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Abstract
We introduce a new notation based on diagrams to deal with Fiedler pencils with repetitions (FPR),

and use it to solve several counting problems. In particular, we give explicit recurrences to count the
number of FPRs of a given degree d, the number of symmetric, palindromic and antipalindromic ones
(where the latter two structures are intended in the sense of [5]). We relate these structures to the presence
of symmetries in the associated diagrams.
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1 Introduction
In this paper, we deal with several combinatorial problems and properties of a family of pencils called Fiedler
pencils with repetition (FPR). These objects, introduced by M. Fiedler [7] for scalar polynomials and later
extended to the matrix case [1, 15], are generalizations of the companion pencil constructed as products of
elementary matrices that satisfy certain commutation relations. The main interest in Fiedler pencils comes
from the study of linearizations of a matrix polynomial A(x) =

∑d
i=0 Aix

i ∈ Cn×n[x]. A linearization is a
pencil that can be constructed easily from the entries of a matrix polynomial A(x), and has the same eigenvalues
and partial multiplicities as the matrix polynomial [10]. Fiedler pencils are a large family of linearizations,
and inside this family it is possible to identify some members with specific structures, for instance symmetric
or palindromic pencils. There has been considerable research interest in the past years in finding new methods
to produce linearizations (and, in particular, structure-preserving linearizations; see for instance [2, 12]) and
studying their numerical properties.

In this paper, we introduce new notation and terminology to deal with Fiedler pencils and Fiedler pencils
with repetitions; most notably, we use diagrams that represent the action of Fiedler pencils on vectors, like the
computation graphs used in error analysis or the butterfly diagrams used in the study of FFT. These diagrams
are not only useful for visualization, but allow simplifications to some proofs through the use of concepts such
as ‘the lowest horizontal segment in a path’.

With this notation at hand, we can give explicit canonical forms, characterizations and constructions for
members of this family that have special structures. Structured FPRs have already been studied in [4, 5, 6],
but the characterizations given there do not allow one to construct explicitly all the Fiedler pencils that satisfy
certain conditions, or find out easily how many there are. Here we expand on their work: our new formalism
and constructions allow us, for instance, to solve combinatorial problems such as ‘how many different FPRs
are there with a given degree’. In particular, we give recurrences or explicit expressions for the number of
Fiedler pencils possessing specific structures (symmetric, palindromic and antipalindromic).

2 Structured matrix polynomials
In the following, d ≥ 1 is a fixed integer and A(x) =

∑d
i=0 Aix

i ∈ Cn×n[x] is a matrix polynomial. We do not
assume that Ad 6= 0, but allow for the possibility that d (called grade of A(x)) is higher than the true degree
of the matrix polynomial.
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partially supported by GNCS project “Equazioni e funzioni di matrici con struttura: analisi e algoritmi” and by the Universitt of
Pisa under the grant PRA-2017-05.
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Figure 1: The diagram corresponding to G(A).
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Figure 2: The diagrams corresponding to Fi for varying i and d = 4.

With the symbol M?, ? ∈ {∗, T}, we denote either the transpose conjugate M∗ or the complex transpose
MT of a matrix M ∈ Cn×n; all the results that we present in this paper hold in both cases.

A matrix polynomial is called symmetric if Ai = A?
i for each i. It is called palindromic if Ai = A?

d−i for
each i, and antipalindromic if Ai = −A?

d−i for each i. When d is odd, A(x) is palindromic if and only if A(−x)
is antipalindromic.

3 Diagram notation for Fiedler matrices
In this section, we define Fiedler matrices associated to a given matrix polynomial A(x) =

∑d
i=0 Aix

i ∈
Cn×n[x]. In the following, all matrices have n × n blocks. For each k ∈ N (zero included), the symbol Ik

denotes an identity matrix of size k; when k = n, we can omit the subscript, i.e., I := In. Our basic building
blocks are matrices of the form

G(A) :=
[
0 I
I A

]
, (1)

where A ∈ Cn×n. We represent them using diagrams like the one in Figure 1. This drawing represents visually
the action of G(A) on (block) row vectors; indeed, the construction of the vector[

w1 w2
]

=
[
v1 v2

]
G =

[
v2 v1 + v2A

]
corresponds to following the paths marked with arrows from the left to the right, multiplying by A when the
box is encountered and summing where the two arrow tips meet. We now consider block matrices with d
blocks, with d > 2, and define elementary Fiedler matrices

F0 :=
[
A0

In(d−1)

]
,

Fi :=

In(i−1)
G(Ai)

In(d−i−1)

 , for i = 1, 2, . . . , d− 1,

where the matrices Ai, i = 0, 1, . . . , d−1, are arbitrary n×n matrices. These matrices act nontrivially each on
a pair of adjacent blocks; we visualize them using similar diagrams with more rows, such as the one in Figure 2.
Notice the grey horizontal lines that serve as a reminder that nothing happens on the block components that
are unaffected by the transformation.
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A Fiedler product is the formal product of a sequence of elementary Fiedler matrices

F = Fi1Fi2 · · ·Fi`
, 0 ≤ ik < d for each k. (2)

Each elementary Fiedler matrix Fj may appear multiple times (or none at all) in it. We denote by rev(F ) the
Fiedler product where the elementary Fiedler matrices are taken in the reverse order, i.e. rev(Fi1Fi2 · · ·Fi`

) =
Fi`

Fi`−1 · · ·Fi1 . We speak of ‘formal product’ because we are interested in the sequence of factors. When we
need to refer to the actual matrix obtained by carrying out the multiplications, we call itM(F ).

In the following, we are mostly interested in determining whenever Fiedler matrices are equal for every
choice of the matrix polynomial A(x); hence, when we writeM(F ) =M(G), we mean that they are equal for
all admissible values of the polynomial A(x); that is, if they are equal when the coefficients Ai are regarded
as (non-commuting) indeterminates. Equality for specific values of the Ai (for instance, if they are all equal
to 0) is merely a coincidence and does not concern us.

We say that two products F and G are equivalent, and we write F ∼ G, if one can be obtained from the
other by repeatedly swapping pairs adjacent factors FiFj with |i− j| > 1: for instance,

F3F0F2F1F3F0 ∼ F0F3F2F3F1F0 ∼ F3F2F0F1F0F3. (3)

Two elementary matrices Fi and Fj commute whenever |i− j| > 1, because they act on different rows. Hence,
if F ∼ G then M(F ) = M(G), which is the motivation to consider this specific equivalence relation. As we
shall see in Section 6, this is an ‘if and only if’ for a large subset of Fiedler products (operation-free products).

We represent a product (2) as a diagram in which the diagrams of the factors are concatenated horizontally
in the same order as in the product, as in Figure 3. Diagrams corresponding to equivalent products can be
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Figure 3: The diagram of F = F3F0F2F1F3F0

obtained one from another by sliding horizontally the diagram elements without altering the interconnection
of the diagram, because when |i − j| > 1 the elements acts on different rows. Moreover, in this case we can
draw a tighter version of the diagram by putting commuting blocks in the same column, one on top of the
other, as shown in Figure 4. Indeed, Figures 3 and 4 differ only by the horizontal spacing, but they have the
same interconnections.
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Figure 4: The diagram of the same matrix F as in Figure 3, compressed.

The main reason for considering these diagrams is that they represent visually the action of a Fiedler
matrix. We call path a polygonal line obtained by following the lines on the diagram, going always left to right
following the direction of the arrows, and possibly going through a certain number of the boxes labelled with
a matrix.

The following result holds.
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Theorem 1 (Block-path correspondence). Let F be a Fiedler product. The block (i, j) of M(F ) is a sum
of terms of the form Ak1Ak2 · · ·Ak`

; a term Ak1Ak2 · · ·Ak`
appears in the sum if and only if the diagram

associated to F contains a continuous polygonal path going left to right in the direction of the arrows which
starts in row i, ends in row j, and crosses ` boxes containing respectively Ak1 , Ak2,, . . . , Ak`

(in this order).
Note that if there are no paths between row i and column j then we get an empty sum, hence the block

contains 0. If there is a path between row i and column j which goes through no boxes, then the sum includes
a term I which corresponds to an empty product (` = 0).

A formal proof of Theorem 1 can be obtained easily by induction on the number of elementary Fiedler
factors in F . An example, which hopefully makes this description clearer, is in Figure 5.
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A1 A1
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M(F0F2F1F3F0F1F3F0F2F1) =


0 A2

0 A0A1 0
I A1 A2 A3

A2 A1A0 + A2A1 A2
1 + A2

2 + A0 A2A3
A3 A3A1 A3A2 A2

3 + I


Figure 5: The summands in the (3, 2) block ofM(F ) correspond to all possible paths that start in row 2 on
the left of the diagram and end in row 3 on its right. In this case there are two such paths, one (drawn in red)
going through two boxes, first the one labeled A1 and then A0, and one (drawn in blue) going through A2 and
then A1.

A second tool that can be used to work with Fiedler products is the following.
Definition 1. For each k = 0, . . . , d, the layer Lk−1:k(F ) of a Fiedler product (2) is the sequence formed by
the elementary Fiedler factors of F of the kinds Fk−1 and Fk, taken in the order in which they appear in F .
Example 1. Let F = F2F3F4F3F0F1F2F0. Then, L1:2(F ) = (F2, F1, F2), and L2:3 = (F2, F3, F3, F2).

Note that we have defined the layers L−1:0(F ) and Ld−1:d(F ) as well, even if there exist no F−1 or Fd

factors. So, for the product in Example 1, L−1:0(F ) = (F0, F0) and L4:5(F ) = (F4).
If F ∼ G, then Lk−1:k(F ) = Lk−1:k(G) for each k: indeed, since in the definition of our equivalence relation

we cannot swap Fk−1 and Fk, the order in which they appear is uniquely determined.
The layer Lk−1:k(F ) encodes the sequence of boxes and gaps appearing on the horizontal row labelled k

on the diagram.

4 Operation-free products
A Fiedler product F = Fi1Fi2 . . . Fi`

, with 0 ≤ ij < d for each j, is called operation-free if each n× n block of
M(F ) contains either 0, I or one of the matrices Ak (for some k). For instance,

M(F3F2F0F1F0) =


0 A0 0 0
0 0 I 0
0 0 0 I

A0 A1 A2 A3


is operation-free, while the example of Figure 3,

M(F3F0F2F1F3F0) =


0 A0 0 0
0 0 0 I
0 0 I A3

A0 A1 A3 A2 + A2
3

 ,
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is not, because the block (4, 4) contains the expression A2 + A2
3.

We give here a characterization of operation-free products using diagrams.

Lemma 2. For a Fiedler product F , the following are equivalent.

1. F is operation-free;

2. in the diagram associated to F , no path contains more than one box;

3. No layer Lk−1:k contains two consecutive Fk−1 elements.

Proof. We prove a circular chain of implications between the converses of each statement.

not 1 =⇒ not 2 Assume that F is not operation-free; this means that in one of the blocksM(F )(i,j) we need
to perform (at least) an addition or a multiplication. By the block-path correspondence, a multiplication
means that the same path contains two successive boxes, and we are done. So we focus on the case of an
addition: by the block-path correspondence, this means that there are two different paths which go from
row i to row j. An example is in Figure 5. In this case, a path starting from row i passes through an
element Fh, where it separates into two different sections which join again at an element Fk (possibly all
these things happening at different heights in the diagram), and then terminate at the right end of the
diagram in row j. When this happens, the lower section of the path starts and ends by passing through
the boxes belonging to Fh and Fk.

not 2 =⇒ not 3 Our hypothesis is now that there is a section of a path which starts and ends by going
through two different boxes (as, for instance, the red section in Figure 5). When this happens, consider
the horizontal segment belonging to this section of the path which is at the lowest height k. At its end,
there must be two Fk−1 elements, and since the segment is uninterrupted there are no Fk elements in
between.

i + 1 Ai Ai

any length

Figure 6: Path section forbidden in an operation-free product. The (uninterrupted) horizontal segment can
have an arbitrary length, including zero.

not 3 =⇒ not 1 We have to prove that if the configuration in Figure 6 appears in the diagram, then the
product is not operation-free. This statement is obvious: in view of the block-path correspondence, the
path (i, j) containing this configuration goes through two boxes one after the other, and thus computing
the element in blockM(F )(i,j) requires a product.

A result equivalent to 1 ⇐⇒ 3 already appeared in literature in the form of the following statement.

Corollary 3 (Successor-infix property, SIP [15]). A Fiedler product F is operation-free if the following property
holds for each k = 1, 2, . . . , d: for each pair of identical elementary Fiedler factors Fk−1 appearing in the product
F , there must be a factor of type Fk in an intermediate position between them.

Lemma 2 has the following consequence.

Corollary 4. Let F be an operation-free Fiedler product. Then, no path across its diagram contains an
arrow pointing towards south-west ↘ followed (at some point) by an arrow pointing towards north-west ↗. In
particular, once a path goes below a horizontal line, it stays below it.

Proof. Suppose, instead, that the path passes through the south-west arrow of an element Fh and then through
the north-west arrow of an element Fk. Then, there is another path sharing the same central section, but
going through the boxes of elements Fh and Fk instead of following the arrows. In particular, this path goes
through two boxes, so F is not operation-free.

Corollary 4 is not an “if and only if”: a counterexample is F = F 2
0 . The only case when it fails, though,

is when the shape depicted in Figure 6 appears in the uppermost row, because the elements F0 do not have
diagonal arrows.
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Figure 7: A diagram of the “densest possible” Fiedler product with d = 5. Its elements can be drawn inside
the triangular region shaded in blue.

Corollary 5. Suppose that h factors of the kind Fk appear in an operation-free Fiedler product. Then, there
can be at most h + 1 factors Fk−1: one between each consecutive pair of Fk, plus one to the left and one to the
right of all of them. Hence, any operation-free product contains the factor Fd−1 at most once, the factor Fd−2
at most twice, . . . , the factor F0 at most d times.

The operation-free Fiedler matrix with the most factors has a diagram with the shape of an upside-down
triangle. An example is shown in Figure 7. All other operation-free Fiedler matrices can be obtained by taking
diagrams which have only a subset of its elements.

5 The middle standard form
In this section, we introduce a standard form for operation-free products and for their diagrams, which we call
middle standard form (MSF). It is analogous to the column standard form (CSF) and row standard form (RSF)
introduced in [15] (which we briefly discuss in Remark 8), but designed to better highlight the properties of
structured matrices and pencils.

Theorem 6. For each operation-free Fiedler product F ,

F ∼ SMT,

where

• M = Fk1Fk2 · · ·Fkm for a sequence 0 ≤ k1 < k2 < · · · < km < d with kj+1 − kj ≥ 2;

• S = SmSm−1 · · ·S1, and each factor Sj is either the identity matrix or the product Fsj
Fsj−1 · · ·Fkj−2Fkj−1

for some sj < kj;

• T = T1T2 · · ·Tm, and each Ti is either the identity matrix or the product Fki−1Fki−2 · · ·Fti+1Fti
for

some ti < ki.

Moreover, one can draw a diagram associated to F in which for each h = 1, 2, . . . , m, the three factors ShFkh
Th

form a V shape (with the two arms possibly of different lengths), and all the factors belonging to M are stacked
one on top of the other in the central column.

For an example of the diagram, see Figure 8.

Proof. We shall first describe how to construct the diagram as described, and then we can read off the
factorization from it.

Let F = Fi1Fi2 · · ·Fi`
be an operation-free Fiedler product with 0 ≤ ij < d. The construction that we

make is inductive, starting from the factor Fj with largest j, and building the diagram upwards one row at a
time. Let imax := maxj=1,2,...,` ij . There must be a single Fimax factor for F to be operation-free; we start by
drawing it in the middle of our diagram, along the central column. Then, we suppose that we have laid out
on the diagram all the factors of the form Fi for i > ı̄ , and we show how to position the factors Fı̄ in the row
directly above them.

Each factor Fı̄ present in the product has to appear in a specific position relative to the row immediately
below it: between two given elements, or left of all of them, or right of all of them. Within these constraints,
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middle column

F = F4F5︸ ︷︷ ︸
S3

F1F2F3︸ ︷︷ ︸
S2

F0︸︷︷︸
S1

F1F4F6︸ ︷︷ ︸
M

I︸︷︷︸
T1

F3︸︷︷︸
T2

F5F4F3F2F1F0︸ ︷︷ ︸
T3

Figure 8: A Fiedler product in middle standard form and the corresponding diagram, with the ‘V shapes’
drawn in different colors.

they can be moved freely left or right (which corresponds to altering the order of commuting factors). To
choose where to put them, we follow this rule: we draw each element as close as possible to the central column.
For instance, see the two examples in Figure 9, in which we have drawn only the rows in Lı̄:̄ı+1. If a factor
Fı̄ comes between two Fı̄+1 that are both to the right of the middle column, then we draw it close to the left
one; if they are both to the left of the middle column, then we draw it close to the right one; and if they are
on two different sides then we draw it in the middle column.

If one follows these rules, the diagram elements are arranged naturally in sequences that are first increasing
and then decreasing in the shape of a V , e.g., Fsh

Fsh+1 · · ·Fkh−1Fkh
Fkh−1 · · ·Fth+1Fth

. We call k1, k2, . . . , km

the indices of the factors appearing in the middle column of the diagram; there cannot be two with consecutive
indices Fi and Fi+1 in this column, since we can only stack in the same column commuting matrices, by our rules
to construct diagrams. We order them by index from the smallest to the largest to form M = Fk1Fk2 · · ·Fkm .

This constructive procedure builds a diagram equivalent to the one for F by only swapping pairs of com-
muting matrices, so it implies that F ∼ SMT .

Some results that relate the indices of the MSF with the content of the blocks of M(F ) can be obtained
visually from the diagrams; for instance the following one.

Lemma 7. Let F be an operation-free Fiedler product with middle standard form SMT , with the indices
ki, si, ti as above. Then,

M(F ) =
[
B 0
0 In(d−1−km)

]
for some B ∈ Cn(km+1)×n(km+1). (4)

Moreover, the last block row of B contains

•
[
0 0 · · · 0 I Atm

Atm+1 · · · Akm

]
if tm > 0, or

•
[
A0 A1 · · · Akm

]
if tm = 0.
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middle column

ı̄

ı̄ + 1

ı̄ + 2 Aı̄+1 Aı̄+1 Aı̄+1 Aı̄+1 Aı̄+1

Aı̄ Aı̄ Aı̄

middle column

ı̄

ı̄ + 1

ı̄ + 2 Aı̄+1 Aı̄+1 Aı̄+1 Aı̄+1

Aı̄ Aı̄

Figure 9: An example of how to lay down the factors Fı̄ (with respect to the row below) when constructing
the MSF diagram of an operation-free Fiedler product.

Similarly, the last block column of B contains

0
0
...
0
I

Asm

Asm+1
...

Akm


if sm > 0, or


A0
A1
...

Akm

 if sm = 0.

Proof. Note that there are no elementary factors with index larger than km; hence the last d−1−km horizontal
rows of the diagram contain uninterrupted straight lines, and the shape (4) follows. In view of the block-path
correspondence, to determine the content of the last row of B it is sufficient to consider the paths that start
from the row labeled km + 1 of the MSF diagram for F . These are:

• a straight horizontal path that goes through a block Akm
; this corresponds to Akm

in block (km+1, km+1)

• for each elementary factor Fi present in Tm, a path that bends upwards just before reaching Akm
,

proceeds diagonally for a while, and then goes through the block Ai corresponding to that factor;

• if tm 6= 0, an additional path that proceeds the same way but then does not go through a block.

The content of the last column of B can be determined analogously, by checking the paths that end in the row
labeled km + 1 on the diagram.

Remark 8. The column standard form and row standard form introduced in [15] also correspond to special
ways of choosing how to draw the diagrams, as following:

• The row standard form is obtained by drawing each diagram element inside the region shaded in blue in
Figure 7 as far left as possible, and taking the product R1R2 · · ·Rd, where Ri = Fi−1Fi−2 . . . Fri

are the
products that correspond to the diagonal sequences of diagonal elements in direction ↗ obtained with this
procedure.
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Middle standard form
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A0
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A4

A3

A2

A1

A0
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A7
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1
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A0

A1

A0

A2

A3

A4

A3

A2

A1

A0

A2

A7

A6

A5

A6

A5

F0F1F0F2F3F2IF5F4F3F2F1F0F6F7F6F5 F5F6F7F6F0F1F2F3F4F5IF2F3F2F0F1F0
Row standard form Column standard form

Figure 10: The three different standard forms of the same (symmetric) Fiedler product F .

• The column standard form is obtained by drawing each diagram element inside the region shaded in blue
in Figure 7 as far right as possible, and taking the product CdCd−1 · · ·C1, where Ci = FciFci+1 . . . Fi−1
are the products that correspond to the diagonal sequences of diagonal elements in direction ↖ obtained
with this procedure.

An example with the three standard forms of the same F is displayed in Figure 10.

6 The role of equivalence
The following result pins down the exact meaning of equivalence.

Theorem 9. Let F and G be two operation-free Fiedler products. Then, the following are equivalent.

1. F ∼ G;

2. M(F ) =M(G) for each matrix polynomial A(x);

3. M(F ) =M(G) for a matrix polynomial A(x) such that Ai 6= I for each i = 0, 1, . . . , d;

4. Lk−1:k(F ) = Lk−1:k(G) for each k;
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k − 1

k

k + 1 Ak Ak

Ak−1

k − 1

k

k + 1 Ak Ak

Figure 11: Parts of diagrams that are different if two layers do not coincide. These pictures are used in the
proof of Theorem 9, the first corresponds to product F and the second to G.

5. The middle standard forms of F and G are equal.

Proof. 1 =⇒ 2 This part is clear since Fi and Fj commute whenever |i− j| > 1.

2 =⇒ 3 This is obvious.

3 =⇒ 4 We prove that different layers imply different matrices. Let k be the largest index for which
Lk−1:k(F ) 6= Lk−1:k(G). The only way in which the two layers can be different is when F contains
an elementary factor Fk−1 between two successive Fk (or the beginning/end of the product) while G
does not (or vice versa). The parts of the two diagrams that differ are pictured in Figure 11. Note that,
by our choice of k, the parts of the two diagrams that are below row k are identical. Consider the paths
in the two diagrams that go through the horizontal segments drawn in green (dotted) on the picture. By
Corollary 4, the remaining part of those paths lies entirely below row k of the diagram and, by our choice
of k, they are identical. Hence the paths in the two diagrams both go from the same row i to the same
row j, and the only difference between the two is that one goes through the box in red containing Ak−1,
and the other doesn’t. By Lemma 2, there are no other boxes on this path, because F is operation-free.
This means that the block (i, j) of M(F ) contains Ak−1, while the same block of M(G) contains I,
hence the two matrices are different (if Ak−1 6= I).

4 =⇒ 5 This holds because our construction of the MSF only uses the layers of a Fiedler product.

5 =⇒ 1 The relation ∼ is an equivalence relation, so F ∼ SMT ∼ G implies F ∼ G.

In the previous theorem, the implications 1 =⇒ 2 =⇒ 3 are easy and well-known. The part 5 =⇒ 1
(although with the column and row standard form instead of the MSF introduced here) is in [15], and the
results obtained there relating the content of rows and columns can be used to derive a result similar to
3 =⇒ 5, although this is never mentioned explicitly.

Remark 10. We conjecture that the equivalences 1 ⇐⇒ 2 ⇐⇒ 3 ⇐⇒ 4 in Theorem 9 hold even if one
does not assume that F and G are operation-free. Note that, indeed, in [4, Preposition 2.12] the equivalence
1 ⇐⇒ 4 is already proved even when F and G are not operation-free.

7 Transposition and symmetric matrix polynomials
Suppose that the matrix polynomial A(x) =

∑d
i=0 Aix

i on which our construction is based is symmetric.
Then, Fi = F ?

i for each i. Moreover, by the properties of transposition,(
M(Fi1Fi2 · · ·Fi`

)
)? =M(Fi`

Fi`−1 · · ·Fi2Fi1),

that is, to transpose a Fiedler product it is sufficient to reverse the order of its factors. This can be reformulated
with a simple interpretation in terms of the associated diagrams.

Lemma 11. Let F be a Fiedler product. A diagram representing F ? can be obtained by flipping horizontally
a diagram representing F .

By flipping horizontally here we mean reflecting it along a vertical axis. For instance, the two bottom
diagrams in Figure 10 can be obtained one from the other via a horizontal flip.
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With a slight abuse of notation, we say that a Fiedler product F is symmetric if the matrixM(F ) satisfies
M(F ) =

(
M(F )

)? for every symmetric matrix polynomial A(x). In view of Theorem 9, when F is operation-
free, this is equivalent to asking that F ∼ rev F . Using Lemma 11, it is easy to show that some Fiedler
products F are symmetric.

Lemma 12. Let F a Fiedler product. If the diagram has a vertical symmetry axis, then F is symmetric.

The converse does not hold: since there is some freedom in the horizontal positioning of the blocks, different
diagrams can be associated to the same F ; some may be symmetric, some may be not. For instance, the Fiedler
product appearing in Figure 10 is symmetric; this is apparent from the MSF diagram, which is symmetric
along its middle column, but not at all from the CSF or the RSF one.

Indeed, the MSF always displays when an operation-free Fiedler product is symmetric.

Lemma 13. Let F be an operation-free Fiedler product with middle standard form F ∼ SMT , as in Theorem 6.
Then, the following are equivalent.

1. F is symmetric;

2. si = ti for each i = 1, 2, . . . , m, that is, T = rev S;

3. The MSF diagram of F has reflection symmetry along its central column.

Proof. 1 =⇒ 2 Let F ∼ SMT be the MSF of F . We have F ∼ rev F ∼ (rev T )M(rev S), and the three
factors rev T, M, rev S satisfy the definition of MSF; hence, by the uniqueness of the MSF, they must
coincide with S, M, T , which means that si = ti.

2 =⇒ 3 This is clear from the shape of the diagram.

3 =⇒ 1 This follows by Lemma 12.

With the middle standard form at our disposal, it is easy to derive the number of symmetric Fiedler
products of a given degree.

Theorem 14. Let Σd be the number of different (non-equivalent) operation-free symmetric Fiedler products
of degree d. Then Σd satisfies the recursion

Σd = Σd−1 + d Σd−2, Σ1 = 2, Σ2 = 4. (5)

Proof. For d = 1, Σ1 = 2 since the only possible Fiedler products are F0 and I. For d = 2, we have the
previous ones plus two more products, F1 and F0F1F0. Let now d > 2. We have two cases, which are also
depicted in Figure 12:

• F does not contain the factor Fd−1. Then F is also a symmetric Fiedler product of degree d− 1; there
are Σd−1 possibilities for this case.

• F contains the factor Fd−1. Then its MSF can be obtained by adding a V-shape to the MSF of a Fiedler
product F (d−2) of degree d − 2. There are Σd−2 ways to choose F (d−2) and d possible choices for the
length of the two arms of the V.

The Fiedler products obtained in this way all have different MSF, hence, by part 5 of Theorem 6, they are
non-equivalent.

The recurrence (5) is widely studied in combinatorics and algebraic geometry: it is the number of Young
tableaux of d + 1 cells [9]. See also [14, Sequence A000085] for more properties and references.
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Figure 12: The two possibilities to construct a symmetric Fiedler product of degree d = 5 starting from a
lower-degree one.
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Figure 13: The diagrams of the infix pair (with d = 7 and g = 6) generated by L1 = F0F3F4, Q1 =
F1F0F2F3F5F4, R1 = F1F0F2F1F3F2F1F0, with the three factor depicted in different colors.

8 Infix pairs
In this section, we study infix pairs, which are the building block to construct and understand Fiedler pencils
with repetitions.

Definition 2. We call infix pair of height g a pair of matrices (F ,G), with F ,G ∈ Cnd×nd such that F =
M(LQR) and G =M(LR), where

• Q is a Fiedler product which contains each of the factors F0, F1, . . . , Fg−1 exactly once (in some order);

• L and R are Fiedler products which may only contain the factors F0, F1, . . . , Fg−2;

• LQR is operation-free.

A triple of Fiedler products L, Q, R satisfying Definition 2 is called a set of generators for (F ,G).
All our matrices are nd×nd, but the factors that can appear in a height-g infix pair are only F0, F1, . . . , Fg−1.

Hence the matrix F acts like an identity matrix in the last d−g blocks, while the matrix G (which only contains
factors up to Fg−2) acts like an identity matrix in the last d− g + 1 blocks, i.e., they can be partitioned as

F =
[
F̂ 0
0 In(d−g)

]
, G =

[
Ĝ 0
0 In(d−g+1),

]
F̂ ∈ Cng×ng, Ĝ ∈ Cn(g−1)×n(g−1). (6)

An example is shown using diagrams in Figure 13.
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Figure 14: The diagrams of the infix pair (with d = 7 and g = 6) generated by L2 = F0F1F3F0F2F1,
Q2 = F4F3F5F0F2F1, R2 = F4F3F2F1F0, for which L1Q1R1 ∼ L2Q2R2 and L1R1 ∼ L2R2.
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Figure 15: The diagrams of the infix pair (with d = 7 and g = 6) generated by L3 =
F0F1F3F0F2F4F1F3F0F2F1, Q3 = F5F4F3F2F1F0, R3 = I, for which L1Q1R1 ∼ L3Q3R3, but L1R1 6∼ L3R3.
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Lk−1:k(G) = (F?, . . . , Fk−1, Fk−1 . . . , F?︸ ︷︷ ︸
Lk−1:k(L)

, F?, . . . , F?︸ ︷︷ ︸
Lk−1:k(R)

) Lk−1:k(F ) = (F?, . . . , Fk−1, Fk−1 . . . , F?︸ ︷︷ ︸
Lk−1:k(L)

, F?, F?︸ ︷︷ ︸
Lk−1:k(Q)

, F?, . . . , F?︸ ︷︷ ︸
Lk−1:k(R)

)

Lk−1:k(G) = (F?, . . . , F?, Fk−1︸ ︷︷ ︸
Lk−1:k(L)

, Fk−1, F?, . . . , F?︸ ︷︷ ︸
Lk−1:k(R)

) Lk−1:k(F ) = (F?, . . . , F?, Fk−1︸ ︷︷ ︸
Lk−1:k(L)

, Fk−1, Fk︸ ︷︷ ︸
Lk−1:k(Q)

, Fk−1, F?, . . . , F?︸ ︷︷ ︸
Lk−1:k(R)

)

Figure 16: Examples of cases 1 and 3 in the proof of Lemma 16.

Note that the same pair of matrices can be obtained with different choices of the generators: for instance,
Figures 13 and 14 show two non-equivalent choices L1, Q1, R1 and L2, Q2, R2 that produce the same pair
(F ,G), as they have the same diagrams. It is also possible that L1Q1R1 ∼ L3Q3R3, but L1R1 6∼ L3R3; an
example is in Figure 15.

The following lemma shows that no matter how we reorder the factors in LQR, the three factors stay
separated in each layer, and we can still identify which of the individual elementary factors ‘belong’ to L, Q
or R.

Lemma 15. Let (M(LQR),M(LR)) be an infix pair with generators L, Q, R. Let F ′ be any Fiedler product
equivalent to F = LQR, obtained by swapping pairs of commuting factors. Suppose further that the elementary
factors are labeled individually so that we can recognize them after swapping and reordering them. Then, in
every layer Lk−1:k(F ′), k = 1, 2, . . . , g − 1,

• the elementary factors which appeared in Q before the reordering are still consecutive.

• the elementary factors which appeared in L before the reordering are still the ones to the left of those in
Q, and those which belonged to R are still to the right of Q.

Proof. Swapping commuting factors does not alter the order in which the elements come in each layer.

We now prove a first result about infix pairs: not only is LQR operation-free, as mandated by the definition,
but LR is too. This result appears in [15, Theorem 4], with a proof which is essentially the same as ours, only
without the layer formalism.

Lemma 16 ([15, Theorem 4]). Let (M(LQR),M(LR)) be an infix pair with height g and generators L, Q, R.
Then, LR is operation-free.

Proof. We work by contradiction: suppose that G = LR is not operation-free. Then, by Lemma 2, for some
k ∈ {1, 2, . . . , g − 1} the layer Lk−1:k(G) (which is the concatenation of Lk−1:k(L) and Lk−1:k(R)) contains
two consecutive elements equal to Fk−1. As shown in Figure 16 we have three cases:

1. The two consecutive elements of type Fk−1 both belong to Lk−1:k(L). Then, Lk−1:k(F ) = Lk−1:k(LQR)
(which is the concatenation of Lk−1:k(L), Lk−1:k(Q), and Lk−1:k(R)) contains two consecutive Fk−1,
too. This means that F is not operation-free, which is a contradiction.

2. The two consecutive elements of type Fk−1 both belong to Lk−1:k(R). This case is analogous to the one
above.

3. The two elements of type Fk−1 are the last element of Lk−1:k(L) and the first element of Lk−1:k(R).
Note that Lk−1:k(Q) equals either (Fk−1, Fk) or (Fk, Fk−1); hence in either case when we concatenate
the three lists to form Lk−1:k(F ) we find two adjacent elements of type Fk−1.

The following lemma gives some insight on the structure of different sets of generators that define the same
infix pair.

Lemma 17. Let L1, Q1, R1 and L2, Q2, R2 be two different sets of generators for the same infix pair of height
g (i.e., L1Q1R1 ∼ L2Q2R2 and L1R1 ∼ L2R2). Then,

1. For each k = 0, 1, . . . , g− 2, the elements of Lk−1:k(L1Q1R1) = Lk−1:k(L2Q2R2) which lie between those
belonging to Q1 and those belonging to Q2 are alternatingly Fk−1 and Fk.
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2. Let L3, Q3, R3 be the set of generators of some infix pair (F ′,G′) satisfying F = F ′ (i.e., F = L1Q1R1 ∼
L3Q3R3). Suppose that in every layer Lk−1:k(F ) the elements belonging to Q3 lie between those belonging
to Q1 and those belonging to Q2 (possibly coinciding). Then, G′ = G; that is, L3, Q3, R3 are a different
set of generators for the same infix pair.

Proof. We prove Part 1 by induction on g, by adding a new row at the top of an existing infix pair. Suppose
that the result holds up to height g − 1, and consider an infix pair of height g. Let us define a height-g − 1
infix pair by removing the factors F0 from L1, Q1, R1 and shifting down by 1 each other index: that is, if
L1 = Fi1Fi2 . . . Fi`

, then we define L̂1 = Fi1−1Fi2−1 . . . Fi`−1, with the convention that F−1 = Ind (and
analogously Q̂1, R̂1). Clearly, L̂1, Q̂1, R̂1 are the generators of a height-(g−1) infix pair (F̂ , Ĝ) whose diagrams
are obtained by removing the first row from those of (F ,G) and relabeling.

By inductive hypothesis, Part 1 holds for the layers of (F̂ , Ĝ), hence also for the layers of (F ,G) apart from
(possibly) the first one. Let us focus on the first layer L0:1(L1Q1R1), then. Two consecutive elements F1, F0
(or F0, F1) of this sequence belong to Q1; we color them in red. Similarly, two consecutive elements F1, F0
(or F0, F1) belong to Q2; we color them in purple. We present the proof in detail for the case in which the
red elements are F0, F1 (in this order), and come before the purple elements F1, F0 (in this order). The other
cases are analogous. Hence our setting is

L0:1(L1Q1R1) = (?, . . . , ?︸ ︷︷ ︸
A

, F0, F1, ?, . . . , ?︸ ︷︷ ︸
B

, F1, F0, ?, . . . , ?︸ ︷︷ ︸
C

). (7)

We call A, B, C the subsequences formed by the elements to the left of the red elements, in between the red
and purple, and to the right of the purple elements, respectively, as shown in (7).

Since L1R1 ∼ L2R2, the two subsequences

AF0F1BC and ABF1F0C (8)

obtained by removing either the red or purple factors are equal. In particular, both must end with F0C: hence
B ends with F0. If B = (F0), then we are done. Otherwise, since both subsequences in (8) end with F1F0C,
B must end with F1F0, and we have now

L0:1(L1Q1R1) = (?, . . . , ?︸ ︷︷ ︸
A

, F0, F1, ?, . . . , ?, F1, F0︸ ︷︷ ︸
B

, F1, F0, ?, . . . , ?︸ ︷︷ ︸
C

).

If B contains further elements, we can prove by the same argument that it ends with F0, F1, F0, and so on,
until we reach the red factors.

Part 2 is also proved by induction on g. Using the same notation ·̂ introduced in the previous point, we
know by inductive hypothesis that L̂1R̂1 = L̂2R̂2 = L̂3R̂3, that is, the layers of L1R1, L2R2, L3R3 coincide
apart from possibly the topmost one L0:1(L3R3). We focus on this first layer then. By the previous part, this
layer is of the form

L0:1(L1Q1R1) = (?, . . . , ?︸ ︷︷ ︸
A

, F0, F1, F0, F1, F0, . . . , F1, F0︸ ︷︷ ︸
B

, F1, F0, ?, . . . , ?︸ ︷︷ ︸
C

).

(again, the red and purple subsequences can be either F0, F1 or F1, F0; the other cases are analogous). The
hypothesis of Part 2 ensures that the two elements belonging to Q3 lie in the region between the elements
colored in red and purple (possibly overlapping with them), that is, the one in which F0 and F1 alternate.
Now it is clear that removing any two consecutive elements F0, F1 or F1, F0 from this region leaves the same
subsequence L0:1(L3R3) = L0:1(L1R1) = L0:1(L2R2).

In terms of diagrams, Lemma 17 means that if we build an infix pair by choosing two different ‘paths’ Q1,
Q2 inside a diagram for F , then the space between Q1 and Q2 is filled with as many elements as possible, and
choosing any other ‘path’ Q3 inside this region results in the same infix pair; see for instance the example in
Figure 17.

We can give a recurrence for the number of infix pairs.

Theorem 18. Let Πg be the number of distinct (non-equivalent) infix pairs of height g. Then, Π1 = 1, Π2 = 3,
and for each g ≥ 3,

Πg = 2gΠg−1 − (g − 1)2Πg−2. (9)
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Figure 17: An example of Lemma 17. Choosing either the red elements (Q1) or the blue elements (Q2) as Q
gives equivalent infix pairs; hence, the shaded portion of the diagram contains as many elements as possible
(Part 1 of the lemma), and choosing as Q any continuous ‘path’ Q3 contained inside the shaded region gives
an equivalent infix pair (Part 2).
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Proof. We present two ways to construct a height-g infix pair with generators L, Q, R starting from a height-
(g − 1) infix pair with generators L′, Q′, R′.

Left extension L = WL′, Q = Fg−1Q′, R = R′, where W is either the identity or the product FwFw+1 . . . Fg−2,
for some w ∈ {0, 1, . . . , g−2}. This construction amounts to inserting an additional factor Cg−1 into the
column standard form of L′Q′R′.

Right extension L = L′, Q = Q′Fg−1, R = R′H, where H is either the identity or the product Fg−2Fg−3 . . . Fh,
for some h ∈ {0, 1, . . . , g− 2}. This construction amounts to inserting an additional factor Rg−1 into the
row standard form of L′Q′R′.

Moreover, we present a way to construct a height-g infix pair with generators L, Q, R starting from a height-
(g − 2) infix pair L′′, Q′′, R′′.

Double extension L = WFg−2L′′, Q = Fg−1Q′′Fg−2, R = R′′H, where W is either the identity or
the product FwFw+1 . . . Fg−3, for some w ∈ {0, 1, . . . , g − 3} and H is either the identity or the
product Fg−2Fg−3 . . . Fh, for some h ∈ {0, 1, . . . , g − 2}. Equivalently, one can choose L = WL′′,
Q = Fg−2Q′′Fg−1, R = R′′Fg−2H, because Fg−2 commutes with both L′′ and R′′ and Fg−1 commutes
with Q′′. This construction amounts to inserting an additional V shape into the middle standard form
of L′′Q′′R′′.

These constructions are represented in Figure 18.
We prove the following statements.

1. Each height-g infix pair can be obtained by either left or right extension. Indeed, consider a height-g
infix pair with generators L, Q, R, and take the middle standard form LQR ∼ SMT , with S, M, T as in
Theorem 6. The unique factor Fg−1 belongs to M , by the construction of the MSF, and km = g − 1.
Suppose now that the factor Fg−2 in Q belongs to T ; then, we claim that the elementary factors of Sm

all belong to L. Otherwise, take the maximum possible i < g−1 such that the same elementary factor Fi

belongs to both Sm and Q. Clearly, i 6= g − 2, because the factor Fg−2 in Q is after its factor Fg−1. By
Lemma 15, the factor Fi+1 in Q is adjacent to its factor Fi in Li:i+1(LQR), hence it must be the factor
Fi+1 that appears in Sm. This is a contradiction, by maximality of i. Hence all factors of Sm belong to
L. In particular, L, Q, R are obtained from the left extension of the infix pair obtained by deleting the
factor Fg−1 and those belonging to Sm. Analogously, if the factor Fg−2 in Q belongs to S, we can obtain
L, Q, R as right extension of the infix pair obtained by deleting Fg−1 and Tm.
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Figure 18: The different kind of extensions described in Theorem 18. The diagonal sequences of factors added
can have arbitrary length.

2. Each height-g infix pair that can be obtained by double extension can also be obtained by left extension and
by right extension. This is clear by considering the two equivalent forms of double extension pictured in
Figure 18: from the first one, one sees that it is the right extension of the infix pair obtained by deleting
the rightmost diagonal; from the second one, one sees that it is the left extension of the infix pair obtained
by deleting the leftmost diagonal. More formally, let L = WFg−2L′′, Q = Fg−1Q′′Fg−2, R = R′′H be a
double extension of the height-(g− 2) infix pair (L′′Q′′R′′, L′′R′′); then (LQR, LR) is a left extension of
L′ = L′′, Q′ = Q′′Fg−2, R′ = R′′H, and a right extension of L′ = WL′′, Q′ = Fg−2Q′′, R′ = R′′.

3. Each height-g infix pair that can be obtained by both left and right extension can also be obtained by
double extension. This part requires more attention because of a subtle point: it could be the case that
there is a choice of the generators L`, Q`, R` that we can obtain as left extension, and a different choice
Lr, Qr, Rr that we can obtain as right extension. An example is in Figure 19. We choose again a MSF
SMT ∼ L`Q`R` ∼ LrQrRr. If the factor Fg−3 in Q` belongs to M , then it is easy to see that the infix
pair is a double extension of the infix pair obtained by deleting the factors Sm, Fg−1 and Tm. The same
holds if the factor Fg−3 in Qr belongs to M .
Hence the only remaining case is the one in which Q` contains the factor Fg−1Fg−2Fg−3 in this order,
while Qr contains the factor Fg−3Fg−2Fg−1 in this order, exactly like in Figure 19. In this case, we rely
on Lemma 17: Part 1 tells us that there must be a third factor Fg−3 between those two, and Part 2 tells
us that we can find a third set of generators LQR ∼ L`Q`R` ∼ LrQrRr, LR ∼ L`R` ∼ LrRr for which
this third factor Fg−3 is in Q. Now we take again a MSF SMT ∼ L`Q`R` ∼ LrQrRr ∼ LQR; this time
the factor Fg−3 in Q belongs to M , so we can conclude as above.

4. Left extension produces gΠg−1 different (non-equivalent) pairs of height g, right extension produces gΠg−1
different (non-equivalent) pairs, and double extension produces (g−1)2Πg−2 pairs. When we make a left
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Figure 19: An example of the problematic configuration in Part 3 of Theorem 18. The set of generators
L`, Q`, R` on the left can be obtained by left extension but not by right extension, while the one on the right
Lr, Qr, Rr can be obtained by right extension only.

extension of an infix pair (F ′,G′), we have g different ways to choose the length of the diagonal sequence
of factors W to add; the only constraint is that Fg−1 must be present. For each choice and for each
(F ′,G′), we get a different infix pair. Indeed, Lemma 7 shows that different choices of W (and hence of
Sm) produce different matrices. The proof for the right extension is analogous. For double extension,
we can choose independently the length of the two added factors W and H, so we have (g− 1)2 choices.
Again, by Lemma 7 these lengths determine the blocks of the last nontrivial row and column of F , so
all the infix pairs produced by these choices are distinct.

Once we have established all these facts, the result follows by inclusion-exclusion:

Πg = gΠg−1︸ ︷︷ ︸
produced by left extension

+ gΠg−1︸ ︷︷ ︸
produced by right extension

− (g − 1)2Πg−2︸ ︷︷ ︸
produced by both

.

Surprisingly, the sequence Πg has already been studied in a completely different area: it counts the num-
ber of so-called two-sided generalized Fibonacci sequences [14, Sequence A005189]. The paper [8] contains a
definition of these sequences, a derivation of the recurrence (9), and some asymptotic properties such as the
rate of growth of the sequence.

9 Symmetric infix pairs
One can give a simple canonical form for symmetric infix pairs, i.e., those for which LQR and LR are symmetric.

Lemma 19. Let (F ,G) be a symmetric infix pair of height g. Then,

1. In the MSF diagram of F , the three central columns are completely filled, i.e., the central column 0
contains the product P = Fg−1Fg−3Fg−5 · · ·F(1 or 0), ending with either F1 or F0 depending on the
parity of g, and the two adjacent columns 1 and −1 contain U = Fg−2Fg−4Fg−6 · · ·F(0 or 1), where the
final index depends again on the parity of g.

2. One can choose generators for (F ,G) as follows:

• L = Cg−3Cg−5 · · ·C(1 or 0), where each Ci is either the identity or the product FciFci+1 · · ·Fi, for
some 0 ≤ ci ≤ i;

• Q = UP ;
• R = U rev L.

An example of this configuration is in Figure 20: the three central columns are filled, and two of them form
Q. Note that this canonical form is essentially the one presented in [3, Lemma 6.10].

Proof. Assume that A(x) is a symmetric matrix polynomial, and let L1, Q1, R1 be any set of generators
for (F ,G). Then, one can check that rev R1, rev Q1, rev L1 are a set of generators for (F∗,G∗) = (F ,G). In
particular, the MSF diagrams of L1Q1R1 and rev R1 rev Q1 rev L∗1 are the same, and the elements corresponding
to Q1 and those corresponding to rev Q1 are mirror symmetric along the middle column. By Part 1 of
Lemma 17, the region between Q1 and rev Q1 contains as many elements as possible. In particular, when we
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Figure 20: An example of the canonical set of generators described in Lemma 19.

1

2

−A

Figure 21: The diagram corresponding to G(A)−1

follow the algorithm to construct the MSF inductively, there is always one element in the column 0 for type
Fg−1, Fg−3, Fg−5, · · · , F(1 or 0) (because column 0 is always between any pair of mirror-symmetric positions),
and always one element in columns −1 and 1 for types Fg−2, Fg−4, Fg−6, · · · , F(0 or 1). By Part 2 of the same
lemma, we can choose a new set of factors L, Q, R for which Q contains exactly the elements in columns −1
and 0. With this choice, L is the set of elements in the MSF diagram of L1Q1R1 that is left of column −1,
hence it has the structure of a product L = Cg−3Cg−5 · · ·C(1 or 0) as required. The expression of R follows by
symmetry.

Using this canonical form, one can count explicitly symmetric infix pairs. Essentially, we need to count the
possible lengths of the ‘arms’ of the MSF of LQR.

Corollary 20. There are (g − 1)!! distinct (non-equivalent) symmetric infix pairs of height g.

Here, the notation k!! denotes the double factorial (or semi-factorial) of an integer k, i.e., the product of
all the integers between 1 and k that have the same parity as k.

Proof. We count the number of distinct canonical forms generated according to Part 2 of Lemma 19. Such
a canonical form is essentially the MSF of LQR, with the only restriction that the three central columns are
full. This implies that k1 = 1, k2 = 3, . . . , km = g − 1 or k1 = 0, k2 = 2, . . . , km = g − 1 (according to the
parity of g; hence m = b g+1

2 c), and that none of the factors Sh or Th is the identity matrix. Hence we have
0 ≤ sh = th ≤ kh − 1, and there are g − 1 choices for sg−1, g − 3 for sg−3, and so on down to s1 or s0.

10 Inverse Fiedler matrices
The inverse of G(A) in (1) is the matrix

G(A)−1 =
[
−A I
I 0

]
,

to which we can associate, analogously, the diagram in Figure 21. Similarly to the construction above, we can
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define the following elementary inverse Fiedler matrices

F−i := F−1
i =

In(i−1)
G(Ai)−1

In(d−i−1)

 , for i = 1, 2, . . . , d− 1,

F−d :=
[
In(d−1)

−Ad

]
,

which are associated to the elementary diagrams in Figure 22. Notice that F0 and F−d do not admit an

1

2

3

4

−A1 1
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3

4

−A2

1

2

3

4

−A3

1

2

3

4 −A4

F−1 F−2 F−3 F−4

Figure 22: The elementary diagrams associated to F−i.

operation-free inverse; indeed, their invertibility is not guaranteed and depends on that of A0 and Ad.
We call inverse Fiedler matrix a product of elementary Fiedler matrices with negative indices

F = Fi1Fi2 · · ·Fi`
, −d ≤ ik < 0 for each k.

All the constructions described earlier can be replicated for inverse Fiedler matrices. The resulting diagrams
look like a vertically mirrored version of the diagrams associated to regular Fiedler matrices. Every statement
that we have proved regarding diagrams associated with Fiedler matrices holds true for inverse Fiedler matrices,
provided we switch the “up” and “down” direction. For instance, the analogue of Figure 7 is Figure 23, and
the analogue of Corollary 4 states that in an operation-free inverse Fiedler matrix we cannot have an arrow
in direction ↗ followed by one in direction ↘. The MSF of an operation-free inverse Fiedler product can
be constructed analogously, by building the diagram downwards starting from imin, and creates sequences of
factors in the shape of an upside-down V . We do not repeat here all the theorems and their proofs.

Similarly, we define an inverse infix pair of height g as a pair (M(LQR),M(LR)) in which LQR is
operation-free, Q contains the factors F−d, F−d+1, . . . , F−d+g−1 exactly once, and L, R may only contain factors
F−d, F−d+1, . . . , F−d+g−2. An example is in Figure 24.
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−A4

−A5

Figure 23: The “densest possible” inverse Fiedler product with d = 5.
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Figure 24: A height-6 inverse infix pair.
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Figure 25: The two diagrams associated to the generalized Fiedler pencil F3F2F0F1 − F−7F−6F−4F−5x.

11 Generalized Fiedler pencils and Fiedler pencils with repetitions
A generalized Fiedler pencil [1] for the matrix polynomial A(x) is a matrix pencil M(Q+) − M(Q−)x ∈
Cnd×nd[x] such that Q+ is a Fiedler product which contains only the blocks Fi, i = 0, 1, . . . , g − 1 each one
exactly once, and Q− is an inverse Fiedler matrix containing only the blocks F−i, i = g, g + 1, . . . , d, each one
exactly once, for some g such that 0 < g ≤ d. In particular, Q+ always contains at least the factor F0 and Q−

always contains at least the factor F−d.
To these pencils we associate two diagrams, one for each matrix. An example is in Figure 25. Counting

the number of distinct generalized Fiedler pencils is simple. The first mention of this result that we could find
in the literature is in [11], but it was likely known earlier.

Lemma 21. For a matrix polynomial A(x) of degree d, there are d · 2d−1 distinct generalized Fiedler pencils.

Proof. For a fixed value of g, there are 2g−1 possible choices for Q+: we start by a diagram containing only
Fg−1; then we can insert Fg−2 either to its left or its right, Fg−3 either to the left or the right of Fg−2, and
so on, up to F0; every time we have 2 choices for the position of the next elementary factor. Different choices
give non-equivalent pencils, because their layers are different. Analogously, there are 2d−g choices for Q−.
Summing over the possible values of g gives the result.

A more general family of linearizations is the following. Let L+, Q+, R+ be the generators of a height-g infix
pair (F+,G+), and L−, Q−, R− be the generators of a height-(d+1−g) inverse infix pair (F−,G−). The matrix
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L+L−(Q+ −Q−x)R+R−

Figure 26: Diagrams associated to the Fiedler pencil with repetitions with d = 7, g = 4, Q+ = F3F2F0F1,
Q− = F−7F−6F−4F−5, L+ = F0F2F1, R+ = F0, R− = F−7, L− = F−5.

pencil A+ −A−x, with A+ =M(L+L−Q+R+R−) and A− =M(L+L−Q−R+R−), is called a Fiedler pencil
with repetitions. Note that this reduces to a generalized Fiedler pencil in the case L+ = L− = R+ = R− = I,
and indeed it corresponds to pre- and post-multiplying a generalized Fiedler pencil with L+L− and R+R−,
respectively.

To each FPR we can associate two diagrams, one representing the degree-0 coefficient and one representing
the degree-1 coefficient. An example is in Figure 26. The only difference between these two diagrams is that
one contains the upper part Q+ of a generalized Fiedler pencil, and the other contains its lower part Q−

instead.
In the matrix A+, the products L+, Q+, R+ contain only elementary matrices in the set {F0, F1, . . . , Fg−1},

while the factors L−, R− contain only inverse elementary matrices in the set {F−(g+1), F−(g+2), . . . , F−d}.
These two sets act on separate rows of the diagram, and hence they commute. Correspondingly, A+ can be
divided into two diagonal blocks A+

U ∈ Cng×ng and A+
L ∈ Cn(d−g)×n(d−g), and we have

F+ =
[
A+

U 0
0 In(d−g)

]
=M(L+Q+R+), G− =

[
Ing 0
0 A+

L

]
=M(L−R−), A+ = F+G− =

[
A+

U 0
0 A+

L

]
.

(10)
Analogously, in A− the products L+, R+ only contains factors in {F0, F1, . . . , Fg−2}, while L−, Q−, R− only
contain factors in {F−g, F−(g+1), . . . , F−d}; the two sets commute and determine a block diagonal decomposi-
tion of A−, into A−U ∈ Cn(g−1)×n(g−1) and A−L ∈ Cn(d−g+1)×n(d−g+1). Note that the sizes of these blocks are
different from those of A+. The analogue of (10) is

G+ =
[
A−U 0
0 In(d−g+1)

]
=M(L+R+), F− =

[
In(g−1) 0

0 A−L

]
=M(L−Q−R−), A− = G+F− =

[
A−U 0
0 A−L

]
.

(11)
For instance, in the example in Figure 26 we have g = 4, and d = 7, and the matrices of the pencil are

A+ =



0 0 A0 0
0 0 0 I
0 A0 A1 A2

A0 A1 A2 A3
−A5 I 0

I 0 0
0 0 −A7


A− =



0 A0 0
0 0 I

A0 A1 A2
−A4 −A5 I 0
−A5 −A6 0 −A7

I 0 0 0
0 −A7 0 0


For a fixed value of g, the FPR with the most elementary factors corresponds to two diagrams with a

hourglass shape such as the ones in Figure 27.
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Figure 27: The “hourglass shapes” corresponding to the FPR with the most possible factors among those with
d = 7 and g = 3.

A FPR is uniquely determined by the choices of g and of the two infix pairs (F+,G+) and (F−,G−), hence
the following corollary of Theorem 18 holds.

Corollary 22. There are Ξd =
∑d

g=1 ΠgΠd+1−g different Fiedler pencils with repetitions of degree d.

The first values of this sequence are Ξ1 = 1, Ξ2 = 6, Ξ3 = 37, Ξ4 = 254, Ξ5 = 1958, Ξ6 = 16910. This
sequence does not appear in the comprehensive reference database [14].

12 Symmetric FPRs
We call a FPR A+−A−x symmetric if both A+ and A− are symmetric for each symmetric matrix polynomial
A(x). Then, thanks to the block diagonal decompositions, the following result holds.

Corollary 23. A Fiedler pencil with repetitions is symmetric if and only if both infix pairs (F+,G+) and
(F−,G−) are symmetric.

Hence most of the work that we need to characterize symmetric FPRs has already been done in Section 9.
In particular, the following result is now clear in view of Corollaries 20 and 23.

Corollary 24. For a symmetric matrix polynomial A(x) of degree d, there are Ωd =
∑d

g=1(g − 1)!!(d − g)!!
different symmetric FPRs.

The first values of this sequence are Ω1 = 1, Ω2 = 2, Ω3 = 5, Ω4 = 10, Ω5 = 26, Ω6 = 58. This sequence
does not appear in [14] either.

Moreover, replacing (L+Q+R+, L+R+) and (L−Q−R−, L−R−) with their canonical form described in
Part 2 of Lemma 19, one obtains a visually simple canonical diagram in which the only difference between the
two matrices in the pencil is in columns −1 and 0, which we display in an example in Figure 28. An analogous
standard form, in algebraic terms and without a corresponding visualization, is given in [3]. The standard
form described in [4], instead, is different from this one: translating things into our notation, in the standard
form for infix pairs suggested in [4], Q may contain at its top a sequence of factors that leaves the columns
0 and −1 in a straight diagonal line. Correspondingly, the factor U such that R = U rev L (called symmetric
complement there) has a more complex structure, and the characterization of the possible left factors L is
more involved. An example in which the two forms differ is given in Figure 29.

13 Palindromic and antipalindromic FPRs
A family of palindromic linearizations obtained from FPRs is introduced and studied in [5]. Here we introduce
what is essentially the same family, but with a different approach which has, in our opinion, a simpler structure,
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Figure 28: An example of the standard form for symmetric FPRs. Both the top and bottom parts are in the
standard form for symmetric infix pairs; the two matrices differ only by the red part, and the only freedom of
choice that we have is the length of the blue diagonal ‘arms’ extending out of the central columns (the green
part is fixed by symmetry).
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L = I, Q = F6F7F4F5F0F1F2F3,
R = F6F4F0F1F2F0F1F0

L = F0F1, Q = F6F7F4F5F2F3F0F1,
R = F6F4F2F0F1F0

Figure 29: The diagram of the first element of the infix pair corresponding to w1rw1 in [4, Example 3.9],
with colorings corresponding to two different choices of the generators. The coloring on the left represents the
generators in the canonical form suggested in [4], the one on the right is the canonical form suggested here.
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when it comes to considering signs. Note that an odd degree matrix polynomial A(x) is palindromic if and only
if A(−x) is antipalindromic. Hence we first consider antipalindromic Fiedler linearizations of antipalindromic
polynomials, and then one can obtain palindromic linearizations of palindromic matrix polynomials by making
the substitution x 7→ −x.

Let A(x) be a ?-antipalindromic matrix polynomial of degree d. We say that a FPR A+−A−x is antipalin-
dromic if A+ = (A−)? for each antipalindromic polynomial A(x). In view of Theorem 9, this is equivalent to
L+L−Q+R+R− ∼ (L+L−Q−R+R−)?.

The first question to address is if these linearizations exist. Unfortunately, the answer is negative, apart
from the trivial case d = 1.

Theorem 25. Let A(x) be a ?-antipalindromic matrix polynomial of degree d. It is not possible to construct a
Fiedler pencil with repetitions A+ −A−x ∈ Cnd×nd such that A+ = (A−)?, apart from the trivial case d = 1.

Proof. Let A+ − A−x be an antipalindromic FPR, i.e., A+ = (A−)?. Then, since A+ and A− have block
diagonal structures (10) and (11) with different sizes, both block row g and block column g of A+ must contain
only zeros apart from the diagonal block (g, g). Moreover, if one applies Lemma 7 to F+ =M(L+Q+R+), we
see that the matrix B appearing in the lemma coincides with A+

U in (10). In particular, its last block row is
block row g in A+, and by Lemma 7 it contains at least two nonzero blocks unless B is composed of only one
n×n block, which means that g = 1. Similarly, the analogous of Lemma 7 for inverse Fiedler products lets us
predict the content of the first block row of A−L , and the only possibility for it to have only one nonzero block
is that it is 1× 1 and hence g = d. So we have shown that d = g = 1.

Following [5], we consider instead a slightly different definition that allows one to construct a nontrivial fam-
ily of structured FPRs for antipalindromic polynomials. We say that a pencil A+−A−x is J-antipalindromic,
if J(A+ −A−x) is antipalindromic, where J ∈ Rnd×nd is the matrix

J =

 0 In

. .
.

In 0

 .

This means that (JA+)? = (JA−), or equivalently A− = (JA+J)?. We define for notational convenience
S(M) = (JMJ)? = JM?J , where M is either a matrix or a formal matrix product, so that we can write
the last equality as A− = S(A+). Note that this operator enjoys many of the properties of transposition:
S(S(M)) = M , and S(M1M2 · · ·Mk) = S(Mk) · · · S(M2)S(M1).

If the matrix polynomial A(x) is antipalindromic, then S(·) acts nicely on elementary Fiedler matrices:

S(Fi) = F−(d−i), i = 0, 1, . . . , d− 1, (12)

and, conversely,
S(F−i) = Fd−i, i = 1, . . . , d. (13)

For example for d = 7 and F = F1F0F3F5F−6F−7, we have S(F ) = F7−7F7−6F5−7F3−7F0−7F1−7 = F0F1F−2F−4F−7F−6.
There is a simple interpretation of S(·) in terms of the associated diagrams.

Lemma 26. Assume that Ai = −A?
d−i for each i. Then a diagram representing S(F ) can be obtained flipping

horizontally and then vertically a diagram representing F .

Proof. Let us ignore initially the content of the boxes in the diagrams. If M is a nd × nd block matrix,
the operation M 7→ JMJ corresponds to reversing the order of its blocks; hence, in terms of our diagrams,
reflecting along a horizontal axis (flipping vertically). We have already established in Lemma 11 that the
operation M 7→M? corresponds to reflecting along the diagram a vertical axis.

As for the content of the boxes, we have shown in (12) and (13) that S maps each elementary Fiedler pencil
to a corresponding inverse Fiedler pencil and vice versa, so they are transformed correctly.

An example is shown in Figure 30.
A FPR A+ −A−x is J-antipalindromic for every choice of the antipalindromic matrix polynomial A(x) if

and only if L+L−Q+R+R− ∼ S(L+L−Q−R+R−), in view of Theorem 9. It is possible to construct nontrivial
J-antipalindromic FPRs, but only under some conditions on d and g.

Lemma 27. Let A+ −A−x be a J-antipalindromic FPR. Then, d must be odd and g = d+1
2 .
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Figure 30: On the left a possible diagram for F = F0F2F1F3F2F1F0F−5F−7F−6, and on the right the diagram
of S(F ) = F1F0F2F−7F−6F−5F−4F−6F−5F−7 obtained by flipping it vertically and horizontally (or vice
versa) and relabelling the boxes.

Proof. It is sufficient to count the number of elementary factors in A+ and A−. By the definition of FPR, Q+

contains g elementary factors, and Q− contains d − g + 1. Let m be the total number of elementary factors
present in L+, L−, R+, R−. Then L+L−Q+R+R− contains m + g elementary factors, and L+L−Q−R+R−

contains m + d − g + 1. If A− = S(A+), in particular the two products must contain the same number of
factors: hence g = d− g + 1, and thus d + 1 = 2g.

It has already been established in [13] that palindromic linearizations can be constructed with a general
process that works for all palindromic matrix polynomials only if d is odd, so the result above is not surprising.

Theorem 28. A FPR A+−A−x is J-antipalindromic if and only if S(L+Q+R+) ∼ L−Q−R− and S(L+R+) ∼
L−R−.

Proof. We rely on the block diagonal decompositions (10) and (11). If g = d+1
2 , then S(A−) is partitioned

conformably with A+, and hence they are equal if and only if the two diagonal blocks are equal, or equivalently[
A+

U 0
0 In(d−g)

]
= S

([
In(g−1) 0

0 A−L

])
,

[
Ing 0
0 A+

L

]
= S

([
A−U 0
0 In(d−g+1)

])
,

which means that L−Q−R− = S(L+Q+R+) and L−R− = S(L+R+).

So in this case (L−Q−R−, L−R−) is an inverse infix pair equivalent to (S(L+Q+R+),S(L+R+)). It can
be verified directly that the matrices S(R+),S(Q+),S(L+) are a triple of generators for it. This fact allows
us to express a J-antipalindromic FPR with a single set of generators instead of two.

Corollary 29. In every J-antipalindromic A+−A−x, one can replace L−, Q−, R− with S(R+),S(Q+),S(L+)
without altering A+ and A−.

In other words, a J-antipalindromic FPR is uniquely determined by the generators (L+, Q+, R+), and we
can use this result to count them.

Corollary 30. Let Πg be the number of distinct and non equivalent infix pairs of height g as defined in 9.
then, for each d odd, there are Π d+1

2
distinct J-antipalindromic FPRs of degree d.

Recall that by Lemma 27 there are no J-antipalindromic FPRs when d is even.
Moreover, note that if a Fiedler product (resp., an inverse Fiedler product) F is in MSF, then S(F ) is an

inverse Fiedler product (resp., a Fiedler product) in MSF, too, and the same holds for the associated diagrams.
Thus, the MSF diagrams for A+ and A− can be obtained one from another by flipping vertically and then
horizontally. An example is in Figure 31. In other words, the MSF diagrams for A+ and A− display visually
the symmetry of the associated linearization.

26



1

2

3

4

5

6

7

8

9

10

11

12

13

A0

A1

A2

A5

A0

A6

A5

A4

A3

A2

A1

A0

A4

A3

−A8

−A11

−A12

−A13 −A13

−A9

−A10

1

2

3

4

5

6

7

8

9

10

11

12

13 −A13

−A12

−A11

−A8

−A13

−A7

−A8

−A9

−A10

−A11

−A12

−A13

−A9

−A10

A5

A2

A1

A0A0

A4

A3

L+L−Q+R+R− L+L−Q−R+R−

Figure 31: The MSF diagrams of a palindromic Fiedler pencil with repetitions, drawn in our canonical form
with R− = S(L+), Q− = S(Q+), L− = S(R+). Note that the two diagrams are obtained one from another
by flipping horizontally and vertically.

Finally, we show how to convert these results into results on palindromic matrix polynomials. We say that
the matrix pencil A+ +A−x (with the plus sign) is J-palindromic if JA+ = (JA−)?, i.e., if the matrix pencil
J(A+ +A−x) is palindromic.

Lemma 31. Let A(x) be a palindromic matrix polynomial, i.e., Ai = A?
d−i for each i. Then, A+ + A−x is

a J-palindromic linearization for A(x) if and only if A+ − A−x is a J-antipalindromic linearization for the
antipalindromic matrix polynomial A(−x).

This shows how to construct a large family of J-palindromic linearizations that are derived from Fiedler
pencils with repetitions.

In the paper [5], a similar approach is used to construct palindromic and antipalindromic linearizations
of the form SJ(A+ − A−x), where A+ − A−x is a FPR and S is a quasi-identity matrix, i.e., a nd × nd
block diagonal matrix in which each diagonal block is either In or −In. In contrast, our approach does not
require sign changes for the antipalindromic case, and contains only predictable sign changes on the coefficient
matrices Ai in the palindromic case.

14 Conclusions
We have introduced new notation and diagrams to work with Fiedler pencils, and we have used them to solve
several combinatorial counting problems for Fiedler pencils with repetitions. It is interesting to note that in
some cases these results return sequences that have already appeared in other fields, and for which asymptotics
and other properties are known.

We believe that our approach can be used in future to solve other problems in the study of Fiedler pencils,
and we hope that the visualization opportunities that it gives are useful to other researchers approaching this
field of study as well.
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