran (uPow
k , A, p)

x
kr/p
r+1

=

[
lim

k→+∞

[ẽran
k (A, p)]p

xkrr+1

]1/p

From (2.54) we get

lim
k→+∞

[
eran (uPow

k , A, p)
]p

xkrr+1

= lim
a→0

[
eran (uPow

k , A, p)
]p

ar
=

= lim
a→0

ap−rγ

∫ 1

0
tp+s−1(1− t2)(n−r−s)/2

[∫ 1

0

br−1(1− b2)(n+p−r)/2

[b2 + a2t2(1− b2)]p/2
db

]
dt. (2.56)
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Observe that for a→ 0 we have∫ 1

0
ap−r

br−1(1− b2)(n+p−r)/2

[b2 + a2t2(1− b2)]p/2
db =

=
∫ 1

0
ap−r

br−1(1− b2)(n+p−r)/2

[b2 + a2t2]p/2
db

=
∫ 1

0
ap−r

br−1(1− b2)(n+p−r)/2

aptp (b2/(a2t2) + 1)p/2
db. (2.57)

We change variables by setting y = b/(at). Then the integral (2.57) becomes

1
tp−r

∫ 1/(at)

0

yr−1(1− a2t2y2)(n+p−r)/2

(y2 + 1)p/2
dy.

If we set z = y2, this integral can be transformed into

1
2tp−r

∫ 1/(a2t2)

0

zr/2−1(1− a2t2z)(n+p−r)/2

(z + 1)p/2
dz.

We substitute this integral into (2.56). We get

lim
k→+∞

[ẽran
k (A, p)]p

xkrr+1

= lim
a→0

[
eran (uPow

k , A, p)
]p

ar
=

=
γ

2

∫ 1

0
tr+s−1(1− t2)

n−r−s
2

[
lim
a→0

∫ 1
a2t2

0

z
r
2
−1(1− a2t2z)

n+p−r
2

(z + 1)
p
2

dz

]
dt. (2.58)

To find the limit of the last integral, we use the following bounds (for a < 1)∫ 1
at

0

z
r
2
−1(1− at)

n+p−r
2

(z + 1)
p
2

dz ≤
∫ 1

a2t2

0

z
r
2
−1(1− a2t2z)

n+p−r
2

(z + 1)
p
2

dz ≤
∫ 1

a2t2

0

z
r
2
−1

(z + 1)
p
2

dz.

Since

lim
a→0

∫ 1/(at)

0

zr/2−1(1− at)(n+p−r)/2

(z + 1)p/2
dz = lim

a→0

∫ 1/(a2t2)

0

zr/2−1

(z + 1)p/2
dz,

passing to the limit and then using [3.194, 3] of [GR94], we get

= lim
a→0

∫ 1/(a2t2)

0

zr/2−1

(z + 1)p/2
dz =

∫ +∞

0

zr/2−1

(z + 1)p/2
dz = B

(
r

2
,
p− r

2

)
.

Hence, we also have

lim
a→0

∫ 1/(a2t2)

0

zr/2−1(1− a2t2z)(n+p−r)/2

(z + 1)p/2
dz = B

(
r

2
,
p− r

2

)
.

From (2.58), we get

lim
k→+∞

[
eran (uPow

k , A, p)
]p

xkrr+1

=

=
γ

2
B

(
r

2
,
p− r

2

) ∫ 1

0
tr+s−1(1− t2)(n−r−s)/2dt

=
Γ ((p− r)/2) Γ ((r + s)/2)

Γ (p/2) Γ (s/2)
.

This concludes the proof. 2
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Theorem 2.4.3 shows that upper and lower bounds provided in Section 2.4.1 and 2.4.2 are asymptot-

ically optimal. In fact, the analysis of the asymptotic case indicates that the upper and lower bounds

cannot be improved since the constants coincide with those of the upper bound when we set the mul-

tiplicity of the second largest eigenvalue to n − r, and with those of the lower bound for s = 1. The

constants increase with s and 1/r. This corresponds to the intuitive idea that the convergence is fast if

the eigenspace Z1 is large, and is slow if the eigenspace corresponding to the second largest eigenvalue

is large. Note that if p approaches infinity, the rate of convergence approaches 1 and even the constant

converges to 1. This agrees with (2.30) for p =∞.

2.5 Discussion

Theorems 2.2.3 and 2.2.4 as well as Theorems 2.4.1 and 2.4.2 show how the randomized errors depend

on the ratio λr+1/λ1. In addition, these theorems describe the actual behavior of the rate of convergence

for every k, p and r. We notice that only when p < r (respectivelly 2p < r for eigenvalue estimate), we

have the same rate of convergence as in the asymptotic deterministic case with
∑r
i=1 b

2
i 6= 0. For the

other two cases, p = r and p > r (2p = r and 2p > r respectivelly for eigenvalue), the rate convergence

is slower. This is due to the fact that these theorems deal with the randomized case. So, in order to

compute the randomized error we have to integrate over all possible starting vectors, even those for

which the power method does not converge or converges very slowly.

To give an intuitive idea about the difference in the rate of convergence between the asymptotic

deterministic case and the randomized case, let us analyze the error for p = 1 for the eigenvector

approximation. In this case we have only two possibilities: r > p or r = p = 1. Assuming
∑r
i=1 b

2
i 6= 0,

we have

inf
v∈Z1

‖uPow
k − v‖ = sin(αk(b)) =

(
λr+1

λ1

)k√b2r+1 + · · ·+ b2r+s
b21 + · · ·+ b2r

+ o

((
λr+1

λ1

))
,

where s is the multiplicity of the second largest eigenvalue.

If r = 1, the expected value of sin(αk(b)) with respect to b cannot be proportional to (λ2/λ1)k since

∫
‖b‖=1

√
b22 + · · ·+ b2s+1

b21
µ(db) = +∞.

A more careful analysis shows that we have to lose a factor proportional to ln(λ1/λ2)2k in order to

achieve the convergence of the integral. For r ≥ 2,

∫
‖b‖=1

√
b2r+1 + · · ·+ b2r+s
b21 + · · ·+ b2r

µ(db) < +∞,

so we have a rate of convergence proportional to (λr+1/λ1)k as in the deterministic case. The explanation

of the general case p ≥ 1 is similar.

Analyzing together upper and lower bounds we have a complete behavior of the power method for

computing a largest eigenvector. In fact, for every p and r, upper and lower bounds exhibit the same

dependence on λr+1/λ1 and on k.
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We now comment on the bounds proposed by Kostlan in [Kos88].

Kostlan estimates the number of steps required by the power method to give a dominant ε-eigen-

vector, averaged over all the possible starting vector. However, he considers another error criterion,

so that it is not easy to compare these bounds with our bounds. In particular, we use the Euclidean

distance where in [Kos88] the Rimannian distance is considered. Moreover, we study the error in the

Lp case, while Kostlan simply integrate the error over the all possible starting vectors.

2.6 Numerical Experiments

We tested the power method for several matrices with many pseudo-random starting vectors b. The

matrix A can be chosen as follows. As before, let ξPow
k (A,b) and uPow

k (A,b) be the approximation

of λ1 after k steps of the power method and the vector computed by the power method applied to

the matrix A with starting vector b respectivelly. Observe that for any orthogonal matrix Q, we have

uk(QTAQ, QTb) = uk(A, b). Moreover, the uniform distribution on the unit sphere of the vectors b

implies the same distribution of vectors QTb. So, without loss of generality, we can restrict ourselves

only to consider diagonal matrices, see also [KW92a] and [KW94]. Vectors uniformly distributed over

the unit sphere can be generated as described in [Knu81], [KW92a] and [KW94].

The tests were performed on a Sun SPARCsystem 10 using double precision. To compute the values

of the hypergeometric and the gamma functions we used the program Mathematica.

We tested many different matrices of size 100 with the distributions of the eigenvalues chosen as

in [KW94]. We tested the following distributions:

• Chebyshev distribution: λ1 = · · · = λr = 1 + cos(π/200), λr+i = 1 + cos(( (2i− 1)π)/200);

• quadratic distribution 1: λ1 = · · · = λr = 2 (1− 1/101)2, λr+i = 2 (1− i/101)2;

• quadratic distribution 2: λ1 = · · · = λr = 2(1− (1/101)2), λr+i = 2(1− (i/101)2);

• uniform distribution: λ1 = · · · = λr = 2(1− 1/101), λr+i = 2(1− i/101);

• logarithmic distribution: λ1 = · · · = λr = 2 log(101)/ log(102), λr+i = 2 log(102− i)/ log(102);

• exponential distribution 1: λ1 = · · · = λr = 2 e−1; λr+i = 2 e−
3√i;

• exponential distribution 2: λ1 = · · · = λr = 1 + e−1, λr+i = 1 + e−i.

From the theoretical bounds, see Theorems 2.2.3, 2.2.4, 2.4.1 and 2.4.2, it turns out that the behavior of

the power method depends on the relation between r and p. We tested the power method for different

values of p and r for a fixed ratio between the two largest eigenvalues.

The main goal of these tests was to verify the upper and lower bounds and to see how much they

differ from the experimental values.

In order to approximate the randomized errors eran (ξPow
k , A, p) and eran (uPow

k , A, p) we have used

1,000 pseudo-random vectors b generated in accorrdance with the propcedure described in Section 1.1.
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k εran(ξPow
k , A, p) εub(ξPow

k , A, p) εub(ξPow
k , A, p) εran(uPow

k , A, p) εub(uPow
k , A, p) εub(uPow

k , A, p) p

10 2.456e− 02 1.466e− 04 1.216e+ 01 9.737e− 01 4.782e− 01 7.998e+ 00 1

100 2.857e− 03 1.423e− 04 1.184e+ 01 9.111e− 01 4.850e− 01 7.992e+ 00 1

1000 3.457e− 04 1.096e− 04 9.086e+ 00 7.114e− 01 5.185e− 01 7.685e+ 00 1

10 2.512e− 02 1.039e− 04 2.441e+ 00 9.735e− 01 6.457e− 01 3.522e+ 00 2

100 3.156e− 03 1.035e− 04 2.409e+ 00 9.239e− 01 6.394e− 01 3.474e+ 00 2

1000 4.127e− 04 9.893e− 05 2.110e+ 00 7.383e− 01 5.799e− 01 3.035e+ 00 2

10 2.951e− 02 6.440e− 05 1.065e+ 00 9.779e− 01 2.712e− 01 1.129e+ 00 10

100 4.456e− 03 6.503e− 05 1.063e+ 00 9.412e− 01 2.729e− 01 1.127e+ 00 10

1000 8.194e− 04 7.120e− 05 1.035e+ 00 8.675e− 01 2.902e− 01 1.097e+ 00 10

Table 2.1: Quadratic distribution 2.

So, the randomized errors are replaced by the mean values among the 1,000 pseudo-random vectors, i.e.

εran(ξPow
k , A, p) =

 1
1, 000

1,000∑
i=1

λ1 − ξPow
k

λ1

1/p

, (2.59)

εran(uPow
k , A, p) =

 1
1, 000

1,000∑
i=1

sinp(αk(bi))

1/p

. (2.60)

Let εub(ξPow
k , A, p) and εub(ξPow

k , A, p) denote the lower and upper bound computed in accordance with

theorems 2.2.4 and 2.2.3 respectively, and let εub(uPow
k , A, p) and εub(uPow

k , A, p) denote the lower and

the upper bounds computed using formulas given by Theorems 2.4.2 and 2.4.1. Finally, k and p are the

number of iterations and the parameter of the norm, respectively. Each table contains both randomized

errors for eigenevalue and eigenvector approximation. In the first column is reported the number k of

iterations, the second column contains the value εran(ξPow
k , A, p) defined in equation (2.59), third and

forth column contain the theoretical upper and lower bounds εub(ξPow
k , A, p) and εub(ξPow

k , A, p). In the

right hand side of the table we report the same quantities referred to eigenvector approximation. In the

last column we report the value of the norm parameter p.

In order to underline the dependence of the rate of convergence on the ratio between the two largest

eigenvalues we report the results obtained for the quadratic distribution 2, see Table 2.1, and the

exponential distribution 1, see Table 2.2. In fact, these distributions are those (among the different

distributions considered) for which we have the largest (the smallest) ratio between λ2 and λ1 and then

the slowest (the fastest) convergence, respectively.

From Table 2.1 we see that for three different values of p, even after 1,000 iterations the randomized

error for the approximation of the dominat eigenvector is still very close to 1, for the eigenvalue estimate

the error is lower. An important observation concerns the lower and upper bounds. We notice that the

lower bounds are good approximations of the expected values εran(ξPow
k , A, p) and εran(uPow

k , A, p) while

the upper bounds are clearly overestimates. This is due to the following reasons:

1. The constants in the upper bounds, see Theorem 2.2.3 and 2.4.1, grow with the size of the matrix.
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k εran(ξPow
k , A, p) εub(ξPow

k , A, p) εub(ξPow
k , A, p) εran(uPow

k , A, p) εub(uPow
k , A, p) εub(uPow

k , A, p) p

10 1.812e− 02 8.507e− 03 9.004e− 01 1.770e− 01 1.698e− 01 2.124e+ 00 1

30 1.390e− 04 4.700e− 05 4.975e− 03 2.432e− 03 2.300e− 03 2.864e− 02 1

10 5.161e− 02 3.934e− 02 6.621e− 01 2.509e− 01 2.368e− 01 9.616e− 01 2

30 5.270e− 03 3.276e− 03 4.921e− 02 2.468e− 02 2.006e− 02 7.148e− 02 2

10 1.532e− 01 8.194e− 02 8.164e− 01 6.801e− 01 3.888e− 01 8.715e− 01 10

30 1.150e− 01 7.455e− 02 4.854e− 01 3.562e− 01 3.421e− 01 5.182e− 01 10

Table 2.2: Exponential distribution 1 with r = 1.

k εran(ξPow
k , A, p) εub(ξPow

k , A, p) εub(ξPow
k , A, p) εran(uPow

k , A, p) εub(uPow
k , A, p) εub(uPow

k , A, p) p

10 5.171e− 02 1.107e− 02 1.823e+ 00 4.100e− 01 1.276e− 01 1.920e+ 00 1

30 3.117e− 05 1.525e− 05 2.427e− 03 3.765e− 03 3.693e− 03 4.622e− 02 1

10 7.429e− 02 9.315e− 03 2.921e− 01 4.593e− 01 1.570e− 01 3.650e+ 00 2

30 8.112e− 04 4.103e− 04 7.031e− 03 7.979e− 03 7.511e− 03 1.245e− 01 2

10 1.663e− 01 3.632e− 02 2.195e− 01 6.904e− 01 2.472e− 01 8.850e− 01 10

30 3.251e− 02 3.004e− 02 1.042e− 01 2.551e− 01 1.950e− 01 4.200e− 01 10

Table 2.3: Exponential distribution 2 with r = 2.

2. Since the ratio x2 = λ2/λ1 is very close to 1, xk2 goes very slowly to 0 with k. In this case, the

upper bound is more sensitive of the big multiplicative constants.

Table 2.2 is more interesting since it allows us to see the dependence of the speed of convergence on

p and r. The speed of convergence is now good. In fact, after only 30 iterations we get an error of the

order of 10−4 for eigenvalue and 10−3 for eigenvector when p = r = 1. In this case, we have also that

the upper and lower bounds are relatively close to each other, and that the randomized error for k = 30

is very close to the theoretical bounds.

In general, it is possible to observe that the values of εran(ξPow
k , A, p) and εran(uPow

k , A, p) computed

with these tests are very close to the theoretical lower bounds while they are more distant from the

upper bounds even for small λr+1/λ1. This is due to the importance of the multiplicity s of λr+1,

as it turns out from the asymptotic constants of Theorem 2.4.3. Experimental results prove that the

power method behaves differently for matrices with the same two largest eigenvalues but with different

multiplicities. In particular, increasing s we get bounds closer to the upper bounds.

To understand the role of p and r, we have performed tests with matrices for which the multiplicity

of the largest eigenvalue is r ≥ 2. In Table 2.3 we report the results for the exponential distribution 2

with r = 2.

An important observation concerns the comparison between the three cases, 2p < r, 2p = r and

2p > r (respectively p < r, p = r and p > r for eigenvector). From Table 2.3 it is easy to see that

for the same value of k, the rates of convergence are different. For example, for k = 30 we have that

εran(uPow
k , A, p) is of the order of 10−3 for p ≤ r, and of order 10−1 for p > r.

We performed also tests with matrices with only two distinct eigenvalues. These tests indicate
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the asymptotic dependence of the randomized error on the multiplicity s of the second eigenvalue. In

particular, they show that the randomized errors are closer to the upper bounds εub(ξPow
k , A, p) and

εub(uPow
k , A, p) when s is big. This is an important consequence of Theorem 2.4.3.

43



Chapter 3

The Lanczos and Polynomial Methods

3.1 Worst Case Results

This chapter is devoted to the study of the randomized error of the Lanczos method and of other

polynomial methods (see Chapter 1 for definitions).

The analysis of the Lanczos method for eigenvalue and eigenvector estimate is much harder than

that of the power method, even in the deterministic case.

Saad [Saa80] proved upper bounds for the Lanczos method in the symmetric case. For completeness

we report here two theorems. Theorem 3.1.1 refers to the eigenvalue approximation, Theorem 3.1.2 to

eigenvector estimate. The proofs can be found in [Saa80] or in [Saa92].

Theorem 3.1.1 [Saa92] p. 201 The relative error of estimating the largest eigenvalue λ1 by the

k − th approximation ξLan
k returned by the Lanczos method satisfies the following inequality

λ1 − ξLan
k

λ1
≤
(

1− λn
λ1

)(
tan θ(b,Z1)
Tk(1 + 2ρ)

)2

,

where Tk is the k-th Chebyshev polynomial of first kind, θ(b,Z1) is the angle between the starting vector

b and the eigenspace corresponding to λ1, and

ρ =
λ1 − λr+1

λr+1 − λn
.

2

Theorem 3.1.2 [Saa92] p. 203 Let uLan
k be the vector returned by the Lanczos method after k steps

as approximation of an eigenvector in Z1. Let ξ(k)
i , i = 1, 2, . . . , k, be the eigenvalues of the matrix

QTkAQk, where Qk is an orthogonal basis of Kk. Let θ(uLan
k ,Z1) be the acute angle between the vector

uLan
k and the eignspace Z1. Then we have the following bound

inf
v∈Z1

‖uLan
k − v‖ ≤

√
1 + γ2

k+1/δ

Tk(1 + 2ρ)
tan θ(b,Z1),
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where δ = mini 6=1 ‖λ1− ξ(k)
i ‖, and γk+1 = ‖(I−Rk)ARk‖ where Rk is the orthogonal projector onto Kk.

2

These two theorems show that the error in the estimate of λ1 and of an eigenvector in the space

Z1, depends on the eigenvalues of the matrix and on the starting vector b. In particular, when the

starting vector is orthogonal to Z1, the bounds are infinity. Moreover, the dependence on k is through

the Chebyshev polynomial computed at the value 1+2ρ. We see that, when ρ = (λ1−λr+1)/(λr+1−λn)

goes to zero, the argument of the polynomial Tk goes to 1 and that the bounds do not decrease with k.

This shows that the speed of convergence of the Lanczos method depends on the particular distribution

of the eigenvalues.

The rest of this chapter is organized as follows. Section 3.2 reports results about eigenvector estimate.

We first comment about the impossibility to bound the randomized error with a quantity that goes to

zero when k < n but that is independent of the particular matrix. This result holds for every polynomial

method. We then give distribution dependent bounds. In Section 3.4 we report distribution free bounds

as well as distribution dependent bounds for eigenvalue estimate. Finally, Section 3.5 contains numerical

experiments.

The result of this chapter are mainly contained in [dCM96].

3.2 Best Eigenvector Approximation

In this section we analyze the behavior of the best polynomial method B introduced in Section 1.1,

equation (1.3). The main result of this section is the computation of the supremum of the Lp randomized

error over all positive definite matrices. In Chapter 2 the same problem has been analyzed for the

power method. It is shown that there are matrices for which the distribution of the eigenvalues is

so bad that the power method does not converge, even for a random starting vector. In [LW96] the

analysis is generalized to all polynomial methods showing that there exists an n × n matrix for which

all polynomial methods fail in the approximation of an eigenvector in Z1, unless n steps are performed.

This “worst case” matrix has a unique largest eigenvalue but the others are pathologically close to λ1.

Hence, polynomial methods are not able to distinguish between the eigenspace Z1 and the eigenspace

corresponding to the second largest eigenvalue. In [LW96] the randomized error is considered only in

the L2 case. The goal of this section is to generalize this result to the Lp case, for 1 ≤ p < +∞. In

addition, we prove an upper bound on the randomized error of the method B which shows how the

distribution of the eigenvalues affects the speed of convergence.

Theorem 3.2.1 Let An denote the class of all n× n positive definite matrices.

a) For k < n we have

sup
A∈An

eran
(
uBk , A, p

)
=
(

Γ ((n− k + 1)/2) Γ ((n+ p− k)/2)
Γ ((n− k)/2) Γ ((n+ p− k + 1)/2)

)1/p

.

b) For k ≥ n the method B has zero randomized error.
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Let us comment on this theorem. Observe that the value(
Γ ((n− k + 1)/2) Γ ((n+ p− k)/2)
Γ ((n− k)/2) Γ ((n+ p− k + 1)/2)

)1/p

(3.1)

is decreasing with k since k > h implies Kh ⊂ Kk. For k = n− 1 the value in (3.1) becomes(
Γ ((p+ 1)/2)

Γ (1/2) Γ (p/2 + 1)

)1/p

=
(

2 Γ ((p+ 1)/2)
π1/2 pΓ (p/2)

)1/p

. (3.2)

Hence, even for k = n− 1 there are matrices for which the best polynomial method B fails.

Proof of Theorem 3.2.1. Part b) follows by observing that eran (uLan
k , A, p) = 0 (it will be proven in

Theorem 3.3.1), and eran
(
uBk , A, p

)
≤ eran (uLan

k , A, p).

To prove 1 part a), assume k < n, and let r denote the multiplicity of the largest eigenvalue λ1. Let

b =
∑n
i=1 bizi. An arbitrary vector uk ∈ Kk with ‖uk‖ = 1 can be written as

uk =
∑n
i=1 biP (λi)zi√∑n
i=1 b

2
iP

2(λi)
,

where P is a polynomial of degree at most k − 1. We have

inf
v∈Z1

‖uk − v‖ =

(∑n
i=r+1 b

2
iP

2(λi)∑n
i=1 b

2
iP

2(λi)

)1/2

. (3.3)

Let Pk denote the class of all polynomials of degree at most k − 1. By (1.3) and (3.3) we have that uBk
satisfies

inf
v∈Z1

‖uBk − v‖ = min
P∈Pk

(∑n
i=r+1 b

2
iP

2(λi)∑n
i=1 b

2
iP

2(λi)

)1/2

. (3.4)

By (1.4) we have,

eran
(
uBk , A, p

)
=

∫
‖b‖=1

min
P∈Pk

(∑n
i=r+1 b

2
iP

2(λi)∑n
i=1 b

2
iP

2(λi)

)p/2
µ(db)

1/p

.

Using a continuity argument we may restrict ourselves to polynomials P that are not equal to zero in

λ1. Let Q(t) = P (tλ1)/P (λ1). The polynomial Q belongs to Pk and we have that Q(1) = 1. Let Pk(1)

denote the class of polynomial of degree at most k − 1 that takes 1 at 1. For xi = λi/λ1, from the

previous equality we have

eran
(
uBk , A, p

)
=

∫
‖b‖=1

min
Q∈Pk(1)

( ∑
i=r+1 b

2
iQ

2(xi)∑r
i=1 b

2
i +

∑n
i=r+1 b

2
iQ

2(xi)

)p/2
µ(db)

1/p

.

Let Q∗ be the polynomial in Pk(1) that minimizes the integrand value. We want to prove that

sup
A∈An

∫
‖b‖=1

( ∑
i=r+1 b

2
iQ
∗(xi)2∑r

i=1 b
2
i +

∑n
i=r+1 b

2
iQ
∗(xi)2

)p/2
µ(db)

1/p

=

∫
‖b‖=1

( ∑n−k+1
i=2 b2i

b21 +
∑n−k+1
i=2 b2i

)p/2
µ(db)

1/p

.

(3.5)

1The first part of this proof is a generalization of the L2 proof due to Leyk and Woźniakowski [LW96].
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In order to prove (3.5) we first note that for the worst possible Equality (3.5) can be proven by simply

applaying the same reasoning of [LW96] to the Lp case.

The problem is then reduced to the solution of the following integral

S =
∫
‖b‖=1

( ∑n−k+1
i=2 b2i

b21 +
∑n−k+1
i=2 b2i

)p/2
µ(db). (3.6)

Since the integrand function satisfies the assumptions of equality (1.9), we have

S =
1
cn

∫
Bn

( ∑n−k+1
i=2 b2i

b21 +
∑n−k+1
i=2 b2i

)p/2
db. (3.7)

Integrating with respect to the last k − 1 variables, we get

S =
ck−1

cn

∫
Bn−k+1

( ∑n−k+1
i=2 b2i

b21 +
∑n−k+1
i=2 b2i

)p/2(
1−

n−k+1∑
i=1

b2i

)(k−1)/2

db (3.8)

Rewriting last integral as an integral over the balls B1 = {b1, b21 ≤ 1} and the (n− k)-dimensional ball

B′ of radius
√

1− b21, we get

S =
ck−1

cn

∫
B1

∫
B′

‖b‖p

(b21 + ‖b‖2)p/2
(
1− b21 − ‖b‖2

)(k−1)/2
db, (3.9)

where ‖b‖2 =
∑n−k+1
i=2 b2i .

Let ti = bi/
√

1− b21, for i = 2, . . . , n− k + 1, and let ‖t‖2 =
∑n−k+1
i=2 t2i = ‖b‖2/(1− b21). We rewrite

equation (3.9) as follows

S =
ck−1

cn

∫
B1

∫
Bn−k

‖t‖p(1− b21)p/2(1− b21)(k−1)/2(1− t2)(k−1)/2(1− b21)(n−k)/2

(b21 + ‖t‖2(1− b21))p/2
dt db1. (3.10)

Applying two times formula [4.642] of [GR94] we get

S = γ

∫ 1

0

∫ 1

0

tn−k+p−1(1− t2)(k−1)/2(1− b2)(n+p−1)/2

(b2 + t2(1− b2))p/2
dt db

= γ

∫ 1

0
tn−k+p−1(1− t2)(k−1)/2

∫ 1

0

(1− b2)(n+p−1)/2

(b2 + t2(1− b2))p/2
db dt (3.11)

where γ = 2ck−1(n− k)cn−k/cn.

Setting z = (1− b2), equation (3.11) can be rewritten as

S =
γ

2

∫ 1

0
tn−k+p−1(1− t2)(k−1)/2

∫ 1

0

z(n+p−1)/2

(1− z)1/2(1− (1− t2)z)p/2
dz dt. (3.12)

Let us consider the double integral in (3.12). We notice that the first integral can be thought of as an

integral over the open interval (0, 1). Hence, we can apply formula [3.197, 3] of [GR94] to the second

integral since condition (1− t2) < 1 holds. We get

S =
γ

2
B

(
n+ p+ 1

2
,
1
2

)∫ 1

0
tn−k+p−1(1− t2)(k−1)/2F

(
p

2
,
n+ p+ 1

2
,
n+ p

2
+ 1; 1− t2

)
dt.
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Changing variables by setting z = 1− t2, we get

S = γ′
∫ 1

0
z(k−1)/2(1− z)(n−k+p)/2+1F

(
(
p

2
,
n+ p+ 1

2
,
n+ p

2
+ 1; z

)
dz,

where γ′ = γ/4B ((n+ p+ 1)/2, 1/2). Applying formula [7.512, 3] we have

S = γ′
Γ ((n+ p)/2 + 1) Γ ((k + 1)/2) Γ ((n+ p− k)/2) Γ ((n− k + 1)/2)

Γ ((n+ p+ 1)/2) Γ (n/2 + 1) Γ ((n+ p− k + 1)/2)

=
Γ ((n+ p− k)/2) Γ ((n− k + 1)/2)
Γ ((n− k)/2) Γ ((n+ p− k + 1)/2)

,

which proves the theorem. 2

Theorem 3.2.1 establishes the behavior of the best algorithm for the “worst” positive definite matrix.

It is interesting to study the randomized error also for matrices whose eigenvalues are not so badly

distributed. The following theorem gives us an upper bound on the randomized error as a function of

the difference between the two largest eigenvalues.

Theorem 3.2.2 For any symmetric positive definite matrix A, let m denote the number of distinct

eigenvalues, let r, r < n−m+ 1 be the multiplicity of the largest eigenvalue λ1, and let λr+1 and λn be

the second largest and the smallest eigenvalue of A. Then for every p, 1 ≤ p < +∞, we have

for k ≥ m,

eran
(
uBk , A, p

)
= 0

and for k < m,

eran
(
uBk , A, p

)
≤



fk (λ1, λr+1, λn)
(

Γ ((r − p)/2) Γ ((n− r − p)/2)
Γ (r/2) Γ ((n− r)/2)

)1/p

for p < r

fk (λ1, λr+1, λn) ln1/p(fk (λ1, λr+1, λn))
(

Γ (n/2)
Γ (p/2) Γ ((n− r)/2)

)1/p

+ β for p = r

[fk (λ1, λr+1, λn)]r/p
(

Γ (n/2) Γ ((p− r)/2)
Γ (p/2) Γ ((n− r)/2)

)1/p

for p > r,

where fk (λ1, λr+1, λn) is defined in (3.24), and Tk is the Chebyshev polynomial of the first kind of degree

k − 1.

Before giving the proof, it is worth to comment on this theorem. The first part tells us that, when the

number of iterations k reaches the number of distinct eigenvalues, the randomized error vanishes no

matter how the eigenvalues are distributed. The second part shows that, when the two largest eigenval-

ues are well separated, the randomized error quickly decreases with k (in fact fk (λ1, λr+1, λn) ' α−k

for a constant α > 1). Moreover, we observe that we have three different behaviors of the randomized

error depending on the relation between p and r.

We have not been able to find lower bounds, hence we still do not know if the relation between

p and r is intrinsic for the problem or if the three cases above are due to our inability to bound

multi-dimensional integrals.
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Proof of Theorem 3.2.2. In the next section (see Theorem 3.3.1) we prove that, for k ≥ m,

eran (uLan
k , A, p) = 0. Then, we have

eran
(
uBk , A, p

)
≤ eran (uLan

k , A, p) = 0.

We now consider the case k < m. We have already observed that

uBk =
∑n
i=1 biP

∗(λi)zi√∑n
i=1 b

2
iP
∗(λi)2

, (3.13)

where P ∗ is the polynomial in Pk for which the minimum in (3.4) is achieved. By setting xi = λi/λ1

and Q∗(t) = P ∗(λ1t)/P ∗(λ1), the randomized error can be written as

eran
(
uBk , A, p

)
=

∫
‖b‖=1

( ∑n
i=r+1 b

2
iQ
∗(xi)2∑r

i=1 b
2
i +

∑n
i=r+1 b

2
iQ
∗(xi)2

)p/2
µ(db)

1/p

. (3.14)

Denote by Pk(1) the class of all polynomials of degree at most k − 1 that are equal to 1 in 1. Then,

by (1.3) we have

eran
(
uBk , A, p

)
=

∫
‖b‖=1

min
Q∈Pk(1)

( ∑n
i=r+1 b

2
iQ

2(xi)∑r
i=1 b

2
i +

∑n
i=r+1 b

2
iQ

2(xi)

)p/2
µ(db)

1/p

(3.15)

=

∫
‖b‖=1

min
Q∈Pk(1)

(
1−

∑r
i=1 b

2
i∑r

i=1 b
2
i +

∑n
i=r+1 b

2
iQ

2(xi)

)p/2
µ(db)

1/p

.

Thus, the polynomial Q∗ that minimizes the error eran
(
uBk , A, p

)
is such that

n∑
i=r+1

b2iQ
∗(xi)2 = min

Q∈Pk(1)

n∑
i=r+1

b2iQ
2(xi).

We have

min
Q∈Pk(1)

n∑
i=r+1

b2iQ
2(xi) ≤ min

Q∈Pk(1)
max

t∈[xn,xr+1]

n∑
i=r+1

b2iQ
2(t)

=

[
min

Q∈Pk(1)
max

t∈[xn,xr+1]
|Q(t)|

]2 n∑
i=r+1

b2i . (3.16)

From the Minimax Theorem (see 1.1.1) we have that

min
Q∈Pk(1)

max
t∈[xn,xr+1]

|Q(t)| = 1∣∣∣Tk (1 + 2 λ1−λr+1

λr+1−λn

)∣∣∣ ,
where Tk is the Chebyshev polynomial of the first kind of degree k − 1.

Let

fk (λ1, λr+1, λn) =
1∣∣∣Tk (1 + 2 λ1−λr+1

λr+1−λn

)∣∣∣ .
By (3.16) we get

min
Q∈Pk(1)

n∑
i=r+1

b2iQ
2(xi) ≤ fk (λ1, λr+1, λn)

n∑
i=r+1

b2i . (3.17)
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Using (3.17) we upper bound (3.15) as follows

[eran
(
uBk , A, p

)
]p ≤

∫
‖b‖=1

(
fk (λ1, λr+1, λn)

∑n
i=r+1 b

2
i∑r

i=1 b
2
i + fk (λ1, λr+1, λn)

∑n
i=r+1 b

2
i

)p/2
db. (3.18)

The theorem now follows from the upper bounds proven in Lemma 2.1.2. 2

3.3 Eigenvector Approximation by Lanczos Method

In this section we consider the Lanczos method for eigenvector estimate. In view of Theorem 3.2.1

we know that we cannot have distribution-free bounds. Therefore, we prove a result analogous to

Theorem 3.2.2 which bounds the rate of convergence of Lanczos method in terms of the relative distances

between the eigenvalues. Note that this theorem shows the substantial equivalence between the Lanczos

method and the best polynomial method B.

Theorem 3.3.1 Let uLan
k be the vector returned by the Lanczos method after k steps. For any symmetric

positive definite matrix A, let m denote the number of distinct eigenvalues, and let r, r < n−m+ 1, be

the multiplicity of the largest eigenvalue λ1, and let λr+1 and λn be the second largest and the smallest

eigenvalue of A. Then, for every p, 1 ≤ p < +∞, we have

for k ≥ m,

eran (uLan
k , A, p) = 0

and for k < m,

eran
(
uBk , A, p

)
≤ eran (uLan

k , A, p) ≤
√

λ1 − λn
λ1 − λr+1

eran
(
uBk , A, p

)
.

Proof. To prove that eran (uLan
k , A, p) = 0 when k ≥ m, we use Theorem 5 of [LW96] where this result

is proven for p = 2. The generalization to the Lp case is straightforward.

Assume now that k < m. Obviously we have eran
(
uBk , A, p

)
≤ eran (uLan

k , A, p). Let b =
∑n
i=1 bizi

denote the initial vector. By definition of the Lanczos method we have

uLan
k =

∑n
i=1 biP

∗(λi)xi√∑n
i=1 b

2
iP
∗(λ1)2

,

where P ∗ is the polynomial in Pk which maximizes the Rayleigh quotient. Thus∑n
i=1 b

2
iλiP

∗(λi)2∑n
i=1 b

2
iP
∗(λi)2

= max
P∈Pk

∑n
i=1 b

2
iλiP

2(λi)∑n
i=1 b

2
iP

2(λi)
.

Equivalently, P ∗ minimizes the relative error for the approximation of λ1, that is∑n
i=r+1 b

2
iP
∗(λi)2(1− λi/λ1)∑n

i=1 b
2
iP
∗(λi)2

= min
P∈Pk

∑n
i=r+1 b

2
iP

2(λi)(1− λi/λ1)∑n
i=1 b

2
iP

2(λi)
. (3.19)

By (1.4), setting xi = λi/λ1 and Q∗(t) = P ∗(λ1t)/P ∗(λ1), we get

eran (uLan
k , A, p) =

∫
‖b‖=1

( ∑n
i=r+1 b

2
iQ
∗(xi)2∑r

i=1 b
2
i +

∑n
i=r+1 b

2
iQ
∗(xi)2

)p/2
µ(db)

1/p

. (3.20)
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We have

[eran (uLan
k , A, p)]p =

∫
‖b‖=1

∑n
i=r+1 b

2
iQ
∗(xi)2(1− xi) 1

(1−xi)∑r
i=1 b

2
i +

∑n
i=r+1 b

2
iQ
∗(xi)2

p/2 µ(db)

≤ 1
(1− xr+1)p/2

∫
‖b‖=1

( ∑n
i=r+1 b

2
iQ
∗(xi)2(1− xi)∑r

i=1 b
2
i +

∑n
i=r+1 b

2
iQ
∗(xi)2

)p/2
µ(db)

=
1

(1− xr+1)p/2

∫
‖b‖=1

(
min

Q∈Pk(1)

∑n
i=r+1 b

2
iQ

2(xi)(1− xi)∑r
i=1 b

2
i +

∑n
i=r+1 b

2
iQ

2(xi)

)p/2
µ(db),(3.21)

where (3.21) follows from 3.19 by setting Q(t) = P (λ1t)/P (λ1). Since

min
Q∈Pk(1)

∑n
i=r+1 b

2
iQ

2(xi)(1− xi)∑r
i=1 b

2
i +

∑n
i=r+1 b

2
iQ

2(xi)
≤ (1− xn) min

Q∈Pk(1)

∑n
i=r+1 b

2
iQ

2(xi)∑r
i=1 b

2
i +

∑n
i=r+1 b

2
iQ

2(xi)
,

using (3.15) we get

eran (uLan
k , A, p) ≤

(
1− xn

1− xr+1

)1/2
∫
‖b‖=1

(
min

Q∈Pk(1)

∑n
i=r+1 b

2
iQ

2(xi)∑r
i=1 b

2
i +

∑n
i=r+1 b

2
iQ

2(xi)

)p/2
µ(db)

1/p

=

√
λ1 − λn
λ1 − λr+1

eran
(
uBk , A, p

)
.

2

The randomized error eran (uLan
k , A, p) has been studied in [LW96] for p = 2. Since we take into

account the multiplicity r of λ1, we obtain tighter estimates. For r ≥ 2, we get asymptotically (with

respect to k) better bounds; for r = 1, we get the same asymptotic behavior but with a smaller constant.

3.4 Eigenvalue Approximation by The Lanczos Method

We already underlined in Chapter 1 that the Lanczos method is the method, among polynomial al-

gorithms, that better approximates the largest eigenvalue λ1. In fact the value ξLan
k returned by the

method miximizes the Rayleigh quotient over the space Kk.
By equation (1.2), the randomized error in the Lp sense for eigenvalue estimate by the Lanczos

method is given by

eran (ξLan
k , A, p) =

(∫
Sn

(
min
P∈Pk

∑n
i=r+1 b

2
iP

2(λi)(1− λi/λ1)∑n
i=1 b

2
iP

2(λi)

)p
µ(db)

)1/p

=

(∫
Sn

(
min

Q∈Pk(1)

∑n
i=r+1 b

2
iQ

2(xi)(1− xi)∑r
i=1 b

2
i +

∑n
i=r+1 b

2
iQ

2(xi)

)p
µ(db)

)1/p

. (3.22)

As for the power method, also for the Lanczos method, it is possible to bound eran (ξLan
k , A, p) (see

Section (3.4.1)) by a quantity that does non depend on the eigenvalues of the matrix.
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3.4.1 Distribution free bounds

In this section we first report a theorem due to Kuczyński and Woźniakowski that gives a bound of

the randomized error eran (ξLan
k , A, 1) that is independent of the distribution of the eigenvalues but

that holds only for the L1 case. In Theorem 3.4.2 we generalize this result to the Lp case when the

multiplicity of the largest eigenvalue is known. Unfortunately, for the Lanczos method, is not very easy

to get lower bound, so we can only judge the goodness of our upper bound by comparing the theoretical

results with the values obtained from tests (see Section 3.5).

Theorem 3.4.1 [KW92a] Let ξLan
k be the value returned by the Lanczos method applied to the matrix

A after k steps. Let m denote the number of distinct eigenvalues of A. Then for k ≥ m

eran (ξLan
k , A, 1) = 0,

and, for k < m,

eran (ξLan
k , A, 1) ≤ 0.103

(
ln
(
n(k − 1)4

)
k − 1

)2

≤ 2.575
(

lnn
k − 1

)2

.

Proof. We refer to the paper of Kuczyński and Woźniakowski [KW92a] for the proof of this theorem.

2

Next theorem gives a distribution-free bound when the Lp norm is considered. We note that we have

three different upper bounds depending on the relation between the multiplicity r of λ1 and the norm

parameter p. The lack of lower bound does not allow us to find out if the Lanczos method follows these

different behaviors. We can only compare these bounds with the numerical bounds (see Section 3.5).

Theorem 3.4.2 Let ξLan
k be the value returned by the Lanczos method applied to the matrix A after k

steps. Let m denote the number of distinct eigenvalues of A, let r, r ≤ n−m+ 1, be the multiplicity of

the largest eigenvalue λ1. For any p ∈ [1,+∞) we have

for k ≥ m

eran (ξLan
k , A, p) = 0,

and, for k < m,

eran (ξLan
k , A, p) ≤



1
k2

(
Γ ((r − 2p)/2) Γ ((n− r + 2p)/2)

Γ (r/2) Γ ((n− r)/2)

)1/p

for 2p < r

1
k2

ln1/p(k + 1)2
(

Γ (n/2)
Γ (p) Γ ((n− 2p)/2)

)1/p

+ β for 2p = r

1
k(r/p)

(
Γ ((2p− r)/2) Γ (n/2)

Γ (p) Γ ((n− r)/2)

)1/p

for 2p > r

where

β =
1
k2

(
Γ (n/2)

Γ (p) Γ ((n− 2p)/2)

(
2 +

2
n

))1/p

.
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Proof. To prove that eran (ξLan
k , A, p) = 0 when k ≥ m, we use Theorem 3.4.1 where this result is

proven for p = 1. The generalization to the Lp case is straightforward.

Assume now k < m. Accordingly with (3.22), the randomized error is given by

eran (ξLan
k , A, p) =

(∫
‖b‖=1

(
min

Q∈Pk(1)

∑n
i=r+1 b

2
iQ

2(xi)(1− xi)∑r
i=1 b

2
i +

∑n
i=r+1 b

2
iQ

2(xi)

)p
db

)1/p

.

Rising everything to the power p, we get

[eran (ξLan
k , A, p)]p =

∫
‖b‖=1

min
Q∈Pk(1)

( ∑n
i=r+1 b

2
iQ

2(xi)(1− xi)∑r
i=1 b

2
i +

∑n
i=r+1 b

2
iQ

2(xi)

)p
µ(db)

≤
∫
‖b‖=1

min
Q∈Pk(1)

( ∑n
i=r+1 b

2
iQ

2(xi)(1− x2
i )∑r

i=1 b
2
i +

∑n
i=r+1 b

2
iQ

2(xi)

)p
µ(db).

Since
∑n
i=r+1 b

2
iQ

2(xi) ≥
∑n
i=r+1 b

2
iQ

2(xi)(1− x2
i ), from the previous equation we get

[eran (ξLan
k , A, p)]p ≤

∫
‖b‖=1

min
Q∈Pk(1)

( ∑n
i=r+1 b

2
iQ

2(xi)(1− x2
i )∑r

i=1 b
2
i +

∑n
i=r+1 b

2
iQ

2(xi)(1− x2
i )

)p
µ(db). (3.23)

Let Uk be the Chebyshev polynomial of second kind of degree k − 1. The polynomial Wk = Uk/k is in

the class Pk(1). We replace the minimum in (3.23) with the value achieved for Wk, and we get

[eran (ξLan
k , A, p)]p ≤

∫
‖b|=1

( ∑n
i=r+1 b

2
iW

2
k (xi)(1− x2

i )∑r
i=1 b

2
i +

∑n
i=r+1 b

2
iW

2
k (xi)(1− x2

i )

)p
µ(db).

Rewriting last equation as

[eran (ξLan
k , A, p)]p ≤

∫
‖b‖=1

(
1−

∑r
i=1 b

2
i∑r

i=1 b
2
i +

∑n
i=r+1 b

2
iW

2
k (xi)(1− x2

i )

)p
µ(db),

we notice that we can upper bound eran (ξLan
k , A, p) by taking the maximum of W 2

k (x)(1−x2) over [0, 1].

By the properties of Uk, we have

max
x∈[0,1]

W 2
k (x)(1− x2) = max

x∈[0,1]

U2
k (x)
k2

(1− x2)

= max
θ∈[0,π/2]

U2
k (cos(θ))
k2

(1− cos2(θ))

= max
θ∈[0,π/2]

sin2(kθ)
sin2(θ)

sin2(θ)
k2

=
1
k2
.

We get

[eran (ξLan
k , A, p)]p ≤

∫
‖b‖=1

(
(1/k2)

∑n
i=r+1 b

2
i∑r

i=1 b
2
i + (1/k2)

∑n
i=r+1 b

2
i

)p
µ(db).

The theorem now follows from the upper bounds proven in lemma 2.1.2 2

Theorem 3.4.2 establishes upper bounds that hold for the Lp norm. For these bounds considerations

similar to those for the power method apply. That is, for p = 1 these bounds are tighter than those

reported in [KW92a] only when the multiplicity of the largest eigenvalue is greater than n/ ln2 n.
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3.4.2 Distribution Dependent Bounds

We now give upper bounds on the randomized error for approximation of the largest eigenvalue by the

Lanczos method. The same problem has been considered for the L1 norm in [KW92a]. By comparing

our results (for p = 1) with those reported in [KW92a] we find that our estimates are tighter. For

r ≥ 2, we get asymptotically (with respect to k) better bounds; for r = 1, we get the same asymptotic

behavior but with a smaller constant.

Theorem 3.4.3 For any symmetric positive definite matrix A, let m be the number of distinct eigen-

values of A. Let r, r < n−m+ 1, denote the multiplicity of the largest eigenvalue λ1, and let λr+1 and

λn be the second largest and the smallest eigenvalue of A. For every p ∈ [1,+∞) and k < m we have

eran (ξLan
k , A, p) ≤



(
1− λn

λ1

)
(fk (λ1, λr+1, λn))2

(
Γ ((n+ 2p− r)/2) Γ ((r − 2p)/2)

Γ ((n− r)/2) Γ (r/2)

)1/p

for 2p < r,

(
1− λn

λ1

)
(fk (λ1, λr+1, λn))2

(
2 ln (fk (λ1, λr+1, λn))Γ (n/2)

Γ ((n− r)/2) Γ (p)

)1/p

+ β for 2p = r,

(
1− λn

λ1

)
(fk (λ1, λr+1, λn))r/p

(
Γ (n/2) Γ ((2p− r)/2)

Γ ((n− r)/2) Γ (p)

)1/p

for 2p > r,

where

β = (fk (λ1, λr+1, λn))2
(

Γ (n/2)
Γ (p) Γ ((n− 2p)/2)

(
2 +

2
n

))1/p

,

and

fk (λ1, λr+1, λn) =
1∣∣∣Tk (1 + 2 λ1−λr+1

λr+1−λn

)∣∣∣ β = fk (λ1, λr+1, λn)
(

Γ (n/2)
Γ (p/2) Γ ((n− r)/2)

(
2 +

2
n

))1/p

.

(3.24)

Proof. By equation (3.23) we know that

[eran (ξLan
k , A, p)]p ≤ min

Q∈Pk(1)

∫
‖b‖=1

( ∑n
i=r+1 b

2
iQ

2(xi)(1− xi)∑r
i=1 b

2
i +

∑n
i=r+1 b

2
iQ

2(xi)

)p
µ(db).

Since xr+1 ≥ xr+2 ≥ · · · ≥ xn, we get

[eran (ξLan
k , A, p)]p ≤ (1− xn)p min

Q∈Pk(1)

∫
‖b‖=1

( ∑n
i=r+1 b

2
iQ

2(xi)∑r
i=1 b

2
i +

∑n
i=r+1 b

2
iQ

2(xi)

)p
µ(db). (3.25)

To complete the proof we note that the integral at the right hand side has been already bounded in

Theorem 3.2.2.

2
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k εran(ξLan
k , A, p) εub(ξLan

k , A, p) εran(uLan
k , A, p) εub(uLan

k , A, p) p

10 6.724e− 03 1.151e+ 01 9.240e− 01 3.427e+ 02 1

30 8.158e− 04 6.373e+ 00 7.273e− 01 2.397e+ 02 1

90 4.427e− 05 4.766e− 01 1.180e− 01 3.479e+ 01 1

10 6.874e− 03 2.398e+ 00 9.209e− 01 3.999e+ 02 2

30 9.444e− 04 1.785e+ 00 7.639e− 01 2.946e+ 02 2

90 1.064e− 04 4.881e− 01 2.129e− 01 8.032e+ 01 2

10 9.725e− 03 1.079e+ 00 9.528e− 01 2.843e+ 02 10

30 1.945e− 03 1.017e+ 00 8.858e− 01 2.674e+ 02 10

90 3.595e− 04 7.845e− 01 7.287e− 01 2.062e+ 02 10

Table 3.1: Lanczos method: Chebyschev distribution, where r = 1.

3.5 Numerical Experiments

This section reports the results of some numerical experiments designed to verify the sharpness of the

bounds provided in this thesis. We report tests for eigenvalue and eigenvector approximation by the

Lanczos method. All tests have been performed on a Silicon Graphics Iris Indigo R4000 using double

precision. The Lanczos method has been implemented using the numerical package Meschach [LS94].

We tested the Lanczos method using matrices of size 100 with eigenvalues distributed as in Sec-

tion 2.6.

In Section 2.6 we already pointed out that, without loss of generality, we can restrict ourselves to

consider diagonal matrices. For each matrix we generated 100 starting vectors uniformly distributed

over the unit sphere using the technique described in Section 1.1. Estimates of the randomized errors

eran (ξLan
k , A, p) and eran (uLan

k , A, p), have been computed by the average over the random starting

vectors, i.e.

εran(ξLan
k , A, p) =

(
1

100

100∑
i=1

(
λ1 − ξLan

k

λ1

)p)1/p

, (3.26)

εran(uLan
k , A, p) =

(
1

100

100∑
i=1

min
v∈Z1

‖uLan
k − v‖p

)1/p

. (3.27)

Let εub(ξLan
k , A, p) and εub(uLan

k , A, p) denote the upper bounds for Lanczos method given by Theo-

rems 3.4.3 and 3.3.1 respectively. Finally, k denotes the number of iterations and p the norm parameter.

The results of the numerical tests are reported in Tables 3.1–3.3. For reasons of space we cannot

report the numerical results for all distributions. Since no lower bounds are known for Lanczos method,

in the randomized setting, these tests are particularly important for establishing the sharpness of the

upper bounds given by Theorems 3.4.3 and 3.3.1. Table 3.1 shows the results for the Chebyshev

distribution, which is the one with the slowest convergence rate. Table 3.2 shows the results for the

exponential distribution 1, for which the error reaches the machine precision (10−16) after only 25

iterations.

55



k εran(ξLan
k , A, p) εub(ξLan

k , A, p) εran(uLan
k , A, p) εub(uLan

k , A, p) p

10 5.132e− 05 1.765e− 03 9.964e− 04 4.920e− 03 1

15 1.410e− 12 8.878e− 06 1.089e− 07 3.573e− 05 1

25 5.432e− 16 2.245e− 10 3.019e− 15 1.459e− 09 1

10 9.619e− 04 2.932e− 02 9.481e− 03 1.367e− 01 2

15 3.837e− 11 2.079e− 03 1.378e− 06 9.693e− 03 2

25 6.161e− 16 1.045e− 05 1.255e− 14 4.874e− 05 2

10 1.372e− 02 4.376e− 01 1.107e− 01 4.890e+ 00 10

15 6.052e− 10 2.578e− 01 2.016e− 05 2.880e+ 00 10

25 1.393e− 15 8.945e− 02 1.744e− 13 9.994e− 01 10

Table 3.2: Lanczos method: Exponential Distribution 1, where r = 1.

k εran(ξLan
k , A, p) εub(ξLan

k , A, p) εran(uLan
k , A, p) εub(uLan

k , A, p) p

10 1.238e− 03 1.628e+ 00 4.060e− 01 2.368e+ 01 1

30 4.410e− 06 9.006e− 03 2.967e− 02 1.728e+ 00 1

60 1.202e− 12 2.874e− 06 7.305e− 06 3.086e− 02 1

10 1.820e− 03 7.877e+ 00 4.817e− 01 2.770e+ 01 5

30 1.573e− 05 5.180e− 02 4.631e− 02 2.021e+ 00 5

60 3.428e− 12 1.816e− 05 1.016e− 05 3.609e− 02 5

10 2.390e− 03 6.903e− 01 5.603e− 01 7.432e+ 01 10

30 2.259e− 05 5.135e− 02 6.035e− 02 5.850e+ 00 10

60 8.472e− 12 9.172e− 04 1.709e− 05 1.089e− 01 10

Table 3.3: Lanczos method: Logarithmic Distribution, where r = 10.
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We can observe, especially from Table 3.2, that the speed of convergence shows a dependence on

the norm parameter. In fact, we have slowest convergence as the value of p increases. Unfortunately,

the upper bounds are, in this case, not very accurate, so it is not easy to understand if the dependence

on p and r is really like that of Theorems 3.4.3 and 3.3.1.

In Table 3.3 we report the numerical results obtained for the Logarithmic distribution when the

multiplicity of the largest eigenvalue is 10.
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Chapter 4

A Randomized Parallel Algorithm for

Eigenvalue Approximation

The algorithms presented in the first part of this thesis can be considered as randomized methods even

though the randomization is only limited to the choice of the initial vector, and no random choice is

done in the other parts of the algorithms. In this chapter we present a “fully” randomized version

of the power method. The parallel cost of this algorithm is lower than that of the best deterministic

implementation of the power method on a PRAM.

In the area of numerical linear algebra there are very few example of randomized algorithms. An

interesting example is provided by the result obtained by Codenotti and Leoncini [CL91]. They propose

a parallel Monte Carlo method for solving linear systems. The computational parallel cost of their

algorithm is O (log n) with nO(1) processors, while the best know deterministic algorithm for this problem

takes O
(
log2 n

)
time with nO(1) processors.

The results of this chapter are also reported in [dCo95].

4.1 The Algorithm

Let A be an n× n symmetric real matrix, and let λ1, λ2, . . . λn denote the eigenvalues of A. Assume

|λ1| ≥ |λ2| ≥ |λ3| ≥ · · · |λn|,

and that if |λ1| = |λ2| = · · · = |λr| then we have λ1 = λ2 = · · · = λr, that is A does not have two

different dominant eigenvalues. Denote by z1, z2, . . . , zn the orthogonal eigenvectors of A.

The randomized method we are proposing is an algorithm based on the power method without

normalization, that can be defined as follows u(0) = b,

u(k) = Au(k−1),
(4.1)
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where b is a starting vector. If the starting vector b is not orthogonal to the eigenspace corresponding

to the dominant eigenvalue λ1, then the sequence u(k) is such that

lim
k→+∞

u
(k)
m

u
(k−1)
m

= λ1,

where u(i)
m denotes the m-th entry of the vector u(i) and m is an index for which u

(k−1)
m 6= 0. We can

write b as a linear combination of the orthogonal eigenvectors. b =
∑n
i=1 bizi. Assuming b is not

orthogonal to Z1, then
∑r
i=1 bi 6= 0. Substituting into (4.1) we get

u
(k)
m

u
(k−1)
m

=
∑n
i=1 biλ

k
i z

(i)
m∑n

i=1 biλ
k−1
i z

(i)
m

= λ1

∑r
i=1 biz

(i)
m +

∑n
i=r+1 bi

(
λi
λ1

)k
z

(i)
m∑r

i=1 biz
(i)
m +

∑n
i=r+1 bi

(
λi
λ1

)k−1
z

(i)
m

. (4.2)

Since (λi/λ1)k goes to zero as k goes to infinity, the ratio u(k)
m /u

(k−1)
m converges to λ1.

In this chapter λ(A)
1 (or simply λ1 when there is not ambiguity) denotes the eigenvalue of the matrix

A whose absolute value is maximum.

The deterministic computation of an approximation to λ1 with this scheme, involves the calculation

of the vectors u(k) = Akb and u(k−1) = Ak−1b, for a sufficiently large k. On a CREW-PRAM this takes

O (log k log n) time with n3/ log n processors as a consequence of the computation of the k-th power of

the matrix A. We assume the starting vector b is not orthogonal to the eigenspace Z1. We show a

randomized method for the computation of the two quantities u(k)
m and u(k−1)

m , that allows us to estimate

λ1 as the ratio between these two values.

The randomized method for determining an approximation of u(k)
m consists in a n-fold sampling of

the value of the random variable with a series of independent tests and in the computation of their

arithmetic mean. The m-th entry of u(k) = Akb can be written as

u(k)
m =

∑
i1,i2,...,ik

ami1ai1i2 · · · aik−1ikbik . (4.3)

Assume that
aij = fij pij , 0 < pij < 1, i, j = 1, 2, . . . , n
n∑
j=1

pij = 1, i = 1, 2, . . . , n,
(4.4)

then, (4.3) can be rewritten as

u(k)
m =

∑
i1,i2,...,ik

fmi1fi1i2 · · · fik−1ikpmi1pi1i2 . . . pik−1ikbik .

Let P be an n × n matrix with entries pij . By (4.4), we notice that P is a transition matrix that

describes a family of homogeneous Markov chains with state space V = 1, 2, . . . , n (see [Fel68] for a

theoretical treatment of Markov chains).

Let X0, X1, . . . Xk be the Markov chain of length k+ 1 described by P . If we concentrate the initial

distribution in m, i.e., Pr(X0 = m) = 1, we have

Pr(X0 = m,X1 = i1, . . . , Xk = ik) = pmi1pi1i2 · · · pik−1ik . (4.5)
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Let the (k+ 1)-tuple m, i1, i2, . . . , ik denote a trajectory of the Markov process. Let Ω be the set of

all trajectories of length k + 1 with m as initial state. We construct the random variable Φ(k)
m : Ω→ IR

as

Φ(k)
m (m, i1, i2, . . . , ik) = fmi1fi1i2 · · · fik−1ikqik . (4.6)

The expectation of Φ(k)
m is equal to u

(k)
m . In fact, by definition of expectation, together with (4.5)

and (4.6), we have

E(Φ(k)
m ) =

∑
i1,i2,...,ik

Φ(k)
m (m, i1, i2, . . . , ik) Pr(m, i1, i2, . . . , ik)

=
∑

i1,i2,...,ik

fmi1fi1i2 · · · fik−1ikpmi1pi1i2 · · · pik−1ikqik = u(k)
m .

For approximating the expected value of Φ(k)
m , we proceed as follows

1. Compute N independent trajectories ω1, ω2, . . . , ωN .

2. Compute ũ(k)
m =

∑N
j=1 Φ(k)

m (ωj)/N .

For a sufficiently large N , the quantity ũ
(k)
m is close to u

(k)
m . The Chebyshev inequality allows us to

bound the probabilistic error. We have

Pr

(∣∣∣∣∣u
(k)
m − ũ(k)

m

u
(k)
m

∣∣∣∣∣ > ε

)
=

= Pr
(∣∣∣u(k)

m − ũ(k)
m

∣∣∣ > ε|u(k)
m |
)
≤

Var
(
Φ(k)
m

)
N(ε|u(k)

m |)2
. (4.7)

A problem arising with inequality (4.7) is that, for an arbitrary matrix A, it is difficult to bound

the variance of Φ(k)
m . Moreover, it is not possible to give bounds on |u(k)

m | that holds for all the class

of symmetric matrices. We circumvent these problems by introducing a matrix M for which these two

quantities can be bounded. The new matrix M has the form

M =
A

4k||A||∞
+ I, (4.8)

where k is a fixed integer.

We apply the previous method to the matrix M in order to get an approximation to the dominant

eigenvalue of M and then we get λ(A)
1 by the following relation

λ
(M)
i =

λ
(A)
i

4k||A||∞
+ 1, i = 1, 2, . . . , n. (4.9)

It is evident that the largest eigenvalue of M might not correspond to the largest eigenvalue of A, this

happens for example if λ(A)
1 < 0, In this case, it is necessary to apply the algorithm to the matrix

M̄ = −A/(4k||A||∞) + I

rather than to M . If we do not know the sign of λ(A)
1 , we can compute both λ

(M)
1 and λ

(M̄)
1 . The

dominant eigenvalue of A is 4k||A||∞(λ(M)
1 − 1) or 4k||A||∞(λ(M̄)

1 − 1) depending on which of those two

values has maximum absolute value.
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In order to approximate the values λ(M)
1 and λ

(M̄)
1 , we proceed according to the procedure shown

before. In particular we need to compute the m-th entries of u(k) = Mkb and u(k−1) = Mk−1b (and

the corresponding values for M̄).

As before, we decompose each entry mij of M as the product of fij and pij , where

fij = sign(mij)
n∑
h=1

|mih|, pij =
|mij |∑n
h=1 |mih|

.

This choice satisfies conditions (4.4), so that we can implement the Markovian process on the random

variable Φ(k)
m .

In the following is sketched the parallel algorithm.

Algorithm RanPower

1. Apply the following procedure two times, one when C = M , the other when C = M̄ to produce the values

λ̃
(k)
M and λ̃

(k)

M̄
as approximations to the dominant eigenvalues of M and M̄ :

1.1 Compute fij = sign(cij)
∑n
h=1 |cih| and pij = |cij |

|fij | for i, j = 1, 2, . . . , n.

1.2 Compute the matrix S = (sij), where sij =
∑j
h=1 pih for i, j = 1, 2, . . . , n.

1.3 Compute the trajectories ω1, . . . , ωN , and ν1, . . . , νN as follows:

for each pair (ωi, νi)

1.3.1. Produce, independently, numbers xij for i = 1, . . . , n, j = 1, . . . , k, and yij for

i = 1, . . . , n, j = 1, . . . k − 1, randomly chosen in [0, 1].

1.3.2. Determine the trajectories ωi = t0, t1 . . . , tk, and νi = u0, u1 . . . , uk−1. as follows:

Determine integers αij and βir for i = 1, . . . , n, j = 1, . . . , k, and r = 1, . . . , k − 1, for

which

siαij−1 ≤ xij ≤ siαij , siβir−1 ≤ yir ≤ siβir .

The trajectories are t0 = m;

ti = αti−1,i

i = 1, . . . , k

 u0 = m;

ur = βur−1,r

r = 1, . . . , k − 1.

1.4 Compute the values Φ(k)
m (ωi), and Φ(k−1)

m (νi) for i = 1, . . . , N .

1.5 Compute the sums
∑N
i=1 Φ(k)

m (ωi) and
∑N
i=1 Φ(k−1)

m (νi).

1.6 Compute the approximate value to λ(k)
C as

λ̃
(k)
C =

y
(k)
m

y
(k−1)
m

=
∑N
i=1 Φ(k)

m (ωi)∑N
i=1 Φ(k−1)

m (νi)
.

2. Compute the values µ = 4k||A||∞
(
λ̃

(k)
M − 1

)
, and µ′ = −4k||A||∞

(
λ̃

(k)

M̄
+ 1
)

.

3. Return the approximation of λ(k)
A as

λ̃
(k)
A =

 µ if |µ| = max{|µ|, |µ′|},

µ′ otherwise.

61



4.2 Error Analysis

In this section we analyze the error in the computation of an estimate of λ(A)
1 when we use algorithm

RanPower.

From Section 4.1 it is clear that the error analysis has to take into account three sources of error:

1. the error arising from the approximation of u(k)
m /u

(k−1)
m with the output λ̃(k)

A of the randomized

algorithm RanPower (probabilistic error);

2. the error due to the truncation of the sequence (4.1) at the k-th term (analytic error);

3. the roundoff error induced by using formula (4.9) to compute an estimate of λ(A)
1 .

Let λ(k)
A be the estimate of λ(A)

1 after k iterations of the power method and let λ̃(k)
A be the value

returned by the algorithm RanPower.

We would like to determine λ̃(k)
A , so that

|λ(A)
1 − λ̃(k)

A |
|λ(A)

1 |
≤ εA, (4.10)

where εA is a fixed positive threshold.

Observe that, neglecting second order terms, it is sufficient to have

|λ(A)
1 − λ(k)

A |
|λ(A)

1 |
≤ 1

2
εA, (4.11)

|λ(k)
A − λ̃

(k)
A |

|λ(k)
A |

≤ 1
2
εA. (4.12)

In fact, from (4.11) we have

−1
2
εA|λ(A)

1 | ≤ λ
(A)
1 − λ(k)

A ≤
1
2
εA|λ(A)

1 |

and from (4.12)

−1
2
εA|λ(k)

A | ≤ λ
(k)
A − λ̃

(k)
A ≤

1
2
εA|λ(k)

A |.

Summing up these two inequalities we get

−εA|λ(A)
1 | −

1
2
εA(|λ(k)

A | − |λ
(A)
1 |) ≤ λ

(A)
1 − λ̃(k)

A ≤ εA|λ
(A)
1 |+

1
2
εA(|λ(k)

A | − |λ
(A)
1 |).

Since |a| − |b| ≤ |a− b|, and we have

|λ(A)
1 − λ̃(k)

A |
|λ(A)

1 |
≤ εA +

1
4
ε2
A.

The analysis of the analytic error (4.11) depends on specific properties of the matrix A. In particular,

from (4.2) we have

|λ(A)
1 − λ(k)

A |
|λ(A)

1 |
=

∣∣∣∣∣∣∣∣∣
∑n
i=r+1 bi

(
λ
(A)
i

λ
(A)
1

)k−1

z
(i)
m

(
1− λ

(A)
i

λ
(A)
1

)
∑r
i=1 biz

(i)
m +

∑n
i=r+1 bi

(
λ
(A)
i

λ
(A)
1

)k−1

z
(i)
m

∣∣∣∣∣∣∣∣∣
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≤

∣∣∣∣∣∣∣∣∣
(
λ
(A)
r+1

λ
(A)
1

)k−1∑n
i=r+1 biz

(i)
m

∑r
i=1 biz

(i)
m +

(
λ
(A)
r+1

λ
(A)
1

)k−1∑n
i=r+1 biz

(i)
m

∣∣∣∣∣∣∣∣∣
.=

 |λ(A)
r+1|
|λ(A)

1 |

k−1 ∣∣∣∣∣∣
∑n
i=r+1 biz

(i)
m∑r

i=1 biz
(1)
m

∣∣∣∣∣∣ ,
from which follows that, in order to satisfy (4.11), it is sufficient to choose

k = O (log(εA)/ log(|λr+1|/|λ1|)) .

Most of the time we do not have a good approximation of λr+1/λ1, since we are looking for a good

estimate of λ1. Moreover, inequality (4.11) is not sufficient to guarantee that a similar bound on the

analytic error holds also when we apply the method to the matrix M . This problem can be partially

resolved by the application of the algorithm RanPower many times, with increasing values of k. We

stop this process when the difference between two successive approximation of λ(M)
1 is less than a positive

threshold, say εM . It is well known that this condition does not guarantee the same bound on the actual

error but for iterative method it is necessary to establish some halting criterion.

We now consider the roundoff error. We assume that k is a fixed integer value corresponding to the

number of iterations that guarantees bound (4.11).

The first step of the algorithm RanPower consists in the computation of the estimate of the largest

eigenvalues of M and M̄ . Let us denote by λ̃(k)
A the approximation of λ(A)

1 returned by RanPower and

by λ̃(k)
M and λ̃(k)

M̄
respectively the estimate of largest eigenvalues of M and M̄ computed by RanPower.

We assume λ(A)
1 ≥ 0, the case λ1(A) ≤ 0 is similar. With this assumption, we have that at step 3.

of the algorithm RanPower the algorithm outputs µ = 4k||A||∞
(
λ̃

(k)
M − 1

)
as approximation of λ(k)

A .

We need then to analyze how the probabilistic error, on λ̃(k)
M and on λ̃(k)

M̄
, is propagated to λ̃(k)

A through

relation (4.9).

Assume that |λ
(k)
M −λ̃

(k)
M |

|λ(k)
M |

≤ 1
2εM , for a certain positive threshold εM that depends on the randomized

error. Assume also that k and the entries of the matrix A are numbers exactly available. Suppose to

compute λ1 with the following procedure:

y(1) = ||A||∞

y(2) = 4 ∗ k

y(3) = y(2) ∗ y(1) (4.13)

y(4) = λ
(k)
M − 1

y(5) = y(3) ∗ y(4).

Let ε(i)
t be the error at steps (i) in (4.13). Then the total error εt in the computation of λ(A)

1 with this

procedure is denoted by ε
(5)
t . Let u be the machine precision, and assume that the error produced at

each step is bounded by u. We have

|ε(1)
t | ≤ u (n+ 1) log n.
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Since |ε(2)
t | ≤ u we have |ε(3)

t | ≤ 2u+u(n+1) log n. The error produced at the 4-th step can be bounded

as follows

|ε(4)
t | ≤ u+

|λ(k)
M |

|λ(k)
M − 1|

εM
2
,

because εM/2 bounds the probabilistic error of λ(k)
B . Since

εt = ε
(5)
t

.= ε+ ε
(3)
t + ε

(4)
t ,

the following inequality holds

|εt| ≤ u(4 + (n+ 1) log n) +
|λ(k)
M | |εM |

2|λ(k)
M − 1|

.

In order to satisfy (4.12), we require |εt| ≤ 1
2εA. It is straightforward to verify that it is sufficient to

take

u ≤ 1
4(4 + n log n)

εA, εM ≤
1

8(1 + 4kµ(A))
εA, (4.14)

where µ(A) = ||A||∞||A−1||∞, is the condition number of the matrix A.

We analyze now the probabilistic error in the computation of an approximation to λ
(k)
M . Let

λ
(k)
M = u

(k)
m /u

(k−1)
m and let λ̃(k)

M be its approximation computed during the first stage of the algorithm

RanPower. We fix a positive threshold εM , we wish to determine a lower bound on the number N of

Markov chains to simulate, so that Pr
(
|λ(k)
M − λ̃

(k)
M | <

1
2εM |λ

(k)
B |
)

is close to 1.

Let S(i) =
∑N
j=1 Φ(i)

m (ωj)/N . From Chebyshev inequality, we have

Pr
(
|u(k)
m − S(k)| > ε1|u(k)

m |
)
≤ Var (() Φ(k)

m )

N(ε1|u(k)
m |)

, (4.15)

where ε1 = (1/4)εM .

The following theorem gives a bound on the m-th entry of the vector u(k) = Mkb under certain

assumptions on the starting vector b.

Theorem 4.2.1 Let b be a vector with positive entries, i.e. bi > 0, and such that

mini=1,...,n bi
maxi=1,...,n bi

>

(
1 +

1
4k

)k
− 1, (4.16)

and let u(k)
m be the m-th entry of the vector u(k) = Mkb. Then, for s = 0, 1, . . . , k, and for every index

m, we have:

min
i=1,...,n

bi − max
i=1,...,n

bi

[(
1 +

1
4k

)s
− 1

]
≤ u(s)

m ≤ max
i=1,...,n

bi

(
1 +

1
4k

)s
.

Proof. We proceed by induction on s.

For s = 0 we have

u
(o)
i = bi
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and then mini=1,...,n bi ≤ u(0)
m ≤ maxi=1,...,n bi. Suppose that the theorem is true for s− 1, i.e.

min
i=1,...,n

bi − max
i=1,...,n

bi

[(
1 +

1
4k

)s−1

− 1

]
≤ u(s−1)

m ≤ max
i=1,...,n

bi

(
1 +

1
4k

)s−1

.

By inductive hypothesis and by using equation (4.16) we claim that u(s−1)
m > 0. By definition

u(s)
m = u(s−1)

m +
1

4k||A||∞

n∑
j=1

amju
(s−1)
j , (4.17)

then equation (4.17) can be rewritten as

u(s)
m = u(s−1)

m +
1

4k||A||∞

 ∑
j:amj>0

amju
(s−1)
j −

∑
j:amj<0

|amj |u(s−1)
m |


≤ max

i
u

(s−1)
i +

1
4k||A||∞

max
i
u

(s−1)
i

∑
j:amj>0

amj −min
i
u

(s−1)
i

∑
j:amj<0

|amj |


≤ max

i
u

(s−1)
i +

mini u
(s−1)
i

4k||A||∞

 n∑
j=1

amj +
maxi u

(s−1)
i −mini u

(s−1)
i

mini u
(s−1)
i

∑
j:amj>0

amj

 .
Since the sum of the elements of each row is less than the ∞-norm, we have

u(s−1)
m ≤ max

i
u

(s−1)
i +

mini u
(s−1)
i

4k||A||∞

 n∑
j=1

amj +
maxi u

(s−1)
i −mini u

(s−1)
i

mini u
(s−1)
i

∑
j:amj>0

amj


≤ max

i
u

(s−1)
i +

mini u
(s−1)
i

4k
+

maxi u
(s−1)
i

4k
− mini u

(s−1)
i

4k

≤ max
i
u

(s−1)
i

(
1 +

1
4k

)
. (4.18)

By induction hypothesis together with (4.18) we get

u(s)
m ≤ max

i=1,...,n
bi

(
1 +

1
4k

)s
. (4.19)

Let us now prove the other inequality. From equation (4.17), separating negative terms from positive,

we get

u(s)
m = u(s−1)

m +
1

4k||A||∞

 ∑
j:amj>0

amju
(s−1)
j −

∑
j:amj<0

|amj |u(s−1)
j


≥ min

i
u

(s−1)
i +

1
4k||A||∞

min
i
u

(s−1)
i

∑
j:amj>0

amj −max
i
u

(s−1)
i

∑
j:amj<0

|amj |


= min

i
u(s−1)
m +

mini u
(s−1)
i

4k||A||∞

 n∑
j=1

amj −
maxi u

(s−1)
i −mini u

(s−1)
i

mini u
(s−1)
i

∑
j:amj<0

|amj |


Observing that ||A||∞ ≥ −

∑n
j=1 amj and by inductive hypothesis, we get

u(s)
m ≥ min

i
bi −max

i
bi

[(
1 +

1
4k

)s
− 1

]
.

2
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The same theorem holds when we consider M̄ instead of M . The proof is essentially the same of

that of Theorem 4.2.1 where is used the fact that −
∑n
j=1 amj ≤ ||A||∞.

In order to evaluate inequality (4.15), we need to bound Var
(
Φ(k)
m

)
. We remind that

Var
(
Φ(k)
m (ωi)

)
= E[(Φ(k)

m (ωi))2]− [E(Φ(k)
m (ωi))]2.

The following lemma allows one to bound the variance of the random variable Φ(k)
m . The same lemma

holds for the matrix M̄ .

Lemma 4.2.2 Let M ≡ (mij) be a matrix defined as in (4.8). Then we have

1− 1
4k
≤

n∑
j=1

mij ≤ 1 +
1
4k
.

2

The proof of the Lemma follows easily from the definition of matrix M (see equation (4.8)). By

lemma 4.2.2 we have

|Φ(k)
m (ωi)| =

∣∣fmi1fi1i2 · · · fik−1ikbik
∣∣

≤ max
i
bi|max

ij
fij |k

= max
i
bi

(
max
i

n∑
h=1

|bih|
)k

≤ max
i
bi

(
1 +

1
4k

)k
,

and by theorem 4.2.1 we can bound the variance as follows

Var
(
Φ(k)
m

)
≤ (max

i
bi)2

(
1 +

1
4k

)2k

−
[
min
i
bi −max

i
bi

[(
1 +

1
4k

)k
− 1

]]2

= −(min
i
bi + max

i
bi)2 + 2 max

i
bi

(
1 +

1
4k

)k
(min

i
bi + max

i
bi)

≤ 2 max
i
bi

(
1 +

1
4k

)k
(min

i
bi + max

i
bi).

Inequality (4.15) can be rewritten as

Pr
(
|u(k)
m − S(k)| > ε1|u(k)

m |
)
≤

2 maxi bi
(
1 + 1

4k

)k
(mini bi + maxi bi)

N(ε1|u(k)
m |)2

. (4.20)

Observe that

Pr

(
|λ(k)
M − λ̃

(k)
M |

|λ(k)
M |

≤ 1
2
εM

)
= Pr

(
|u(k)
m − S(k)|
|u(k)
m |

≤ ε1,
|u(k−1)
m − S(k−1)|
|u(k−1)
m |

≤ ε2

)
,

where ε1 = ε2 = (1/4)εM .
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We notice that the sequences ωi and νi are chosen independently in RanPower, then the random

variables S(k) and S(k−1) are independent. From previous equation, we have,

Pr

(
|λ(k)
M − λ̃

(k)
M |

|λ(k)
M |

≤ 1
2
εM

)
=

= Pr

(
|u(k)
m − S(k)|
|u(k)
m |

≤ ε1

)
Pr

(
|u(k−1)
m − S(k−1)|
|u(k−1)
m |

≤ ε2

)

>

1−
Var

(
Φ(k)
m

)
N(ε1|u(k)

m |)2

1−
Var

(
Φ(k−1)
m

)
N(ε2|u(k−1)

m |)2

 . (4.21)

It is straightforward to see that

Pr

(
|u(k)
m − S(k)|
|u(k)
m |

≤ ε1,
|u(k−1)
m − S(k−1)|
|u(k−1)
m |

≤ ε2

)
> 1−

Var
(
Φ(k)
m

)
N(ε1|u(k)

m |)2
−

Var
(
Φ(k−1)
m

)
N(ε2|u(k−1)

m |)2
.

Using the bounds proved in Theorem 4.2.1, and inequalities (4.20) and (4.21), we have that, in order

to have a probability of success greater than 1− δ, it is sufficient to choose

N = Ω(δ−1ε−2
A µ(A)k2). (4.22)

If A is a normal matrix, i.e. ATA = AAT , we can choose

N = Ω(δ−1ε−2
A nk2). (4.23)

In this case, |λ(A)
1 | ≥ ||A||∞/

√
n, and hence |λ(M)

1 − 1| ≥ 1/(4k
√
n). It follows that it is sufficient to

choose εM ≤ 1
4(1+4k

√
n)
εA. This bound on εM guarantees equality (4.23).

By (4.23) we have that, if the problem is ill-posed, e.g. µ(A) increases exponentially with the order

of the matrix, it is necessary to simulate an exponential number of Markov chains. On the other hand,

if A is normal, than N is linear in n.

4.3 Analysis of the Computational Cost

In this section we study the computational cost of the algorithm RanPower on a CREW-PRAM.

Let T (n) and P (n) be the parallel time and the number of processors required for an input of size

n.

We first analyze the parallel cost of the step 1. of the algorithm. This step consists of the double

application of a procedure that allows to approximate λ(k)
M and λ

(k)

M̄
.

The computation of fij , in stage 1.1, can be performed in dlog ne time on ndn/ log ne processors.

Then the values pij can be computed in constant time. Similarly, stage 1.2 requires dlog ne time and

ndn/ log ne processors. During stage 1.3 we compute in parallel 2N trajectories. Stage 1.3.1 can be

carried out in constant time on 2nk − n processors. Step 1.3.2 can be performed by using a binary

search algorithm with running time dlog ne on 2nk − n processors. Hence, stage 1.3 requires O (log n)

time on 2N(2nk − n) processors. By using 2Nk processors the values in stage 1.4 can be computed in
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dlog ke time . Stage 1.5 consists of the sums of N terms, so that dlogNe time steps suffice on dN/ logNe
processors. Stage 1.6 can be carried out in constant time. Since stages 1.1–1.6 are performed twice, the

global cost of stage 1 is

T (n) ≤ 6dlog ne+ 2dlog ke+ 2dlogNe+O (1) ,

P (n) ≤ max{ndlog ne, 2N(2nk − n)}.

Step 2 requires the computation of ||A||∞, that can be performed in time dlog ne on ndn/ log ne pro-

cessors. Finally, the value λ̃(A)
1 in step 3 can be computed in constant time. The cost of the algorithm

RanPower is

T (n) ≤ 7dlog ne+ 2dlog ke+ 2dlogNe+O (1) ,

P (n) ≤ max{ndlog ne, 2N(2nk − n)}.

Theorem 4.3.1 Let A be a symmetric n × n matrix with real entries. Assume we want to compute

an approximation of the dominant eigenvalue of A with a total error at most of εA, by using algorithm

RanPower. If A is normal or its condition number µ(A) increases at most polynomially with the order

of the matrix, then RanPower computes an εA-approximation of the dominant eigenvalue in parallel

time T (n) = O (log n+ log k) and P (n) = knO(1), with high probability.

Proof. We observe that the bound on the parallel cost follows from the hypotheses of the theorem. In

fact in this case, by equations (4.22) and (4.23), we have N = O
(
nh
)
, and then logN = O (log n). 2

This theorem proves that the parallel time cost of the randomized algorithm RanPower is lower

than that of the deterministic implementation of the power method.
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Chapter 5

Conclusions

This thesis has investigated the effectiveness of randomized techniques for computing the largest eigen-

value and a corresponding eigenvector of a symmetric matrix. In particular, our study has been ad-

dressed towards two different directions. We first asked if the use of randomized techniques allows one

to characterize better the behavior of very well known methods. Then, we considered the problem

of designing a randomized algorithm whose performance is better than that of the best deterministic

implementation of the power method.

Both of these questions have been answered positively. In particular, in Chapter 2 and 3 we con-

sidered the power and Lanczos methods when the choice of the starting vector is done at random.

We noted that this is usually the case, in practical implementation of these methods. We defined the

randomized error in the sense of Lp, for p ∈ [1,+∞], and we analyzed the behavior of these methods

for every value of the norm parameter p. Our analysis has pointed out mainly two properties of Krylov

methods that were not known in the deterministic setting.

• In the randomized setting, the behavior of the above mentioned methods as well as of any other

polynomial methods differs when eigenvector or eigenvalue estimate is considered. In fact, for

eigenvector estimate it is impossible to give sharp bounds that do not depend on the matrix 1,

while for eigenvalue these bounds exist 2. This allows one to conclude that eigenvector estimate

is a harder problem that eigenvalue estimate in the setting considered in this thesis.

• From the analysis of distribution dependent bounds 3 it is evident that the speed of convergence

of power and Lanczos methods depends on the relation between the multiplicity r of the largest

eigenvalue and the norm parameter p. In particular, the error decreases faster when the dimension

r of the eigenspace corresponding to λ1 is large, but it slows down when the parameter p increases.

This is a complete new fact respect to the asymptotic deterministic case, where the speed of

convergence depends only on the eigenvalues of the matrix and on the iteration step.

1See Sections 2.3.1 and 3.1.

2See Sections 2.2.1, 3.4.1.

3See Sections 2.2.2, 2.4, 3.3 and 3.4.2.
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In Chapter 4 we described a parallel randomized algorithm for the approximation to the largest

eigenvalue. That method is based on the power algorithm, and it simulates k steps of that algorithm

at each time. The cost analysis showed that, the parallel cost of our method on a CREW-PRAM with

a polynomial number of processors, is O (log n+ log k) where the best deterministic implementation of

the power algorithm requires in the same model O (log n log k).

This thesis showed very encouraging results, and highlights several topics that deserve further investi-

gations. For example, we plan to study the randomized error of Lanczos algorithm for the approximation

of the first s largest eigenvalues of a symmetric positive definite matrix, s� n. For this problem error

estimates are known in the deterministic case, but so far no results are available in the randomized

setting.

It would be interesting also to extend our results by considering different error criteria, for example

the randomized residual error defined in [LW96], or to study other methods such as Arnoldi method in

this setting.

70



Bibliography

[BCM88] D. Bini, M. Capovani, and O. Menchi. Metodi Numerici per l’Algebra Lineare. Zanichelli,

Bologna, 1988.

[BM58] G. E. P. Box and M. E. Muller. A Note on the Generation of Random Normal Deviates.

Ann. Math. Statist., 29:610–611, 1958.

[Bro56] G. W. Brown. Modern Mathematics for the Engineer. McGraw-Hill, New York, 1956. Editor

E. F. Beckenbach.

[CF89] B. Codenotti and F. Flandoli. A Monte Carlo method for the parallel solution of linear

systems. J. of Complexity, 5(1):107–117, 1989.

[Cho87] A. W. Chow. On the Optimality of Krylov Information. J. of Complexity, 3:26–40, 1987.
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[TW84] J. F. Traub and H. Woźniakowski. On the Optimal Solution of Large Linear Systems. Journal

of ACM, 31:545–559, 1984.

[TWW88] J. F. Traub, G. W. Wasilkowski, and H. Woźniakowski. Information-Based Complexity.
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