
Chapter 1
Factoring block Fiedler Companion Matrices∗

Gianna M. Del Corso, Federico Poloni, Leonardo Robol, and Raf Vandebril

Abstract When Fiedler published his “A note on Companion matrices” in 2003 in
Linear Algebra and its Applications, he could not have foreseen the significance of
this elegant factorization of a companion matrix into essentially two-by-two Gaus-
sian transformations, which we will name (scalar) elementary Fiedler factors. Since
then, researchers extended these results and studied the various resulting lineariza-
tions, the stability of Fiedler companion matrices, factorizations of block companion
matrices, Fiedler pencils, and even looked at extensions to non-monomial bases. In
this chapter, we introduce a new way to factor block Fiedler companion matrices
into the product of scalar elementary Fiedler factors. We use this theory to prove
that, e.g., a block (Fiedler) companion matrix can always be written as the product
of several scalar (Fiedler) companion matrices. We demonstrate that this factoriza-
tion in terms of elementary Fiedler factors can be used to construct new lineariza-
tions. Some linearizations have notable properties, such as low band-width, or allow
for factoring the coefficient matrices into unitary-plus-low-rank matrices. Moreover,
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we will provide bounds on the low-rank parts of the resulting unitary-plus-low-rank
decomposition. To present these results in an easy-to-understand manner we rely on
the flow-graph representation for Fiedler matrices recently proposed by Del Corso
and Poloni in Linear Algebra and its Applications, 2017.

1.1 Introduction

It is well known that, given a monic polynomial p(z) = zd +ad−1zd−1+ · · ·+a0, we
can build a (column) companion matrix2 that has the roots of p(z) as eigenvalues
and whose entries are just 1, 0, and the coefficients of p(z):

Γp :=


−a0

1 −a1
1 −a2

. . .
...

1 −ad−1

 . (1.1)

We remark that constructing a companion matrix is operation-free: no arithmetic
operations are needed to get Γp from p. The pencil zI−Γp is an example of a lin-
earization for p(z). A formal definition of a linearization is the following.

Definition 1. Let p(z) be a k×k degree d matrix polynomial. Then, the pencil A−zB
is a linearization of p(z) if there exist two unimodular matrices E(z),F(z) (i.e.,
matrix polynomials with non-zero constant determinant) such that Ik(d−1)⊕ p(z) =
E(z)(A− zB)F(z).

In the above setting, when B = I, we say that A is a companion matrix3. In the rest
of the paper, we will never deal with the matrices E(z) and F(z) directly. For us, it is
sufficient to know that the column companion matrix identifies a linearization, and
that any matrix similar to it still leads to a linearization (see, for instance, [24]).

The fact that a linearization is operation-free can be formalized as follows:

Definition 2. A companion matrix C of a polynomial p(z) = a0 + a1z+ · · ·+ zd is
called operation-free if each of the elements in C is either 0, 1, or one of the scalars
a j (possibly with a minus sign). Similarly, for a block companion matrix linearizing
a matrix polynomial, we say that it is operation-free if its entries are either 0,1, or
one entry in the coefficients of the matrix polynomial (possibly with a minus sign).

In 2003 Fiedler showed that Γp in (1.1) can be factored as the product of d
(scalar) elementary Fiedler factors which are equal to the identity matrix with the

2 We typically abbreviate column companion matrix and omit the word column, unless we want to
emphasize it.
3 Often the term companion matrix indicates a matrix obtained from the coefficients of the poly-
nomial without performing arithmetic operations. Here we have not added this constraint into the
definition but — as we will discuss later — all the matrices obtained in our framework satisfy it.
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only exception of a 1× 1 or 2× 2 diagonal block [27]. This factorization has a re-
markable consequence: the product of these factors in any order provides still a
linearization for p(z), since its characteristic polynomial remains p(z). Companion
matrices resulting from permuting the elementary Fiedler factors are named Fiedler
companion matrices.

This theory has then been extended to matrix polynomials, by operating block-
wise, and to more general constructions than just permutations of the original fac-
tors, which led to Fiedler pencils with repetitions [17, 36], generalized Fiedler pen-
cils [2,18] and generalized Fiedler pencils with repetitions [20]. These ideas sparked
the interest of the numerical linear algebra community: several researchers have
tried to find novel linearizations in this class with good numerical properties [26,28],
or which preserve particular structures [21, 23, 26, 33].

The construction of Fiedler companion matrices is connected with permutations
of {0, . . . ,d− 1}. In this framework, the development of explicit constructions for
palindromic, even-odd, and block-symmetric linearizations in the Fiedler class is
investigated in [20, 21, 23, 26]. At the same time, several authors have investigated
vector spaces of linearizations with particular structures [29, 30], and linearizations
with good numerical properties [13,19,35]. Recently, a new graph-based classifica-
tion of Fiedler pencils has been recently introduced by Poloni and Del Corso [31],
and has been used to count the number of Fiedler pencils inside several classes, as
well as to describe common results in a simpler way.

The aim of this paper is to extend the theory proposed in [31] by introducing
manipulations that operate inside the blocks and factor them, but at the same time
remain operation-free, which is a key property of Fiedler-like pencils.

We show that these tools can be used to construct new factorizations of block
Fiedler companion matrices. In particular, we prove that (under reasonable assump-
tions on the constant coefficient) any block Fiedler companion matrix of a monic
k× k matrix polynomial can be factored into k Fiedler companion matrices of
scalar polynomials. This approach extends a similar factorization for column com-
panion matrices by Aurentz, Mach, Robol, Vandebril, and Watkins [4]. The graph-
based representation makes it easy to visualize the unitary-plus-low-rank structure
of (block) Fiedler companion matrices; it also provides upper bounds on the rank in
the low-rank correction of the unitary-plus-low-rank matrix.

Aurentz, et al. [4] developed a fast method to compute eigenvalues of matrix
polynomials by factoring the column block companion matrix into scalar companion
matrices and then solving a product eigenvalue problem exploiting the unitary-plus-
rank-1 structure of the factors. As we will show in Theorem 8, some block Fiedler
companion matrices can be similarly factored as a product of row and column com-
panion matrices (appropriately padded with identities). This makes the algorithm
in [4] applicable to devise a fast solver; in fact, this idea is exploited in [3] to de-
scribe an algorithm for computing the eigenvalues of unitary-plus-rank-k matrices.
As an alternative, after a preliminary reduction of the matrix to Hessenberg form we
can employ the algorithm proposed in [8] for generic unitary-plus-rank-k matrices.

As a final application, to illustrate the power of the new representation, we show
by an example that these techniques can easily produce novel companion matrices
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such as thin band or factorizations in which symmetry of the original problem is
reflected.

Throughout the article we adopt the following notation: In denotes the identity
matrix of size n× n; its subscript is dropped whenever its size is clear from the
context; e j denotes the j-th vector of the canonical basis of Cn; and Z denotes the
downshift matrix, having ones on the first subdiagonal and zeros elsewhere.

1.2 Fiedler graphs and (block) Fiedler companion matrices

As mentioned in the introduction, Fiedler [27] showed that the column companion
matrix Γp in (1.1) can be factored as Γp = F0F1 · · ·Fd−1, where the Fi, named ele-
mentary Fiedler factors, are matrices which are equal to the identity except for a
diagonal block of size at most 2×2. More precisely,

F0 = F0(a0) = (−a0)⊕ Id−1, Fi = Fi(ai) = Ii−1⊕
[

0 1
1 −ai

]
⊕ Id−i−1. (1.2)

We omit the parameters in parentheses if they are clear from context.
The key result due to Fiedler [27] is that any permutation of the factors in the

above factorization C =Fσ(0) · · ·Fσ(d−1), where σ is a permutation of {0, . . . ,d−1},
is still a companion matrix for p(z). We call linearizations obtained in this way
Fiedler linearizations (and the associated matrices Fiedler companion matrices).
Throughout the paper, we use the letter Γ (with various subscripts) to denote a
column (or, occasionally, row) companion matrix, possibly padded with identities,
i.e., Ih1 ⊕Γp⊕ Ih2 , and the letter C to denote Fiedler companion matrices. We will
heavily rely on the flow-graph representation established by Poloni and Del Corso
[31], so we introduce it immediately.

The elementary flow graph associated to each elementary Fiedler factor is the
graph shown in Figure 1.1.

Fi(a) =

−a

F0(a) =

−a

.

Fig. 1.1 Elementary flow-graphs corresponding to Fi(a) (for i > 0) and to F0(a).

To construct the Fiedler graph associated to a product of Fiedler elementary
factors P = Fi1(a1) · · ·Fik(ak), each of size d× d, we first draw d horizontal lines
labelled with the integers 1, . . . ,d (with 1 at the top); this label is called the height
of a line. Then, we stack horizontally (in the same order in which they appear in P)
the graphs corresponding to the elementary factors. These must be properly aligned
vertically so that Fi j touches the lines at heights i j and i j +1 (or i j +1 only if i j = 0).
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Straight horizontal edges are drawn in grey to distinguish them from the edges of
the flow graph.

A Fiedler graph is a representation of multiplying a row vector v, having com-
ponents vi, with P. This vector-matrix multiplication can be seen as a composition
of additions and multiplications by scalars, and the flow graph depicts these oper-
ations, as follows. We imagine that for each i the entry vi of a row vector v enters
the graph from the left along the edge at height i, and moves towards right. A scalar
traveling from left to right through an edge with a box carrying the label a, is mul-
tiplied by a before it proceeds; an element following a straight edge (with no box)
is left unchanged; a scalar arriving at a node with two outgoing edges is duplicated;
and finally when two edges meet the corresponding values are added. If one carries
on this process, the result at the right end of the graph are the entries of vP, with the
jth entry appearing at height j.

Example 1. Consider the simple case in which d = 2, and P = F0(a0)F1(a1) The
flow graph associated to P is shown in Figure 1.2.

1

2

−a0

−a1

Fig. 1.2 Flow graph for P = F0(a0)F1(a1).

The element v1 enters from the left at the first row, hits −a0 resulting in a mul-
tiplication −v1a0 and then moves down to the second row. The element v2 enters
at the second row and is duplicated. Its first clone moves to the top row, its second
clone gets multiplied with −a1 and then also ends up in the second row. Since both
−v1a0 and −v2a1 end up in the bottom row, we add them together. As a result we
obtain [v2, −v2a1− v1a0] at the right end of the graph, which is exactly [v1, v2]P.

The power of this framework lies in the fact that representing a matrix by a
Fiedler graph enables us to easily draw conclusions on the structure of the matrix
and its associated elementary Fiedler factors. For instance, to determine the content
of the (i, j)-th entry of a product of Fiedler factors it is sufficient to inspect the paths
on the graph that start from the left at height i and end on the right at height j.

Consider for instance the column companion matrix (1.1) of degree d = 4. The
associated Fiedler graph is depicted in Figure 1.3. Indeed, entering the graph from
the left on row i > 1 yields two elements: one on column i− 1 (the edge pointing
one row up), and the other is −ai−1, which follows a descending path until the very
last column. This implies that

eT
i Γp =

[
0i−2 1 0d−i −ai−1

]
, i > 1,

which is exactly the i-th row of Γp. The case i = 1 produces the row vector

eT
1 Γp =

[
0d−1 −a0

]
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1

2

3

4

−a0

−a1

−a2

−a3

Fig. 1.3 Fiedler graph associated to a column companion matrix of a degree 4 monic polynomial.

Some Fiedler companion matrices are simpler, some are more complex. For in-
stance, we have already considered F0 · · ·Fd−1, which is the usual column compan-
ion matrix. The transpose of this matrix is Fd−1 · · ·F0 (all the Fiedler factors are
symmetric), which is a Fiedler companion matrix with all the coefficients on the
last row:

Γ
T

p = Fd−1 · · ·F0 =


1

. . .
1

−a0 −a1 . . . −ad−1

 . (1.3)

We refer to (1.3) as a row companion matrix4.
The flow graphs help us to visualize the structure of the factorization in elemen-

tary Fiedler factors. For example, the Fiedler companion matrix with σ = (0,1,3,2)
is associated with the graph in Figure 1.4. Note that the order of the elementary flow
graphs coincides with the order of the elementary Fiedler factors.

1

2

3

4

−a0

−a1

−a3

−a2

Fig. 1.4 Fiedler graph associated to the matrix F = F0F1F3F2.

Since Fi and Fj commute whenever |i− j| > 1, different permutations σ may
correspond to the same matrix. For example, in Figure 1.4, F1 and F3 commute, so
F0F1F3F2 = F0F3F1F2. In terms of graphs, we can ‘compress’ a Fiedler graph by

4 This is a variation on the usual construction of a row companion matrix having the elements ai
in its first row.
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drawing the elements Fi and Fj one on top of the other whenever |i− j|> 1, or swap
them; these are operations that do not alter the topological structure of the graph nor
the height of each edge.

For example, we can draw the graph in Figure 1.4 in a compact way as in
Figure 1.5. Moreover, we can immediately read off the following equivalences

1

2

3

4

−a0

−a1

−a3

−a2

Fig. 1.5 A more compact representation of the graph in Figure 1.4.

F0F3F1F2 = F0F1F3F2 = F3F0F1F2, since the factor F3 is free to slide to the left
of the diagram.

If we allow for repositioning factors in this way, two Fiedler companion matri-
ces coincide if and only if their graphs do (see [31] for a detailed analysis of this
characterization).

Remark 1. There are a number of different ‘standard forms’ [31, 36], i.e., canonical
ways to order the factors in a Fiedler product or draw the corresponding graph. In
this paper, we do not follow any of them in particular. Rather, when drawing the
graph associated to a Fiedler companion matrix C, we try to draw them so that the
elements form a connected twisted line. (In practice, this can be obtained by drawing
first the elementary factor Fd−1 at the bottom of the graph, and then Fd−2,Fd−3, . . .
each immediately at the left or right of the last drawn element.) This choice gives
a better visual interpretation of some of our results; See for instance the discussion
after Theorem 6.

We now generalize this construction to monic matrix polynomials. Given a
degree-d matrix polynomial with k× k coefficients

P(z) = Izd +Ad−1zd−1 + · · ·+A0 ∈ Ck×k[z],

we can factor its column companion matrix as

ΓP =


0 0 · · · 0 −A0
Ik 0 0 −A1

Ik 0 −A2
. . .

...
...

Ik −Ad−1

= F0F1 · · ·Fd−1,
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where all Fi are block elementary Fiedler factors, that is

F0 =F0(A0)= (−A0)⊕Ik(d−1), Fi =Fi(Ai)= I(i−1)k⊕
[

0 I
I −Ai

]
⊕I(d−i−1)k,

for all i = 0, . . . ,d − 1. Again, each permutation of these factors gives a (block)
Fiedler companion matrix. We can construct graphs associated to their products in
the same way; the entities we operate on are now matrices instead of scalar entries.
For instance, for A ∈ Ck×k, the active part of a block elementary Fiedler factor,
which is the diagonal block differing from the identity, can be represented as in Fig-
ure 1.6. All the results of this section concerning the reordering the block elementary

Fi(A) =

−A

F0(A) =

−A

.

Fig. 1.6 Graph representing the active part of the block elementary Fiedler factor Fi(A), for i > 0
and of F0(A).

Fiedler factors remain valid also in the block case. In particular, block Fiedler flow
graphs represent the multiplication of a ‘block row vector’ [V1,V2, . . . ,Vd ] ∈ Ck×kd

by a product of block Fiedler matrices.
This construction can be thought of as the “blocked” version of the one we had

in the scalar case: we treat the blocks as atomic elements, which we cannot inspect
nor separate. However, it does not have to be that way, and in the next section we
will explore the idea of splitting these blocks into smaller pieces.

In particular, we will show in Section 1.3.1 how each of the block elementary
Fiedler factors can be decomposed as a product of (scalar) elementary Fiedler fac-
tors. So we have a coarse (block) level factorization and graph; and a fine (entry)
level factorization and corresponding graph.

1.3 Factoring elementary block Fiedler factors

We discuss the block Fiedler factors Fi for i > 0 and i = 0 in different subsections
because they require different treatments.

1.3.1 Block factors Fi, for i > 0

To ease readability and avoid additional notation we will use, in this section, F (A)
to denote the active part (the one different from the identity) of an arbitrary block
Fiedler factor Fi(A), for i > 0. In particular, we have
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F (A) :=
[

0k×k Ik
Ik −A

]
∈ C2k×2k. (1.4)

Consider the graph of a single Fiedler factor F (A) given in the left of Figure 1.6.
This graph represents the multiplication of F (A) by a block row vector [V1,V2], so
the two horizontal levels in the graph correspond to the blocks 1 : k and k+ 1 : 2k
(in Fortran/Matlab notation).

We show that it can be converted into a more fine-grained graph in which each
line represents a single index in {1,2, . . . ,2k}. We call this construction a scalar-
level graph (as opposed to the block-level graph appearing in Figure 1.6).

We first show the result of this construction using flow graphs, to get a feeling of
what we are trying to build.

Example 2. Let k = 3, and A = (ai j), with 1 ≤ i, j ≤ 3. In this case, the elementary
block factor F (A) in Figure 1.6 has size 6× 6. A scalar-level graph associated to
F (A) is depicted in Figure 1.7.

1

2

3

4

5

6

−a13

−a23

−a33

−a12

−a22

−a32

−a11

−a21

−a31

Fig. 1.7 Scalar-level graph associated to F (A) where A is a 3×3 matrix with entries ai j .

Theorem 1. Let F (A) ∈ C2k×2k be a block elementary Fiedler factor as defined
by equation (1.4). Then, F (A) can be factored into k2 scalar elementary Fiedler
factors associated to the elements of the matrix A = (ai j), as follows

F (A) = ΓkΓk−1 · · ·Γ1,

Γj = Fj(a1 j)Fj+1(a2 j) · · ·Fj+k−1(ak j), j = 1,2, . . . ,k.

Proof. From a linear algebra viewpoint, the proof can be obtained simply multiply-
ing the various factors together. Alternatively, one can construct the 2k× 2k ana-
logue of Figure 1.7, and follow the edges of the graph to check the value of each
matrix element. ut
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Remark 2. Each Γj is a (scalar) column companion matrix padded with identities,
i.e., it has the form I j−1⊕Γa j ⊕ Ik− j, where Γa j is a particular column companion
matrix of size k+1. Indeed,

Γj =

 I j−1
Z +a jeT

k+1
Ik− j

 , a j :=
[

1
−Ae j

]
,

where Z is the downshift matrix, with ones on the first subdiagonals and zero else-
where. In the following we call column (resp. row) companion matrices also matri-
ces with this form, ignoring the additional leading and trailing identities.

We could have proved that F (A) is the product of k column companion matrices
also by inspecting the associated scalar-level graph. Indeed, for simplicity let us
restrict ourselves to the running example in Figure 1.7 of size 6× 6. We replot the
graph in Figure 1.7 inserting gaps between some elements. Hence, the graph is the

1

2

3

4

5

6

−a13

−a23

−a33

−a12

−a22

−a32

−a11

−a21

−a31

Fig. 1.8 Replot of the graph in Figure 1.7 with gaps between descending diagonal lines. This
reveals the factorization into companion matrices.

concatenation of three sequences of factors that can be arranged in a descending
diagonal line each. These correspond precisely to Γ3,Γ2,Γ1; indeed, any descending
line of diagonal factors forms a column companion matrix (padded with identities).

Example 3. Written explicitly, the factors that compose the 6× 6 matrix F (A) of
our running example are
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F (A) =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 −a11 −a12 −a13
0 1 0 −a21 −a22 −a23
0 0 1 −a31 −a32 −a33

=

[
0 I
I −A

]
= Γ3Γ2Γ1

=


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 −a13
0 0 0 1 0 −a23
0 0 0 0 1 −a33




1 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 −a12 0
0 0 1 0 −a22 0
0 0 0 1 −a32 0
0 0 0 0 0 1




0 0 0 1 0 0
1 0 0 −a11 0 0
0 1 0 −a21 0 0
0 0 1 −a31 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

Remark 3. We can also factor F (A) into row-companion matrices. If we group the
elements in Figure 1.7 following ascending diagonals, we obtain an analogous fac-
torization, shown in Figure 1.9, into row companion matrices, each containing en-
tries from one row of A. This new decomposition can be identified from the graph in
Figure 1.9. This result is immediately obtained by applying Theorem 1 to F (A)T .

1

2

3

4

5

6

−a13

−a23

−a33

−a12

−a22

−a32

−a11

−a21

−a31

Fig. 1.9 Replot of the graph in Figure 1.7 adding gaps between ascending diagonal lines.

Remark 4. Poloni and Del Corso [31], only consider elementary blocks of the
form Fi = Fi(Ai), where Ai is a coefficient of the matrix polynomial P(z) =
Izd +Ad−1zd−1 + · · ·+ zA1 +A0. Here, we allow for a more general case, where
two elementary blocks Fi(a) and Fi(b) with the same index i can have different
parameters a 6= b.
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1.3.2 The block Fiedler factor F0

In this section we provide a factorization for the block F0 into the product of scalar
companion matrices. Note that the active part of the elementary Fiedler factor F0 is
confined to the first k rows instead of 2k rows like the factors Fi for i > 0.

Since our goal is to build linearizations of matrix polynomials, we can perform
a preliminary transformation that does not alter the spectrum. If there exist two
invertible matrices E,G, such that EP(λ )G = Q(λ ), then the matrix polynomials
P(λ ) and Q(λ ) are said to be strictly equivalent [24]. When this happens, their
spectra (both finite and infinite) coincide. If the matrices E and G are also unitary,
then the condition number of their eigenvalues also matches5, hence we need not
worry about instabilities resulting from using this factorization.

In particular, we can choose an orthogonal (resp. unitary) matrix E and let
G = ET Π (resp. G = EHΠ ), where Π is the counter-identity matrix, so that the
monic matrix polynomial P(λ ) is transformed into a monic polynomial Q(λ ) with
A0 lower anti-triangular (i.e., (A0)i, j = 0 whenever i+ j ≤ k). This unitary matri-
ces can be obtained by computing the Schur form of A0 = QT QT , and then setting
E = QT . For these reasons, we may assume that A0 is lower anti-triangular.

Theorem 2. Let A ∈ Ck×k be a lower anti-triangular matrix. Then, F0(A) can be
factored as the product of k(k+1)

2 scalar elementary Fiedler factors as follows

F0(A) = ΓkΓk−1 · · ·Γ1,

Γj = F0(ak− j+1, j)F1(ak− j+2, j) · · ·Fj−1(ak, j).

Moreover, each Γj is a scalar column companion matrix (padded with identities).

The proof is analogous to the one of Theorem 1. Again, we can consider the flow
graph associated with F0.

Example 4. Consider again k = 3. Then the flow-graph associated with F0 is

1

2

3

−a13

−a23

−a33

−a22

−a32

−a31

Separating the elementary factors into three descending diagonals we get the de-
compositions into three column companion matrices.

5 Here, by condition number we mean the unhomogeneous absolute or relative condition number
defined in [34] (see also [1] where several definitions are compared). It is easy to verify that sub-
stituting the change of basis in the formula for the unhomogeneous condition number in [34] does
not change the result.
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1

2

3

−a13

−a23

−a33

−a22

−a32

−a31

The explicit matrices are

F0 =

 0 0 −a13
0 −a22 −a23
−a31 −a32 −a33

= Γ3Γ2Γ1

=

0 0 −a13
1 0 −a23
0 1 −a33

0 −a22 0
1 −a32 0
0 0 1

−a31 0 0
0 1 0
0 0 1

 .
We can adapt this decomposition to work with lower triangular matrices, but the

result is more complicated.

Theorem 3. Let A ∈ Ck×k be a lower triangular matrix. Then, F0(A) can be fac-
tored as the product of k2 scalar elementary Fiedler factors as follows

F0(A) = Γ1Γ2 · · ·Γk, (1.5a)
Γj = F0(a j, j)F1(a j+1, j) · · ·Fk− j(ak, j)Fk− j+1(0)Fk− j+2(0) · · ·Fk−1(0).

Moreover, each Γj is a scalar column companion matrix (padded with identities).

Again, we can prove this factorization either algebraically or by following the edges
along the associated Fiedler graph, which is shown in Figure 1.10.

1

2

3

−a11

−a21

−a31

−a22

−a32

0

−a33

0

0

Fig. 1.10 Fiedler graph associated to F0(A) where A is a lower triangular 3×3 matrix.

The additional blocks with zeros are in fact permutations necessary for position-
ing each element correctly. Even though this factorization is still operation-free,
meaning that there are no arithmetic operations involving the ai j, we see that this is
only because the trailing elementary Fiedler factors have 0. Indeed, if one replaces
the zeros appearing in Figure 1.10 with different quantities, the resulting product
requires arithmetic operations. This is an instance of a more general result, linked
to operation-free linearizations, as in Definition 2.
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Theorem 4 ([31, 36]). Consider the product P = M1M2 · · ·M`, where for each
k = 1,2, . . . , ` the factor Mk is an elementary Fiedler factor Fik(a jk). Then, P is
operation-free for each choice of the scalars (or matrices) a jk if and only if between
every pair of factors Mik ,Mik′ with the same index ik = ik′ = i there is a factor with
index i+1. In terms of diagrams, this means that between every two factors at height
i there must appear a factor at height i+1.

Again this theorem holds for the block version as well. While all the other prod-
ucts of Fiedler factors that we consider in this paper are operation-free a priori
because of this theorem, the one in (1.5) does not satisfy this criterion. It is only
operation-free because of the zeros.

Remark 5. It is impossible to find an operation-free factorization of F0(A) for
an unstructured A. Indeed, if there existed a factorization F0(A) = M1M2 · · ·Mk2 ,
where each Mi is a scalar elementary Fiedler factor, then by writing F0(A)−1 =
M−1

k2 · · ·M−1
2 M−1

1 one could solve any linear system Ax = b in O(k2) flops, which is
known to be impossible [32].

1.4 Factoring block companion matrices

In this section, we use the previous results to show that any block Fiedler compan-
ion matrix can be factored as C = C1C2 · · ·Ck, where each C j is a scalar Fiedler
companion. This generalizes the results for block column companion matrices from
Aurentz et al. [4].

These factorizations have a nice property: they are low-rank perturbations of uni-
tary matrices. This allows the design of fast algorithms for computing the eigenval-
ues of C , by working on the factored form [4].

This novel factorization allows to build even more linearizations. When all fac-
tors C j are invertible, all the cyclic permutations of the factors provide again lin-
earizations for the same matrix polynomial, since they are all similar.

For column block companion matrices we have the following (see also Aurentz,
et al. [4]).

Theorem 5. Let P(z)∈C[z]k×k be a monic matrix polynomial of degree d with lower
anti-triangular constant term A0. Then, the associated block column companion
matrix can be factored as a product of k scalar companion matrices of size dk×dk.

A formal proof will follow as a special case of Theorem 6. Here we only point out
that this factorization is again easy to detect using the graph representation.

Example 5. Let d = k = 3 and P(z) = Iz3 +A2z2 +A1z+A0, with A0 lower anti-
triangular. Then, using the scalar-level factorizations of each Fiedler block, the col-
umn companion matrix of P(z) links to the flow graph in Figure 1.11.

It is easy to decompose this graph as the product of the three factors drawn in
the figure in different colors. Moreover, each of these three factors is a column
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−a(0)13

−a(0)23

−a(0)33

−a(1)13

−a(1)23

−a(1)33

−a(2)13

−a(2)23

−a(2)33

−a(0)22

−a(0)32

−a(1)12

−a(1)22

−a(1)32

−a(2)12

−a(2)22

−a(2)32

−a(0)31

−a(1)11

−a(1)21

−a(1)31

−a(2)11

−a(2)21

−a(2)31

Fig. 1.11 Graph of the block column companion matrix associated to the monic matrix polynomial
P(z). The constant coefficient A is lower anti-triangular. To simplify the notation we used a(i)i j to
denote the entries of the matrices Ai.

companion matrix6 constructed from a polynomial whose coefficients are a column
of [AT

0 AT
1 AT

2 ]
T .

This construction can be generalized to a generic block Fiedler companion. To
prove the theorem formally, we need some additional definitions [22, 31] and a
lemma which is a variation of [16, Proposition 2.12].

Definition 3. Let P = Fi1Fi2 · · ·Fi` be a product of ` Fiedler elementary factors. For
each i = 0, . . . ,d− 1, the layer Li:i+1(P) is the sequence formed by the factors of
the form Fi(a) and Fi+1(b), for any values of a,b, taken in the order in which they
appear in P.

Definition 4. Let C = Fσ(0)Fσ(1) · · ·Fσ(d−1) be a Fiedler companion matrix, where
σ is a permutation of {0,1, . . . ,d−1}. We say that C has

• a consecution at i, 0≤ i≤ d−2, if Li:i+1(C) = (Fi,Fi+1);
• an inversion at i, 0≤ i≤ d−2, if Li:i+1(C) = (Fi+1,Fi).

For instance, the Fiedler companion matrix whose associated graph is depicted
in Figure 1.4 has two consecutions at 0 and 1, and an inversion at 2. Note that in the
flow graph a consecution corresponds to the subgraph of Fi being to the left of the
subgraph of Fi+1, and vice versa for an inversion. The definition extends readily to
the block case.

6 Similarly one could factor it into dk row companion matrices linked to polynomials of degree 3.
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The layers of a factorization in elementary Fiedler factors uniquely define the
resulting product as stated in the next lemma.

Lemma 1. Let F and G be two products of (scalar or block) elementary Fiedler
factors of size d×d. If Li:i+1(F) = Li:i+1(G) for all i = 0, . . . ,d−2, then the two
products can be reordered one into the other by only swapping commuting factors,
and hence F = G (as matrices).

Proof. See [16, Proposition 2.12]. ut

Theorem 6. Let C = Fσ(0) · · ·Fσ(d−1) be a block Fiedler companion matrix of the
monic matrix polynomial P(z) = Izd +Ad−1zd−1+ · · ·+A1z+A0 ∈C[z]k×k, with the
matrix A0 lower anti-triangular. Then, C =C1C2 · · ·Ck, where each of the matrices
C j is a scalar Fiedler companion matrix.

Proof. In the following, we use the notation a(i)i j to denote the (i, j) entry of Ak.
For all i = 0,1, . . . ,d−2 and j = 1,2, . . . ,k, we use j′ as a shorthand for k− j+1;

let the matrix Mi, j be defined as

Mi, j = Fki(a
(i)
j, j′)Fki+1(a

(i)
j+1, j′) · · ·Fki+ j′−1(a

(i)
k, j′)

Fki+ j′(a
(i+1)
1, j′ )Fki+ j′+1(a

(i+1)
2, j′ ) · · ·Fki+k−1(a

(i+1)
j−1, j′) (1.6)

if C has a (block) consecution at i, or

Mi, j = Fki+k−1(a
(i+1)
j, j′−1)Fki+k−2(a

(i+1)
j, j′−2) · · ·Fki+ j(a

(i+1)
j,1 )

Fki+ j−1(a
(i)
j,k)Fki+ j−2(a

(i)
j,k−1) · · ·Fki(a

(i)
j, j′) (1.7)

if C has a (block) inversion at i.
When i = d− 1, we can take either of (1.6) or (1.7) as Mi, j, omitting all terms

containing entries of a(d). (Hence, in particular, one can find two different factoriza-
tions for C .)

We will prove that C =C1C2 · · ·Ck, where

C j = (Mσ(0), jMσ(1), j · · ·Mσ(d−1), j). (1.8)

Each of the C j contains exactly one factor of the form F0,F1, . . . ,Fdk− j, hence it is
a scalar Fiedler companion matrix, linked to a polynomial whose coefficients are
elements out of the original block coefficients.

To show that C =C1C2 · · ·Ck, we rely on Lemma 1. Note that C =Fσ(0)Fσ(1) · · ·Fσ(d−1)
can be seen as a product of scalar elementary Fiedler factors of size kd× kd using
the factorizations in Theorems 1 and 2. Relying on Lemma 1, we simply have to
verify that its layers coincide with those of C1C2 · · ·Ck. Indeed, let 0 ≤ i < d, and
1≤ `≤ k; if C has a block consecution at i then
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Lki+`−1:ki+`(C ) = Lki+`−1:ki+`(FiFi+1) =(
Fki+`−1(a

(i)
`,k),Fki+`(a

(i)
`+1,k),Fki+`−1(a

(i)
`+1,k−1),Fki+`(a

(i)
`+2,k−1), . . . ,Fki+`−1(a

(i)
k,`),

Fki+`(a
(i+1)
1,` ),Fki+`−1(a

(i+1)
1,`−1),Fki+`(a

(i+1)
2,`−1),Fki+`−1(a

(i+1)
2,`−2), . . . ,Fki+`(a

(i+1)
`,1 )

)
= Lki+`−1:ki+`(Mi,1Mi+1,1Mi,2Mi+1,2 · · ·Mi,kMi+1,k) = Lki+`−1:ki+`(C1C2 · · ·Ck).

Similarly, if C has an inversion in i then

Lki+`−1:ki+`(C ) = Lki+`−1:ki+`(Fi+1Fi) =(
Fki+`(a

(i+1)
1,` ),Fki+`−1(a

(i+1)
1,`−1),Fki+`(a

(i+1)
2,`−1),Fki+`−1(a

(i+1)
2,`−2), . . . ,Fki+`(a

(i+1)
`,1 ),

Fki+`−1(a
(i)
`,k),Fki+`(a

(i)
`+1,k),Fki+`−1(a

(i)
`+1,k−1),Fki+`(a

(i)
`+2,k−1), . . . ,Fki+`−1(a

(i)
k,`)

)
= Lki+`−1:ki+`(Mi+1,1Mi,1Mi+1,2Mi,2 · · ·Mi+1,kMi,k) = Lki+`−1:ki+`(C1C2 · · ·Ck). ut

This tedious algebraic proof hides a simple structure that is revealed by the associ-
ated graphs: the scalar elementary Fiedler factors appearing in the graph of C can
be split into k twisted lines that run diagonally, parallel one to the other. Moreover it
is interesting to remark that all resulting Fiedler companion matrices have the same
structure, with consecutions and inversions in the same positions. This is illustrated
clearly in the next example.

Example 6. Consider the block Fiedler companion matrix of the matrix polynomial
P(z) = Iz3 +A2z2 +A1z+A0, with d = k = 3, defined as C = F2F0F1. Its block-
level graph is:

1

2

3

A0

A2

A1

and has a consecution at block level 0 and an inversion at block level 1. Its scalar-
level diagram is presented in Figure 1.12. The elements belonging to the three fac-
tors C1,C2,C3 are drawn in three different colors. Formally, we have

M0,1 = F0(a
(0)
13 )F1(a

(0)
23 )F2(a

(0)
33 ), M1,1 = F5(a

(2)
12 )F4(a

(2)
11 )F3(a

(1)
13 ),

M0,2 = F0(a
(0)
22 )F1(a

(0)
32 )F2(a

(1)
12 ), M1,2 = F5(a

(2)
21 )F4(a

(1)
23 )F3(a

(1)
22 ),

M0,3 = F0(a
(0)
31 )F1(a

(1)
11 )F2(a

(1)
21 ), M1,3 = F5(a

(1)
33 )F4(a

(1)
32 )F3(a

(1)
31 )

and finally, using (1.7) we have
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1

2

3

4

5

6

7

8

9

−a(0)13

−a(0)23

−a(0)33

−a(1)13

−a(2)11

−a(2)12

−a(2)13

−a(0)22

−a(0)32

−a(1)12

−a(1)22

−a(1)23

−a(2)21

−a(2)22

−a(2)23

−a(0)31

−a(1)11

−a(1)21

−a(1)31

−a(1)32

−a(1)33

−a(2)33

−a(2)32

−a(2)31

Fig. 1.12 The scalar-level diagram associated to Example 6. Each diagonal segment in a box rep-
resents a term Mi, j . We use the notation a(k)i j to denote the entry in position (i, j) of Ak.

M2,1 = F6(a
(2)
13 ), M2,2 = F7(a

(2)
23 )F6(a

(2)
22 ), M2,3 = F8(a

(2)
33 )F7(a

(2)
32 )F6(a

(2)
31 ).

In accordance with (1.8) we get C1 = M2,1M0,1M1,1,C2 = M2,2M0,2M1,2 and C3 =
M2,3M0,3M1,3.

Note that the factorization is not unique since we can additionally incorporate
the terms F7(a

(2)
23 )F8(a

(2)
33 ) in C1, thereby defining the matrix M2,1 as in (1.6) rather

than (1.7). In that case also M2,2 and M2,3 should be defined in accordance with (1.6).
The corresponding matrices are

C =

0 A0 0
0 0 I
I A1 A2

=C1C2C3,

with
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C1 =



−a(0)13

1 −a(0)23

1 −a(0)33
1

1
1

1 −a(1)13 −a(2)11 −a(2)12 −a(2)13
1

1


,

C2 =



−a(0)22

1 −a(0)32

1 −a(1)12
1

1
1

1
1 −a(1)22 −a(1)23 −a(2)21 −a(2)22 −a(2)23

1


,

C3 =



−a(0)31

1 −a(1)11

1 −a(1)21
1

1
1

1
1

1 −a(1)31 −a(1)32 −a(1)33 −a(2)31 −a(2)32 −a(2)33


.

1.5 Unitary-plus-low-rank structure

Unitary (or orthogonal) plus low rank matrices appear frequently in fast algorithms
for polynomial root-finding [4–7, 9–12, 14, 15]. To the best of our knowledge, these
techniques have been applied to row and column companion matrices (either block
or scalar ones), but never to general Fiedler linearizations, even though recent ad-
vances [8] point towards novel algorithms for eigenvalue computations of unitary-
plus-low-rank matrices.

In this section we show that (block) Fiedler companion matrices are unitary-plus-
low-rank, and that an upper bound on the rank of the correction is easily determined
from their structure. This result is not new, as it is already present in a very similar
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form in [25, Section 6]; however, we report an alternative proof making use of the
Fiedler graphs.

Lemma 2. Let A1 be unitary plus rank t1, and A2 be unitary plus rank t2. Then, A1A2
is unitary plus rank (at most) t1 + t2.

Proof. It is sufficient to write Ai = Qi +uivT
i , with Qi unitary and ui,vi ∈ Cn×ti , for

i = 1,2. Then,

A1A2 = (Q1 +u1vT
1 )A2 = Q1A2 +u1vT

1 A2 = Q1Q2 +Q1u2vT
2 +u1vT

1 A2. ut

We introduce the concept of segment decomposition of a Fiedler companion ma-
trix, which groups together elementary Fiedler factors with consecutive indices.

Definition 5. Let C = Fσ(0)Fσ(1) · · ·Fσ(d−1) be a scalar Fiedler companion matrix.
We say that C has t segments (or, equivalently, that its graph has t segments) if t
is the minimal positive integer such that C = Γ1 · · ·Γt , for a certain set of indices i j
satisfying

Γj = Fσ(i j) · · ·Fσ(i j+1−1), 0 = i1 < i2 < · · ·< it+1 = d,

and such that the integers σ(i j), . . . ,σ(i j+1−1) are consecutive (either in increasing
or decreasing order).

Note that each Γj is either a column or row companion matrix possibly padded
with identities. Segments are easily identified in the Fiedler graph, as they corre-
sponds to sequences of diagonally aligned elementary graphs. For instance, Fig-
ure 1.13 depicts, on the left, the graph of the Fiedler companion matrix of C =
F0F1F5F4F2F6F7F3. Swapping commuting blocks we can rearrange the elementary
Fiedler factors as follows C = (F0F1F2)(F5F4F3)(F6F7) identifying the 3 column and
row companion matrices and hence the 3 segments. Similarly the graph on the right
has 2 segments.

Remark 6. The paper [22] defines a sequence of integers called the consecution-
inversion structure sequence (CISS) of a Fiedler companion. The number of seg-
ments can be deduced from the CISS: namely, it is the length of CISS (excluding a
leading or trailing zero if there is one) minus the number of distinct pairs of consec-
utive 1’s appearing in it.

Theorem 7. Let C be a scalar Fiedler companion matrix with t segments. Then, C
is unitary plus rank (at most) t.

Proof. If C has t segments, then by definition C =Γ1Γ2 · · ·Γt , where each Γj is either
a column or a row companion matrix (possibly padded with identities). In fact, if
Γj = Fσ(i j) · · ·Fσ(i j+1−1) and the integers σ(i j), . . . ,σ(i j+1− 1) are consecutive in
increasing order we obtain a column companion matrix; if instead they are consec-
utive in decreasing order we obtain a row companion matrix. Each row or column
companion matrix is unitary plus rank 1 (since it is sufficient to alter the last row
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Fig. 1.13 Two graphs associated to scalar Fiedler companion matrices. The example on the left is
composed of 3 segments, while the one on the right of only 2.

or column to turn it into the unitary cyclic shift matrix Z + e1eT
n ). Hence C is the

product of t unitary-plus-rank-1 matrices, which is unitary plus rank (at most) t by
Lemma 2. ut

The above result can be used to prove another interesting fact.

Theorem 8. Let C be a block Fiedler companion matrix with a block-level graph
composed of t segments. Then, C is unitary plus rank (at most) kt.

Proof. The result follows by generalizing the proof of Theorem 7 to block Fiedler
companion matrices, noticing that each block Fiedler companion matrix is unitary
plus rank k. ut

Remark 7. Given a Fiedler companion matrix C with t segments and its factor-
ization C = C1C2 · · ·Ck obtained through Theorem 6, each C j has the same num-
ber of segments, but it may happen that this number is larger than t. An exam-
ple is given by the block version of the pencil on the right of Figure 1.13, i.e.,
C = F5F6F7F0F1F2F3F4. Indeed, each of its scalar Fiedler companion fac-
tors C j has 3 segments rather than 2.

Remark 8. Theorem 8 shows that we can apply to C structured methods for fast
eigenvalues computation, provided that the number of segments in the graph asso-
ciated with the Fiedler companion matrix is limited.

In addition, it gives an explicit factorization of C into unitary plus rank 1 matri-
ces, therefore providing all the tools required to develop a fast method similar to the
one presented in [4] for column block companion matrices.
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1.6 A thin-banded linearization

Another interesting use of scalar-level factorizations of block Fiedler companion
matrices is to construct new companion matrices by rearranging factors. We present
an example using the flow graphs.

Example 7. We consider the matrix polynomial P(z) = Iz4+A3z3+A2z2+A1z+A0,
with d = 4,k = 3. Assume for simplicity that A is already anti-triangular. The graph
associated to its column companion matrix Γ is shown in Figure 1.14.
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−a(3)32

Fig. 1.14 The flow graph of the column companion matrix in Example 7.

We can factor this matrix as the product of three factors Γ = RST , which we have
drawn in different colors in Figure 1.14. Note that R and T commute, and that S,T
are invertible, being products of nonsingular Fiedler factors. Hence, RST is similar
to T RS = RT S, which is in turn similar to T SR. This proves that C = T RS is also a
companion matrix for P(z). The graph of C is depicted in Figure 1.15.

Note that C is not a Fiedler companion matrix, as it cannot be obtained by per-
muting block-level factors; “breaking the blocks” is required to construct it. This
construction can be generalized to arbitrary d and k, and it has a couple of nice
features.

• C is a banded matrix. Since we have drawn its diagram inside six columns in
Figure 1.15, there is no path from the left to the right of the diagram that moves
up or down more than 5 times; this means that Ci, j = 0 whenever | j− i| ≥ 6.
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Fig. 1.15 The graph of C in Example 7.

Generalizing this construction to arbitrary k and d, one gets Ci, j = 0 whenever
| j− i| ≥ 2k. Finding low-bandwidth linearizations and companion matrices has
attracted quite some interest in the past: for instance, [2, 27] present a (block)
pentadiagonal companion matrix (which can also be expressed as a block tridi-
agonal linearizing pencil). The new companion matrix C has the same bandwidth
as this classical example.

• Whenever the coefficients of P(z) are symmetric matrices, we can factor C into
the product of two symmetric matrices C = C1C2: it is sufficient to take C1
as the product of all factors appearing in the first five columns of Figure 1.15,
and C2 as the product of all factors appearing in the sixth and last one, i.e.,
C2 = F1(a

(1)
11 )F3(a

(1)
22 )F5(a

(1)
33 )F7(a

(3)
11 )F9(a

(3)
22 )F11(a

(3)
33 ). This means that we can

construct a symmetric pencil C1−C−1
2 z which is a linearization of P(z). (Note

that C−1
2 is operation-free.) Finding symmetric linearizations for symmetric ma-

trix polynomials is another problem that has attracted research interest in the
past [16, 31].

Remark 9. We remark that it is not clear that thin-banded linearizations provide
practical advantages in numerical computation. Commonly used eigenvalue algo-
rithms (namely, QZ and QR) cannot exploit this structure, unless the matrix at hand
is also symmetric (or the pencil is symmetric/positive definite).
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1.7 Conclusions

We have presented an extension of the graph-based approach by Poloni and Del
Corso [31] that allows to produce scalar-level factorizations of block Fiedler com-
panion matrices.

We have shown that this framework can be used for several purposes, such as
identifying new factorizations of products of Fiedler matrices, revealing their struc-
tures (such as the unitary-plus-rank-t structure), and combining them to build new
linearizations.

Once the reader is familiar with reading the Fiedler graphs, there are many more
factorizations that could be devised. Every time a diagonal line of factors appears
in a graph, it can be transformed into a factorization that involves row or column
companion matrices.

The presented approach allows a more general and particularly easy manipulation
of these linearizations. It might lead to the development of efficient algorithms for
the computation of eigenvalues of matrix polynomials using the product form with
the unitary-plus-rank-1 structure.
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