
Broadcast and Associative Operations on Fat-Trees∗

G. Bilardi† B. Codenotti‡ G. Del Corso§ C. Pinotti¶

G. Resta‡

Abstract

This paper analyzes the cost of performing broadcast, product
and prefix computation on the ideal fat-tree, a model proposed here
to capture distance and bandwidth properties common to a variety of
fat-tree networks. Algorithms are developed and analyzed in terms of
the capacity of channels at different levels of the fat-tree. Non trivial
lower bounds are derived establishing the optimality of our algorithms
for a wide range of channel capacities.

1 Introduction

A number of networks have been introduced in the literature and referred
to as fat-trees, e.g., the concentrator fat-tree, the pruned-butterfly fat-tree,
and the sorting fat-tree. Loosely speaking, a fat-tree is a tree whose leaves
act as input/output terminals, whose internal nodes are subnetworks with
switching capability, and whose edges are channels of appropriate capacity.
Proposed fat-trees differ in node structure and channel capacities.

Fat-trees have interesting universality properties in VLSI and form the
basis for a number of universal routers [Lei85, GL89, LMR88, BB95, Gre94,
BCDM94] and universal circuits [BB93]. The CM-5 parallel supercomputer
uses a fat-tree as its interconnection pattern [LAD+92].

In spite of its wide use, the term fat-tree has not been defined precisely.
A definition useful for the study of layout area has been proposed in [BB94].
∗This research was partially supported by the ESPRIT III Basic Research Programme

of the EC under contract No. 9072 (Project GEPPCOM).
†DEI, Università di Padova, Padova (Italy) and EECS, University of Illinois at

Chicago, Chicago, (Illinois).
‡Istituto di Matematica Computazionale del CNR, Pisa (Italy).
§Dipartimento di Matematica, Università degli Studi di Milano, Milano (Italy).
¶Istituto di Elaborazione dell’Informazione del CNR, Pisa (Italy).

1



In the present paper (Section 2), we propose the ideal fat-tree model, which
captures broad distance and bandwidth constraints of fat-tree networks and
provides a basis to design algorithms portable among different fat-trees. We
show how a fat-tree network can simulate an ideal fat-tree.

We study two classes of algorithms for ideal fat-trees. In the first class,
the communication network is not pipelined, in the sense that it will not ac-
cept new messages while others are already in transit. This constraint leads
to a natural decomposition of the computation as as sequence of rounds,
which makes algorithms easier to design and analyze. Perhaps surprisingly,
in many cases this constraint does not prevent achieving optimal perfor-
mance. In a second, unrestricted class, the network accepts messages at
any time.

Sections 3 and 4 respectively deal with upper and lower bounds to
broadcast time on the ideal fat-tree, with and without pipelining. The
derived bounds are in the form of recurrence relations, expressed in terms
of a function w(n), defining the capacity of the channels at the roots of
subtrees with n leaves. We solve such recurrences for a number of significant
shapes of w(n), obtaining the results reported in Table 1.

Capacity Lower Bounds Upper Bounds
w(N) Unrestricted No pipelining Unrestricted No pipelining

O(1) Ω
(

log2N
log logN

)
Ω(log2N) O

(
log2N

log logN

)
O(log2N)

log1+O(1)N Ω
(

log2N
log logN

)
O
(

log2N
log logN

)
2logβ N , β < 1 Ω(log2−β N) O(log2−β N)
N1/ log logN Ω(logN log logN) O(logN log logN)
Nβ , β ≤ 1 Ω(logN) Ω(logN log logN) O(logN log logN)

Table 1: Time bounds for broadcasting in an ideal fat-tree.

The resulting running time ranges from O(logN log logN) (for channel
capacity proportional to subtree size) to O(log2N/ log logN) (for constant
channel capacity). We observe that pipelining is crucial to achieve optimal
performance only for rather small capacities, whereas it plays no significant
role for larger capacities (say, w(n) ≥ log n). A comparison between upper
and lower bounds shows that our algorithms are optimal for a wide range
of channel capacities. A log logN gap remains for large capacities, in the
unrestricted case, pointing at interesting aspects of the problem that require
further investigation.

2



Associative product and prefix computations are the subject of Sec-
tion 5. We show that these operations are related to broadcast in various
ways, affording an extension both of the algorithmic techniques and of the
lower bound results developed for broadcast.

Concluding remarks are in Section 6.
As broadcast is a basic primitive for parallel computation, it has been

widely studied in many different models. Among the most similar to the
ideal fat-tree are a number of models based on bandwidth/latency pa-
rameters such as the postal model [BK92], LogP [CK+93, KSSS93], BSP
[Va90, BHPPS96], and the ring of processors of [RSS94] where messages
can cross k links in time O(log k) (modeling the use of cascaded drivers
to accelerate message transmission along MOS lines). Clearly, broadcast
algorithms for most models resemble each other to some extent, since they
are all based on replicating and distributing the message to be broadcast.
The strategies differ in making different tradeoff between replication and
distribution. In particular, while all the models cited in this paragraph are
invariant under an arbitrary permutation of the processors, the ideal fat-
tree is faster when communication occurs between processors that belong
to a small subtree, which leads to different broadcasting strategies.

2 The Ideal Fat-Tree

We introduce the ideal fat-tree, the model of computation used in the rest
of this paper.

For N a power of two, an ideal fat-tree is a network of N processors
P0, P1, . . . , PN−1, placed from left to right at the leaves of a complete binary
tree. We say that p is the identity of Pp.

The internal nodes of the tree represent switching modules forming a
routing network among the processors. Except for the one at the root,
each module is connected to its parent by two unidirectional channels (in
opposite directions). Both such channels have capacity w(n), where n ∈
{1, 2, . . . , N/2} is the number of leaves of the subtree rooted at that module
node (Fig. 1 illustrates the structure of an ideal fat-tree).

We assume global synchronization among the nodes of the fat-tree. In
one period of the global clock, a processor can execute one local operation,
submit one message to the network, and receive one message from the
network.

A message submitted to the network moves along the shortest path
between its source and its destination in the tree, traversing one channel
per period. Thus, the message arrives 2h steps after it is sent, where

3



Figure 1: An ideal fat-tree with N = 16 and w(n) = log n+1. Black circles
represent processors. Grey circles represent the switching modules.

h ∈ {1, 2, . . . , logN} is the height of the lowest common ancestor of source
and destination.

An algorithm for an ideal fat-tree can be specified by a program for the
generic processor, with a distinguished read-only variable interpreted as the
processor identity. An algorithm is defined to be legal if, on any appropriate
input, at any step, the number of messages traversing any channel does not
exceed the capacity of that channel.

We can see that our model is ideal in the sense that routing time is
assumed to be the minimum compatible with capacity and distance con-
straints. We propose the ideal fat-tree as a potentially portable abstraction
for the class of fat-tree networks. (For a model different from ours, but sim-
ilar in spirit, see [LM88].) Indeed, it can be shown that a specific fat-tree
with good routing properties can simulate an ideal fat-tree with moderate
slowdown. Technically, we have (see [Lei85] for the definition of the load
factor λ):

Theorem 1 Let F be a fat-tree network of N leaves with capacity function
w(n), such that a set of messages of load factor λ can be routed on line,
in time O(λs(N) + d(N)). Then, F can simulate an ideal fat-tree with the
same capacity function w(n) with slowdown O(s(N) + d(N)).

As an example, for the randomized routing of constant-size messages
on the butterfly fat-tree, s(N) = 1 and d(N) = logN [LMRR94]; thus,
the slowdown to simulate an ideal fat-tree according to the preceding theo-
rem would be O(logN). For for the deterministic routing of O(logN)-size

4



messages on the sorting fat-tree, s(N) = logN and d(N) = log2N [BB95],
yielding a slowdown of O(log2N).

We develop algorithms and derive lower bounds for a fat-tree with a
general capacity function w(n), simply assuming two natural constraints:

1. w(2n) ≥ w(n), that is, the outgoing bandwidth of a subtree does not
decreases with its size;

2. w(2n) ≤ 2w(n), that is, the bandwidth toward the parent does not
exceed the total bandwidth toward the children.

Typical w(·) functions are w(n) = Θ(n1/2), for area-universal trees, and
w(n) = Θ(n2/3), for volume-universal trees.

We shall often make use of the following pseudo-inverse of w(n):

w−1(c) = min{n : w(n) ≥ c}. (1)

Clearly, w−1(c) represents the number of leaves of the smallest subtree
whose root capacity is at least c.

3 A Broadcast Algorithm

Simple diameter considerations show that any broadcast algorithm on an
ideal fat-tree takes time Ω(logN). An obvious algorithm using only one
unit of capacity per channel easily achieves time O(log2N). The goal of this
section is to design algorithms that improve on the O(log2N) performance
by taking advantage of larger channel capacity. We also investigate the
further potential offered by pipelining.

3.1 The Algorithm

We present a broadcast algorithm for fat-trees of size N with running time
ranging from O(logN log logN) (for w(n) = n) to O(log2N/ log logN)
(for w(n) = 1). The algorithm maximizes parallelization while avoiding
congestion. Roughly speaking, a certain number of copies of the message is
generated and then distributed so that each subtree of a suitable size holds
a copy; then the algorithm is recursively applied in each subtree.

More precisely, algorithm Broadcast (Algorithm 1) relies on a recursive
procedure, Sparse-Broadcast (Algorithm 2). The goal of Sparse-Broadcast,
called on a tree of size n, is to generate r = max(w(n), 2) uniformly spread
copies of the message.

5



This is accomplished in two phases: in the first phase Sparse-Broadcast
calls itself on a subtree of size m = w−1(

√
r) [line 6], thus generating

√
r

copies of the message. This is the smallest subtree (hence the one with the
minimum distance among the processors) whose root capacity is at least

√
r

(hence affording these copies to be distributed without congestion) [lines
7,8]. In the second phase, each of the

√
r copies produced in the first phase

is used to generates other
√
r copies, by means of

√
r simultaneous calls

to Sparse-Broadcast on
√
r subtrees of size m [lines 9,10]. Finally, the

resulting r copies are distributed uniformly [lines 11,14].
Algorithm Broadcast first calls procedure Sparse-Broadcast on the same

tree [line 3], which generates r = max(w(n), 2) copies of the message to be
broadcast, one in each subtree of size n/r. Then Broadcast is recursively
called in parallel [lines 4,5] on each of these subtrees.

3.2 Analysis

Let S(N) denote the time needed to perform a Sparse-Broadcast on a tree
of N leaves by Algorithm 2. We have:

S(N) ≤ 2S(m) + 4 logN = 2S(w−1(w1/2(N))) + 4 logN , (2)

where the term 2S(m) accounts for the two calls on subtrees of size m [lines
6 and 10], and the term 4 logN accounts for the time to spread the copies
[lines 7-8 and 11-15].

The time T (N) of the full broadcast (Algorithm 1) satisfies

T (N) = S(N) + T

(
N

w(N)

)
. (3)

Broadcast(first, n)
{Send copy originally at first to leaves first + 1, . . . , first + n− 1}

1. if n > 1 then
2. r = max{w(n), 2};
3. Sparse-Broadcast(first, n)
4. for 0 ≤ i ≤ r− 1 pardo
5. Broadcast(first + i n/r, n/r);
6. endif

Algorithm 1: Broadcast.

6



Sparse-Broadcast(first, n)
{Send copy originally at leaf first to max{w(n), 2} equally spaced leaves}

1. r = max{w(n), 2};
2. if r = 2 then
3. P [first]→ P [first + n/2];
4. if r > 2 then
5. m = w−1 (

√
r);

6. Sparse-Broadcast(first, m)
7. for 0 ≤ i ≤

√
r− 1 pardo

8. P [first + i m/
√
r]→ P [first + i n/

√
r];

9. for 0 ≤ i ≤
√
r− 1 pardo

10. Sparse-Broadcast(first + i n/
√
r,m);

11. for 0 ≤ i ≤
√
r− 1 pardo

12. for 0 ≤ j ≤
√
r− 1 pardo

13. P [(first + i n/
√
r) + j m/

√
r]→ P [(first + i n/

√
r) + j n/r];

14. endfor
15. endif

Algorithm 2: Sparse Broadcast. (Notation: P [k] → P [h] means that pro-
cessor k sends the message to processor h.)

In the full paper, we solve the above equation for some interesting cases
of function w(n), with the results reported in Table 1 of the Introduction.
We also provide a detailed discussion motivating the non obvious choice
m = w−1(

√
r) in Line 5 of procedure Sparse-Broadcast.

3.3 Pipelining

The performance of the algorithm described above can be improved by
pipelining. After the execution of the sparse broadcast routine, we have
w(n) copies of messages. Note that, using pipelining, each message can be
replicated O(logN) times in time O(logN). In fact, if a processor sends
k messages in pipeline, the first message will reach its destination at most
after logN time steps, and the last one after logN + k − 1 time steps.

Thus, spending an additional O(logN) time, we can call recursively
the broadcast algorithm on subtrees of size N/(w(N) logN) instead of

7



N/w(N). The corresponding recurrence is

T ′(N) = S(N) + T ′
(

N

w(N) logN

)
+ γ logN , (4)

where γ is a small constant. Again, see Table 1 for solutions in specific
cases.

4 Lower Bounds for Broadcast

In this section, we establish lower bounds for the running time T (N) of
broadcasting algorithms on ideal fat-trees with N leaves. A first bound
applies to any algorithm, even with pipelining. The pipelined algorithm
of Subsection 3.3 attains this lower bound for w(N) ≤ N1/ log logN . A
stronger lower bound is also derived for a restricted class of algorithms.
Algorithm 1 of Subsection 3.1 belongs to this class and attains the lower
bound for capacities w(N) ≥ logN .

4.1 A General Lower Bound

The next theorem provides a lower bound in the form of a recurrence rela-
tion.

Theorem 2 The running time of any broadcast algorithm on an ideal fat-
tree satifies

T (N) ≥ log(N/2) + T

(
N/w(N/2)

log(2N/w(N))

)
.

Proof. The proof is in the Appendix. 2

The lower bound of Theorem 2 matches the performance of our algo-
rithm, for capacities not exceeding N1/ log logN . If w(N) > N1/ log logN , the
trivial lower bound Ω(logN) is obtained.

4.2 A Lower Bound for the Round Model (no Pipelining)

The constraint that the network can not be pipelined can be conveniently
translated into the following rules.

Round–Model Rules:

• The algorithm consists of a sequence of rounds.

• During a round a processor can send or receive at most one message.

8



• All messages in a given round leave their source at the beginning of
the round.

• A round ends when all the messages sent have reached their destina-
tion.

The time of a round is twice the round height, the maximum height
in the tree reached by any message during that round. The time of an
algorithm is the sum of the times of its rounds. It is easy to see that, when
w(N) ≥ logN , Algorithm 1 of the previous section can be cast into the
round model without increasing its running time.

In the round model, we have the following lower bound.

Theorem 3 In the round model, the running time T (N) of any broadcast
algorithm satisfies

T (N) > (1/2) logN
log logN−1∑

i=0

2i

log(w(22i) + 1)
.

Proof. The proof is in the Appendix. 2

It is straightforward to derive the following corollary.

Corollary 4 In the round model, the running time T (N) of any broadcast
algorithm satisfies

T (N) = Ω

(
log2N

logw(N)

)
.

Corollary 5 In the round model, for a fat-tree with w(N) = Nβ, with
β ≤ 1, the running time T (N) of any broadcast algorithm satisfies

T (N) = Ω(logN log logN).

Our results on the complexity of broadcast are summarized in Table 1.

5 Associative Product and Prefix Computations

In this section, we consider two basic associative computations, which are
intimately related to the broadcast operation, i.e. prefix and associative
product in a semigroup.

Let S be a semigroup with the ? operation, and let a0, a1, . . . , aN−1 be
elements of S.

9



• For the prefix computation, we assume that

(i) initially processor Pi stores the value ai, i = 0, 1, . . . , N − 1;

(ii) at the end of the computation, Pi contains a0 ? a1 ? · · · ? ai,
i = 0, 1, . . . , N − 1.

• For the product, we assume that initially there is the same data
distribution as above, and at the end of the computation P0 stores
a0 ? a1 ? · · · ? aN−1.

We have the following relations among the above computations and broad-
cast:

1. Product is part of prefix.

2. Assuming the existence of an identity element e, broadcast is a sub-
case of prefix when a0 = a (the value to broadcast) and ai = e for
i ≥ 1.

3. The interplay between product and broadcast is less obvious. It
emerges by viewing any computation for broadcast as a sort of “re-
verse” of the product computation. More precisely, at each step of
a product computation a node Pk computes, say, Ai ? Aj , where Ai
and Aj are partial products computed at nodes i and j, respectively.
In the corresponding broadcast computation, processor Pk sends the
data to processors Pi and Pj . On the other hand, we can associate
to any broadcast algorithm a computation graph, which keeps track,
for all the nodes, of the node which sent it the data first. This com-
putation graph is a tree, which, if visited from the leaves, provides
a computation graph for the product. Note that the corresponding
product algorithm requires, in general, commutativity. The above
observations are summarized in Figure 2.

By taking take advantage of these properties we establish the following
results (details in the full paper):

Theorem 6 In the ideal fat-tree, prefix and product have the same asymp-
totic complexity as broadcast. In particular the best lower bound is exactly
the same for the three problems.

6 Conclusions

In this paper, we have designed efficient algorithms for broadcast and other
related computations on idealized fat-trees, which are optimal for a wide

10



Prefix
�� �

Product
�� � Broadcast

�� �

�
�

�
�
�

��=

Z
Z
Z
Z
Z
ZZ~

����XXX
Xy

��
��XXXXz

commutativity

existence of
identity

reductions from the
process of computation

Figure 2: Relations between Broadcast, Product and Prefix.

range of the capacity of the interconnection network. We conjecture that
optimality holds even outside this range, although a different lower bound
argument might be needed. We have also presented a lower bound tech-
nique that applies to algorithms restricted to work in rounds. It would be
interesting to establish that the above restriction is not necessary. Further
work to be done include analyzing basic linear algebra computations, e.g.
matrix-vector multiplication, using the primitive operations described in
this paper.

References

[BK92] A. Bar-Noy and S. Kipnis. Designing Broadcasting Algorithms in the
Postal Model for Message-Passing Systems. In Proceedings of the 4th
Annual Symposium on Parallel Algorithms and Architectures, pages 13–
22. ACM, 1992.

[BB93] P. Bay and G. Bilardi. An area-universal VLSI circuit. In Proceedings of
the 1993 Symposium on Integrated Systems, pages 53–67, March 1993.

[BB94] G. Bilardi and P. Bay. An area lower bound for a class of fat-trees. In
Proceedings of the 1994 European Symposium on Algorithms, pages 413–
423, Utrecht, The Netherlands, Springer-Verlag LNCS 855, 1994.

[BB95] P. Bay and G. Bilardi. Deterministic on-line routing on area-universal
networks. Journal of the ACM, 42(3):614–640, May 1995.

[BCDM94] G. Bilardi, S. Chauduri, D. Dubashi, and K. Mehlhorn. A lower bound
for area-universal graphs. Information Processing Letters, 51, 101–105,
1994.

11



[BHPPS96] G. Bilardi, K.T. Herley, A. Pietracaprina, G. Pucci, and P. Spirakis,
BSP vs LogP. In Proceedings of the 8th Annual Symposium on Parallel
Algorithms and Architectures, pages 25–32. ACM, 1996.

[CK+93] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,
R. Subramonian, and T. von Eicken. LogP: Towards a Realistic Model of
Parallel Computation. In Proceedings of the 4th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming. ACM, 1993.

[KSSS93] R. Karp, A. Sahay, E. Santos, K. E. Schauser. Optimal Broadcast and
Summation in the LogP Model. In Proceedings of the 5th ACM Symposium
on Parallel Algorithms and Architectures, June 1993.

[GL89] R. I. Greenberg and C. E. Leiserson. Randomized routing on fat-trees.
In S. Micali, editor, Randomness and Computation, pages 345–374. JAI
Press, Inc., 1989.

[Gre94] R. I. Greenberg. The fat-pyramid and universal parallel computation inde-
pendent of wire delay. IEEE Transactions on Computers, C-43(12):1358–
1364, December 1994.

[LAD+92] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman,
M. N. Ganmukhi, J. V. Hill, W. D. Hillis, B. C. Kuszmaul, M. A. St.
Pierre, D. S. Wells, M. C. Wong, S.-W. Yang, and R. Zak. The network
architecture of the Connection Machine CM-5. In Proceedings of the 4th

Annual ACM Symposium on Parallel Algorithms and Architectures, pages
272–285, July 1992.

[Lei85] C. E. Leiserson. Fat-trees: Universal networks for hardware-efficient super-
computing. IEEE Transactions on Computers, C-34(10):892–900, October
1985.

[LM88] C. E. Leiserson and B. Maggs. Communication-efficient parallel algo-
rithms for distributed random-access machines. Algorithmica, 3, 53-77,
1988.

[LMR88] T. Leighton, B. Maggs, and S. Rao. Universal packet routing algo-
rithms. In Proceedings of the 29th Annual Symposium on the Foundations
of Computer Science, White Plains, New York, October 1988.

[LMRR94] T. Leighton, B. Maggs, A. Ranade and S. Rao. Randomized Rout-
ing and Sorting on Fixed-Connection Networks. Journal of Algorithms,
17(1):157–205, 1994.

[RSS94] A.L. Rosenberg, V. Scarano and R.K. Sitaraman. The Reconfigurable
Ring of Processors: Fine-grained Tree-structured Computations. 6th IEEE
Symposium on Parallel and Distributed Processing, 1994.

[Va90] L. G. Valiant. A Bridging Model for Parallel Computation. Communica-
tion of the ACM, 33:103–111, 1990.

12



Appendix. Proofs of Theorems 2 and 3

Proof of Theorem 2. For n ≤ N/2, consider a subtree T of n leaves
and assume that, at a given time t, no node of T contains any copy of the
message to be broadcast.

At time t + log n no message has yet reached any leaves of T , because
any copy must enter the root after time t and it will take log n steps before
it can reach a leaf. We will argue next that at least one subtree of T of
suitable size is still empty.

Let d = logw(n)+log log(2n/w(n)) and observe that, if w(n) ≤ n, then
d ≤ log n. Consider now the 2d = w(n) log(2n/w(n)) subtrees of T of n/2d

leaves. The number of messages that have entered any of these subtrees is
at most

w(n)[log n− d] = w(n)[log(n/w(n))− log log(2n/w(n)],

since (i) no replication of copies has taken place within T , (ii) at most
w(n) copies can enter at each time unit, and (iii) only those copies entered
between t + 1 and t + log n− d will have reached a subtree of those being
considered, as their root is at distance d from the root of T .

A straightforward comparison shows that the number of subtrees con-
sidered exceeds the total number of copies they collectively contain at time
t+ log n, whence at least one of them is empty at that time. Therefore, we
have:

T (n) ≥ log n+ T (n/2d) = logn+ T

(
n/w(n)

log(2n/w(n))

)
.

The statement of the theorem follows by letting t = 0 and n = N/2. In
fact, when t = 0, there is only one copy in the entire tree and therefore
there is an empty subtree of size N/2.

Proof of Theorem 3. Let round(1), round(2), ..., round(K) be the
rounds of the algorithm, with round(t) of round height height(t) and
duration 2 height(t). Let g(h) denote the number of rounds with height
greater than h. We focus on the sequence of heights 1, 2, 4, . . . ,H where
H = 2dlog logN−1e is the largest power of two smaller than logN . Since
there are (g(2i) − g(2i+1)) rounds with 2i < height ≤ 2i+1 and each of
them takes more than 2 ·2i steps, the total number of steps of the algorithm
satisfies the relation

T >
logH∑
i=0

(g(2i)− g(2i+1))2i+1 ≥
logH∑
i=0

2ig(2i). (5)

13



Next, we seek a lower bound to g(h). For h = 0, 1, . . . , logN − 1, let
sh(t) denote the number of subtrees of height h that, upon completion of
round(t), contain at least one copy of the message to be broadcast. For
convenience, also let sh(0) = 1, for any h. Let round(tih) be the i-th round,
in order of execution, among those of height greater than h. We have:

sh(ti+1
h ) ≤ (w(2h) + 1) sh(tih). (6)

In fact, during round(tih + 1), . . . , round(ti+1
h − 1), no message enters (from

the root) a subtree of height h. During round(ti+1
h ), each of the sh(tih)

subtrees of height h that already hold one copy of the message can send
out to other subtrees at most w(2h) copies.

Considering that, upon termination of the broadcast algorithm, all the
N/2h subtrees have a copy of the message, we have sh(tg(h)h ) ≥ N/2h. The
latter relation, together with 5 and sh(0) = 1, after simple manipulations
yields

g(h) ≥ logN − h
log(w(2h) + 1)

. (7)

By using Relation 7 in Relation 5, we obtain:

T >
logH∑
i=0

2i
logN − 2i

log(w(22i) + 1)
≥ (1/2) logN

logH−1∑
i=0

2i

log(w(22i) + 1)
, (8)

where, in the last step, for i < logH, we have used 2i < (1/2) logN .

14


