Spectral ranking algorithms for scientific publications

Gianna M. Del Corso
joint work with Dario A. Bini and Francesco Romani

Dipartimento di Informatica, Università di Pisa, Italy
The Problem

Research evaluation is a very hot topic.

Distribution of grants by governmental agencies and universities.

Very delicate problem!!
Research evaluation is a very hot topic.

Distribution of grants by governmental agencies and universities.

Very delicate problem!!
Research evaluation is a very hot topic.

Distribution of grants by governmental agencies and universities.

Very delicate problem!!
Requirements

- **Equity.** The evaluation parameters have to be equal for everyone
- Being Transparent. The evaluation parameters have to be public and well known a priori.
- The code should be Open
- Algorithmic efficiency.
Requirements

- **Equity.** The evaluation parameters have to be equal for everyone.
- **Being Transparent.** The evaluation parameters have to be public and well known a priori. The code should be Open.
- Algorithmic efficiency.
Requirements

- Equity. The evaluation parameters have to be equal for everyone.
- Being Transparent. The evaluation parameters have to be public and well known a priori. The code should be Open.
- Algorithmic efficiency.
Requirements

- Equity. The evaluation parameters have to be equal for everyone.
- Being Transparent. The evaluation parameters have to be public and well known a priori. The code should be Open.
- Algorithmic efficiency.
Notation

Citations are the basis of most attempts to assess scholarly impact.

We can represent the citation process as a graph and hence as a binary matrix

\[C_{ij} = 1 \text{ iff } p_i \text{ cites } p_j. \]
Citations are the basis of most attempts to assess scholarly impact.

We can represent the citation process as a graph and hence as a binary matrix

\[C_{ij} = 1 \text{ iff } p_i \text{ cites } p_j. \]
“The only thing worse than being talked about is not being talked about.” [Oscar Wilde]

“I don’t care what you say about me, as long as you say something about me, and as long as you spell my name right.” [George Cohan]

“Don’t pay any attention to what they write about you. Just measure it in inches.” [Andy Warhol]
We can order the matrix by publication year.

\[C = C(y_i, y_j) = \begin{bmatrix}
 C_{y_1y_1} & C_{y_2y_1} & \cdots & O \\
 C_{y_2y_1} & C_{y_2y_2} & \cdots & \\
 \vdots & \vdots & \ddots & \\
 C_{y_ky_1} & \cdots & C_{y_ky_k}
\end{bmatrix} \]

Block \(C_{y_i,y_j} \) represents the citations of papers published on year \(y_i \) to papers published in year \(y_j \).

\(C \) is (nearly)-block-lower triangular.
We can order the matrix by publication year.

\[C = C(y_i, y_j) = \begin{bmatrix}
 C_{y_1y_1} & O \\
 C_{y_2y_1} & C_{y_2y_2} \\
 \vdots & \vdots \\
 C_{y_ky_1} & \ldots & C_{y_ky_k}
\end{bmatrix} \]

Block \(C_{y_i,y_j} \) represents the citations of papers published on year \(y_i \) to papers published in year \(y_j \).

\(C \) is (nearly)-block-lower triangular.
We can order the matrix by publication year.

\[C = C(y_i, y_j) = \begin{bmatrix}
 C_{y_1y_1} & O \\
 C_{y_2y_1} & C_{y_2y_2} \\
 \vdots & \vdots \\
 C_{y_ky_1} & \cdots & C_{y_ky_k}
\end{bmatrix} \]

Block \(C_{y_i,y_j} \) represents the citations of papers published on year \(y_i \) to papers published in year \(y_j \)

\(C \) is (nearly)-block-lower triangular.
By grouping the papers published by the same journal we can transform the Article citation matrix into a Journal Citation matrix.

Let

\[P_J(i, j) = 1 \text{ iff paper } p_i \text{ is published on journal } j, \]

Define the Journal Citation Matrix as

\[J_J = P_J^T C P_J. \]

\[J_J(k, l) = \text{number of times papers in journal } k \text{ cite papers in journal } l. \]
By grouping the papers published by the same journal we can transform the Article citation matrix into a Journal Citation matrix.

Let

\[P_J(i, j) = 1 \text{ iff paper } p_i \text{ is published on journal } j, \]

Define the Journal Citation Matrix as

\[J_J = P_J^T C P_J. \]

\[J_J(k, l) = \text{number of times papers in journal } k \text{ cite papers in journal } l. \]
By grouping the papers published by the same journal we can transform the Article citation matrix into a Journal Citation matrix.

Let

\[P_J(i, j) = 1 \text{ iff paper } p_i \text{ is published on journal } j, \]

Define the Journal Citation Matrix as

\[J_J = P_J^T \cdot C \cdot P_J. \]

\[J_J(k, l) = \text{number of times papers in journal } k \text{ cite papers in journal } l. \]
The Journal Citation matrix considers cross-citations between journals over the years.

Define an annual cross-citation matrix

\[Z_{kl}(y_i, y_j) = \text{Citations from journal } k \text{ in year } y_i \text{ to journal } l \text{ in year } y_j \]

We can construct \(Z \) from the blocks of \(C(y_i, y_j) \)

Note that

\[J_j = \sum_{t=y_1}^{y_k} Z(y_k, t) \]
The Journal Citation matrix considers cross-citations between journals over the years.

Define an annual cross-citation matrix

\[Z_{kl}(y_i, y_j) = \text{Citations from journal } k \text{ in year } y_i \text{ to journal } l \text{ in year } y_j \]

We can construct \(Z \) from the blocks of \(C(y_i, y_j) \)

Note that

\[J_J = \sum_{t=y_1}^{y_k} Z(y_k, t) \]
The Journal Citation matrix considers cross-citations between journals over the years.

Define an annual cross-citation matrix

$$Z_{kl}(y_i, y_j) = \text{Citations from journal } k \text{ in year } y_i \text{ to journal } l \text{ in year } y_j$$

We can construct Z from the blocks of $C(y_i, y_j)$

Note that

$$J_J = \sum_{t=y_1}^{y_k} Z(y_k, t)$$
The Journal Citation matrix considers cross-citations between journals over the years.

Define an annual cross-citation matrix

\[Z_{kl}(y_i, y_j) = \text{Citations from journal } k \text{ in year } y_i \text{ to journal } l \text{ in year } y_j \]

We can construct \(Z \) from the blocks of \(C(y_i, y_j) \)

Note that

\[J_J = \sum_{t=y_1}^{y_k} Z(y_k, t) \]
Impact Factor

The ISI IF defines the status of a journal for a specific year.

It is defined as the mean number of citations that occurred in the considered year y to articles published in a given journal j during the previous two years.

\[
IF(j, y) = \frac{\sum_k (Z_{kj}(y, y - 1) + Z_{kj}(y, y - 2))}{n(j, y)},
\]

where

\[
n(j, y) = \text{number of papers published in journal } j \text{ in years } y - 2, y - 1
\]
The **ISI IF** defines the status of a journal for a specific year.

It is defined as the mean number of citations that occurred in the considered year y to articles published in a given journal j during the previous two years.

$$IF(j, y) = \frac{\sum_k (Z_{kj}(y, y-1) + Z_{kj}(y, y-2))}{n(j, y)},$$

where

$$n(j, y) = \text{number of papers published in journal } j \text{ in years } y - 2, y - 1$$
\[IF(j, y) = \| z_j(y, y - 2) + z_j(y, y - 1) \|_1 / n(j, y) \]
\[IF(j, y) = \frac{\|z_j(y, y-2) + z_j(y, y-1)\|_1}{n(j, y)}. \]
The ISI IF is a metric of popularity.

- It changes over the time.
- It disregards concepts as prestige, reputation, influence or quality.
- Only considers ISI journals.
The ISI IF is a metric of popularity.
It changes over the time.
It disregards concepts as prestige, reputation, influence or quality.
Only considers ISI journals.
Impact Factor

The ISI IF is a metric of popularity

- It changes over the time
- It disregards concepts as prestige, reputation, influence or quality.
- Only considers ISI journals
The ISI IF is a metric of popularity. It changes over the time. It disregards concepts as prestige, reputation, influence or quality. Only considers ISI journals.
Invariant Method

Assiomatic Approach

A ranking problem is a pair $\langle S, J_J \rangle$ where S is the set of journals and J_J is a Journal Citation Matrix within a single discipline.

A ranking method is a function $\Phi : \mathcal{R} \rightarrow \Delta$, where \mathcal{R} is the set of all ranking problems, and $\Delta = \left\{ v_j : j \in S, v_j \geq 0, \sum_{j \in S} v_j = 1 \right\}$.

A ranking problem is a pair $\langle S, J_J \rangle$ where S is the set of journals and J_J is a Journal Citation Matrix within a single discipline.

A ranking method is a function $\Phi : R \rightarrow \Delta$, where R is the set of all ranking problems, and $\Delta = \{v_j : j \in S, v_j \geq 0, \sum_{j \in S} v_j = 1\}$.
Invarian Method

Assiomatic Approach

A ranking problem is a pair $\langle S, J_J \rangle$ where S is the set of journals and J_J is a Journal Citation Matrix within a single discipline.

A ranking method is a function $\Phi : \mathcal{R} \rightarrow \Delta$, where \mathcal{R} is the set of all ranking problems, and $\Delta = \left\{ v_j : j \in S, v_j \geq 0, \sum_{j \in S} v_j = 1 \right\}$.
Invariant Method

Assiomatic Approach

They *derive* a ranking method by requiring a few simple properties:

- **Anonymity**: Invariance under permutations.
- **Invariance to citation intensity**: Every journal distributes its importance among the journal it cites.
Invariant Method

Assiomatic Approach

They derive a ranking method by requiring a few simple properties:

- **Anonymity:** Invariance under permutations.
- **Invariance to citation intensity:** Every journal distributes its importance among the journal it cites.
They derive a ranking method by requiring a few simple properties:

- **Anonymity**: Invariance under permutations.

\[\Phi(S, PJ_jP^T) = P \Phi(S, J_j) \text{, for every permutation matrix } P. \]

- Invariance to citation intensity: Every journal distributes its importance among the journal it cites.
They derive a ranking method by requiring a few simple properties:

- **Anonymity**: Invariance under permutations.
- **Invariance to citation intensity**: Every journal distributes its importance among the journal it cites.
They derive a ranking method by requiring a few simple properties:

- **Anonymity**: Invariance under permutations.
- **Invariance to citation intensity**: Every journal distributes its importance among the journal it cites

\[\Phi(S, \Lambda J_J) = \Phi(S, J_J), \text{ for every non-negative diagonal matrix } \Lambda. \]
Invariant Method

Assiomatic Approach... continue

- Homogeneity for the two-journal problem: If two journals have the same number of cited references, the relative valuation of a journal should be proportional to the ratio of their mutual citations.
Homogeneity for the two-journal problem: If two journals have the same number of cited references, the relative valuation of a journal should be proportional to the ratio of their mutual citations.

Let \(R = \langle \{r, s\}, J_J \rangle \) be a two-journal problem such that

\[
J_J(r, r) + J_J(s, r) = J_J(r, s) + J_J(s, s).
\]
Homogeneity for the two-journal problem: If two journals have the same number of cited references, the relative valuation of a journal should be proportional to the ratio of their mutual citations.

Let $R = \langle \{r, s\}, J_J \rangle$ be a two-journal problem such that

$$J_J(r, r) + J_J(s, r) = J_J(r, s) + J_J(s, s).$$

Φ satisfies homogeneity for two-journal problem if there is $\alpha > 0$, such that for all such problems

$$\frac{\Phi_r(R)}{\Phi_s(R)} = \alpha \frac{J_J(s, r)}{J_J(r, s)}.$$
Consistency: If we know how to rank a small problem, we should be able to extend the ranking method to a big problem in a consistent way.
Invariant Method

Assiomatic Approach... continue

- **Consistency**: If we know how to rank a small problem, we should be able to extend the ranking method to a big problem in a consistent way.

\[
\frac{\Phi_i(R)}{\Phi_j(R)} = \frac{\Phi_i(R \setminus \{k\})}{\Phi_j(R \setminus \{k\})} \quad \text{for all } i, j \in S \setminus \{k\}
\]
Invariant Method

Theorem:

There is a unique ranking function that satisfies the four properties described, and this is the so-called Invariant Method, i.e.

\[\Phi(R) = v \in \Delta, \quad \text{where} \quad v^T D J J = v^T, \]

and \(D \) is a diagonal matrix so that \(J J \) becomes row-stochastic.
Some Comments:

- Very similar to PageRank, but without dumping factor
- Every journal cites at least another journal.
- We can apply the Invariant method for ranking papers and authors as well.
- It is static in the sense that the factor time is not present.
Invariant Method

Some Comments:

- Very similar to PageRank, but without *dumping factor*
- Every journal cites at least another journal.
- We can apply the Invariant method for ranking papers and authors as well.
- It is static in the sense that the factor *time* is not present.
Some Comments:

- Very similar to PageRank, but without dumping factor
- Every journal cites at least another journal.
- We can apply the Invariant method for ranking papers and authors as well.
- It is static in the sense that the factor time is not present.
Some Comments:

- Very similar to PageRank, but without dumping factor
- Every journal cites at least another journal. **No dangling nodes!**
- We can apply the Invariant method for ranking papers and authors as well.
- It is static in the sense that the factor **time** is not present.
Some Comments:

- Very similar to PageRank, but without dumping factor.
- Every journal cites at least another journal. No dangling nodes!
- We can apply the Invariant method for ranking papers and authors as well.
- It is static in the sense that the factor time is not present.
Some Comments:

- Very similar to PageRank, but without dumping factor
- Every journal cites at least another journal. No dangling nodes!
- We can apply the Invariant method for ranking papers and authors as well.
- It is static in the sense that the factor time is not present.
In 2006 Bollen, Rodriguez and Van De Sompel proposed the so-called Y-factor.

They underline that
- The Impact Factor is a metric of popularity
- Weighted PageRank is a metric of prestige

By putting a threshold on the Weighted Page-Rank and on the ISI IF, one can identify Popular Journals versus Prestigious Journals.
In 2006 Bollen, Rodriguez and Van De Sompel proposed the so-called **Y-factor**.

They underline that

- The Impact Factor is a metric of *popularity*
- Weighted PageRank is a metric of *prestige*

By putting a threshold on the Weighted Page-Rank and on the ISI IF, one can identify *Popular Journals versus Prestigious Journals*.
In 2006 Bollen, Rodriguez and Van De Sompel proposed the so-called Y-factor.

They underline that

- The Impact Factor is a metric of popularity
- Weighted PageRank is a metric of prestige

By putting a threshold on the Weighted Page-Rank and on the ISI IF, one can identify Popular Journals versus Prestigious Journals.
In 2006 Bollen, Rodriguez and Van De Sompel proposed the so-called Y-factor.

They underline that

- The Impact Factor is a metric of popularity
- Weighted PageRank is a metric of prestige

By putting a threshold on the Weighted Page-Rank and on the ISI IF, one can identify Popular Journals versus Prestigious Journals.
Y-Factor

The Y-Factor

In 2006 Bollen, Rodriguez and Van De Sompel proposed the so called Y-factor.

They underline that

- The Impact Factor is a metric of popularity
- Weighted PageRank is a metric of prestige

By putting a threshold on the Weighted Page-Rank and on the ISI IF, one can identify Popular Journals versus Prestigious Journals.
The Y-Factor

Y-Factor

D.A. Bini, G. M. Del Corso, F. Romani

Ranking algorithms for scientific publications
Popular Journals are journals that are cited frequently by journals with little prestige. They have very high IF and very low Weighted Page-Rank.

Prestigious Journals are journals that are not frequently cited, but their citations come from highly prestigious journals. They have very high Weighted Page-Rank and very low IF.

Their proposal...
Popular Journals are journals that are cited frequently by journals with little prestige. They have very high IF and very low Weighted Page-Rank.

Prestigious Journals are journals that are not frequently cited, but their citations come from highly prestigious journals. They have very high Weighted Page-Rank and very low IF.

Their proposal ...
Popular Journals are journals that are cited frequently by journals with little prestige. They have very high IF and very low Weighted Page-Rank.

Prestigious Journals are journals that are not frequently cited, but their citations come from highly prestigious journals. They have very high Weighted Page-Rank and very low IF.

Their proposal ...
Popular Journals are journals that are cited frequently by journals with little prestige. They have very high IF and very low Weighted Page-Rank.

Prestigious Journals are journals that are not frequently cited, but their citations come from highly prestigious journals. They have very high Weighted Page-Rank and very low IF.

Their proposal ...
Popular Journals are journals that are cited frequently by journals with little prestige. They have very high IF and very low Weighted Page-Rank.

Prestigious Journals are journals that are not frequently cited, but their citations come from highly prestigious journals. They have very high Weighted Page-Rank and very low IF.

Their proposal ...
The Y-Factor

Popular Journals are journals that are cited frequently by journals with little prestige. They have very high IF and very low Weighted Page-Rank.

Prestigious Journals are journals that are not frequently cited, but their citations come from highly prestigious journals. They have very high Weighted Page-Rank and very low IF.

Their proposal ...

\[Y(j) = IF(j) \times PR_w(j). \]
The Eigenfactor Method uses the Page-Rank approach for ranking journals.

It considers a d-year cross-citation matrix for year y as follows:

$$M(y, d) = \sum_{k=1}^{d} Z(y - k, y),$$

where

$Z_{kl}(y_i, y_j) = \text{Citations from journal } k \text{ in year } y_i \text{ to journal } l \text{ in year } y_j$

For example $M(2004, 5)$ is a 5-year cross-citation matrix for the year 2004.
The **Eigenfactor Method** uses the Page-Rank approach for ranking journals.

It considers a *d*-year cross-citation matrix for year *y* as follows:

\[
M(y, d) = \sum_{k=1}^{d} Z(y - k, y),
\]

where

\[
Z_{kl}(y_i, y_j) = \text{Citations from journal } k \text{ in year } y_i \text{ to journal } l \text{ in year } y_j
\]

For example, \(M(2004, 5)\) is a 5-year cross-citation matrix for the year 2004.
The **Eigenfactor Method** uses the Page-Rank approach for ranking journals.

It considers a d-year cross-citation matrix for year y as follows:

$$M(y, d) = \sum_{k=1}^{d} Z(y - k, y),$$

where

$$Z_{kl}(y_i, y_j) = \text{Citations from journal } k \text{ in year } y_i \text{ to journal } l \text{ in year } y_j$$

For example, $M(2004, 5)$ is a 5-year cross-citation matrix for the year 2004.
The Eigenfactor Method uses the Page-Rank approach for ranking journals.

It considers a d-year cross-citation matrix for year y as follows:

$$M(y, d) = \sum_{k=1}^{d} Z(y - k, y),$$

where

$$Z_{kl}(y_i, y_j) = \text{Citations from journal } k \text{ in year } y_i \text{ to journal } l \text{ in year } y_j$$

For example $M(2004, 5)$ is a 5-year cross-citation matrix for the year 2004.
Let $M = M(2004, 5)$. The column-stochastic matrix N is defined

$$N_{ij} = \frac{M_{ij}}{\sum_k M_{kj}}$$

and following Google’s PageRank approach,

$$P = \alpha N + (1 - \alpha)A,$$

where $A = ae^T$, and a_j = article in journal j/(total articles).
Let $M = M(2004, 5)$. The column-stochastic matrix N is defined as

$$
N_{ij} = \frac{M_{ij}}{\sum_k M_{kj}}
$$

and following Google’s PageRank approach,

$$
P = \alpha N + (1 - \alpha)A,
$$

where $A = ae^T$, and $a_j=\text{article in journal } j/\text{(total articles)}$.
Let $M = M(2004, 5)$. The column-stochastic matrix N is defined as:

$$N_{ij} = \frac{M_{ij}}{\sum_k M_{kj}}$$

and following Google’s PageRank approach,

$$P = \alpha N + (1 - \alpha)A,$$

where $A = ae^T$, and a_j = article in journal j/(total articles).
Calculating Eigenfactor

Let $M = M(2004, 5)$. The column-stochastic matrix N is defined

$$N_{ij} = \frac{M_{ij}}{\sum_k M_{kj}}$$

and following Google's PageRank approach,

$$P = \alpha N + (1 - \alpha)A,$$

where $A = ae^T$, and $a_j = \text{article in journal } j / \text{(total articles)}$.
The leading eigenvector \mathbf{f} of P is the journal influence vector.

The eigenfactor w_i of journal i is the percentage of the total weighted citations that journal i receives from the other journals.

$$w = \frac{100 \mathbf{Mf}}{\mathbf{e}^T \mathbf{Mf}}$$
The leading eigenvector \mathbf{f} of P is the journal influence vector.

The eigenfactor w_i of journal i is the percentage of the total weighted citations that journal i receives from the other journals.

$$w = \frac{100 M \mathbf{f}}{e^T M \mathbf{f}}$$
The leading eigenvector \mathbf{f} of P is the journal influence vector.

The eigenfactor w_i of journal i is the percentage of the total weighted citations that journal i receives from the other journals.

$$w = \frac{100 M\mathbf{f}}{e^T M \mathbf{f}}$$
Our Proposal

- We want to rank not only journals but also papers, authors, institutions, and fields.
- The importance of a paper changes over the time.
Our Proposal

- We want to rank not only journals but also papers, authors, institutions, and fields.
- The importance of a paper changes over the time.
Desiderata

- A **paper** receives importance also from the **journal** in which it is published
- An important author gives importance to her co-authors

Mutual reinforcement between **papers**, **journals**, **authors**

Compare with the **Hubs and Authorities** approach
Desiderata

- A paper receives importance also from the journal in which it is published.
- An important author gives importance to her co-authors.

Mutual reinforcement between papers, journals, authors.

Compare with the Hubs and Authorities approach.
Desiderata

- A paper receives importance also from the journal in which is published
- An important author gives importance to her co-authors

Mutual reinforcement between papers, journals, authors

Compare with the Hubs and Authorities approach
Desiderata

- A paper receives importance also from the journal in which is published
- An important author gives importance to her co-authors

Mutual reinforcement between papers, journals, authors

Compare with the Hubs and Authorities approach
The model

Many matrices play a role in our problem:

Let us rename the citation matrix as P_P

$$P_P(r, s) = 1 \quad \text{if paper } p_r \text{ cites paper } p_s$$

The paper-journal matrix

$$P_J(r, s) = 1 \quad \text{if paper } p_r \text{ is published in journal } j_s$$

The paper-author

$$P_A(r, s) = 1 \quad \text{if paper } p_r \text{ is written by author } a_s$$
The model

Many matrices play a role in our problem:

Let us rename the citation matrix as P_P

$$P_P(r, s) = 1 \quad \text{if paper } p_r \text{ cites paper } p_s$$

The paper-journal matrix

$$P_J(r, s) = 1 \quad \text{if paper } p_r \text{ is published in journal } j_s$$

The paper-author

$$P_A(r, s) = 1 \quad \text{if paper } p_r \text{ is written by author } a_s$$
The model

Many matrices play a role in our problem:

Let us rename the citation matrix as P_P

$$P_P(r,s) = 1 \quad \text{if paper } p_r \text{ cites paper } p_s$$

The paper-journal matrix

$$P_J(r,s) = 1 \quad \text{if paper } p_r \text{ is published in journal } j_s$$

The paper-author

$$P_A(r,s) = 1 \quad \text{if paper } p_r \text{ is written by author } a_s$$
The model

Many matrices play a role in our problem:

Let us rename the citation matrix as P_P

$$P_P(r, s) = 1 \quad \text{if paper } p_r \text{ cites paper } p_s$$

The paper-journal matrix

$$P_J(r, s) = 1 \quad \text{if paper } p_r \text{ is published in journal } j_s$$

The paper-author

$$P_A(r, s) = 1 \quad \text{if paper } p_r \text{ is written by author } a_s$$
The model

Journal ranking

A journal is important if:

- It publishes important papers
- It is cited by important journals
- It publishes papers written by important authors

The relative importance of authors, citations and papers for the attribution of a ranking score of a journal depends on user selected weights.
The model

Journal ranking

A journal is important if:

- It publishes important papers
- It is cited by important journals
- It publishes papers written by important authors

The relative importance of authors, citations and papers for the attribution of a ranking score of a journal depends on user selected weights.
The model

Journal ranking

A journal is important if:

- It publishes important papers
- It is cited by important journals
- It publishes papers written by important authors

The relative importance of authors, citations and papers for the attribution of a ranking score of a journal depends on user selected weights
The model

Journal ranking

A journal is important if:

- It publishes important papers
- It is cited by important journals
- It publishes papers written by important authors

The relative importance of authors, citations and papers for the attribution of a ranking score of a journal depends on user selected weights.
A journal is important if:
- It publishes important papers
- It is cited by important journals
- It publishes papers written by important authors

The relative importance of authors, citations and papers for the attribution of a ranking score of a journal depends on user selected weights.
Author ranking

An author is important if:

- Has published important papers
- Has written on important journals
- Has written with important co-authors

The relative importance of authors, citations and papers for the attribution of a ranking score of an author depends on users selected weights.

The impact of co-authorship should be marginal respect to that of papers.
An author is important if:

- Has published important papers
- Has written on important journals
- Has written with important co-authors

The relative importance of authors, citations and papers for the attribution of a ranking score of an author depends on users selected weights.

The impact of co-authorship should be marginal respect to that of papers.
The model

Author ranking

An author is important if:

- Has published important papers
- Has written on important journals
- Has written with important co-authors

The relative importance of authors, citations and papers for the attribution of a ranking score of an author depends on users selected weights.

The impact of co-authorship should be marginal respect to that of papers.
The model

Author ranking

An author is important if:

- Has published important papers
- Has written on important journals
- Has written with important co-authors

The relative importance of authors, citations and papers for the attribution of a ranking score of an author depends on users selected weights.

The impact of co-authorship should be marginal respect to that of papers.
An **author** is important if:

- Has published important papers
- Has written on important journals
- Has written with important co-authors

The **relative** importance of authors, citations and papers for the attribution of a ranking score of an author depends on users selected **weights**.

The impact of co-authorship should be marginal respect to that of papers.
The model

Author ranking

An author is important if:

- Has published important papers
- Has written on important journals
- Has written with important co-authors

The relative importance of authors, citations and papers for the attribution of a ranking score of an author depends on users selected weights.

The impact of co-authorship should be marginal respect to that of papers.
A paper is important if:

- Is cited by important papers
- Is published on important journals
- Is written by important authors

The relative importance of authors, citations and papers for the attribution of a ranking score of an author depends on users selected weights.

The impact of authors should be marginal respect to that of citations.
The model

Paper ranking

A paper is important if:

- Is cited by important papers
- Is published on important journals
- Is written by important authors

The relative importance of authors, citations and papers for the attribution of a ranking score of an author depends on users selected weights.

The impact of authors should be marginal respect to that of citations.
The model

Paper ranking

A paper is important if:

- Is cited by important papers
- Is published on important journals
- Is written by important authors

The relative importance of authors, citations and papers for the attribution of a ranking score of an author depends on users selected weights.

The impact of authors should be marginal respect to that of citations.
The model

Paper ranking

A **paper** is important if:

- Is cited by important papers
- Is published on important journals
- Is **written** by important **authors**

The **relative** importance of authors, citations and papers for the attribution of a ranking score of an author depends on users selected **weights**.

The impact of authors should be marginal respect to that of citations.
The model

Paper ranking

A paper is important if:
- Is cited by important papers
- Is published on important journals
- Is written by important authors

The relative importance of authors, citations and papers for the attribution of a ranking score of an author depends on users selected weights.

The impact of authors should be marginal respect to that of citations.
The model

Paper ranking

A paper is important if:

- Is cited by important papers
- Is published on important journals
- Is written by important authors

The relative importance of authors, citations and papers for the attribution of a ranking score of an author depends on users selected weights.

The impact of authors should be marginal respect to that of citations
The model

The matrix

We come up with the following block-matrix

\[M = \begin{bmatrix} J_J & J_A & J_P \\ A_J & A_A & A_P \\ P_J & P_A & P_P \end{bmatrix} \]
We come up with the following block-matrix

\[
M = \begin{bmatrix}
 J_J & J_A & J_P \\
 A_J & A_A & A_P \\
 P_J & P_A & P_P \\
\end{bmatrix}
\]
We come up with the following block-matrix

\[M = \begin{bmatrix}
 J_J & J_A & J_P \\
 A_J & A_A & A_P \\
 P_J & P_A & P_P
\end{bmatrix} \]

The matrices in the first column contribute to the ranking of journals.
We come up with the following block-matrix

\[
M = \begin{bmatrix}
J_J & J_A & J_P \\
A_J & A_A & A_P \\
P_J & P_A & P_P
\end{bmatrix}
\]

The matrices in the second column contribute to the ranking of authors.
The model

The matrix

We come up with the following block-matrix

\[M = \begin{bmatrix}
 J_J & J_A & J_P \\
 A_J & A_A & A_P \\
 P_J & P_A & P_P \\
\end{bmatrix} \]

The matrices in the third column contribute to the ranking of papers.
The model

The matrix

The matrices involved for the journals rank

\[
M = \begin{bmatrix}
 P^T_J & P_P & P_J & J_A & J_P \\
 P^T_A & P_J & A_A & A_P \\
 P_J & P_A & P_P
\end{bmatrix}
\]
The model

The matrix

The matrices involved for the journals rank

\[M = \begin{bmatrix} P_J^T & P_P & P_J & J_A & J_P \\ P_A^T & P_J & A_A & A_P \\ P_J & P_A & P_P \end{bmatrix} \]
The matrix

The matrices involved for the authors rank

\[
M = \begin{bmatrix}
 P_J^T & P_P & P_J & P_J^T & P_A & J_P \\
 P_A^T & P_J & P_A & P_A^T & P_A & A_P \\
 P_J & P_A & P_P \\
\end{bmatrix}
\]
The model

The matrix

The matrices involved for the papers rank

\[
M = \begin{bmatrix}
P_J^T & P_P & P_J & P_J^T & P_A & P_J^T \\
P_A^T & P_J & P_A & P_J^T & P_A & P_A^T \\
P_J & P_A & P_P & P_P & P_P & P_P \\
\end{bmatrix}
\]
The model

Let \(\pi = [\pi_J, \pi_A, \pi_P] \) be the vector of the ranking scores of journals, authors and papers.

We can compute \(\pi \) with an iterative scheme using a matrix “derived” from \(M \).
Let $\pi = [\pi_J, \pi_A, \pi_P]$ be the vector of the ranking scores of journals, authors and papers.

We can compute π with an iterative scheme using a matrix “derived” from M.

D.A. Bini, G. M. Del Corso, F. Romani

Ranking algorithms for scientific publications
The model

Let \(\pi = [\pi_J, \pi_A, \pi_P] \) be the vector of the ranking scores of journals, authors and papers.

We can compute \(\pi \) with an iterative scheme using a matrix “derived” from \(M \).

What does “derived” mean?
The model

The matrix M

We have to weight M in order to emphasize the role of some matrices rather than others in the computation of the ranks.

$$M(w) = \begin{bmatrix}
w(1, 1) J_J & w(1, 2) J_A & w(1, 3) J_P \\
w(2, 1) A_J & w(2, 2) A_A & w(2, 3) A_P \\
w(3, 1) P_J & w(3, 2) P_A & w(3, 2) P_P
\end{bmatrix}$$
The model

The matrix M

We have to weight M in order to emphasize the role of some matrices rather than others in the computation of the ranks.

$$M(w) = \begin{bmatrix}
 w(1, 1) J_J & w(1, 2) J_A & w(1, 3) J_P \\
 w(2, 1) A_J & w(2, 2) A_A & w(2, 3) A_P \\
 w(3, 1) P_J & w(3, 2) P_A & w(3, 2) P_P
\end{bmatrix}$$
The model

The matrix M

We have to weight M in order to emphasize the role of some matrices rather than others in the computation of the ranks.

$$M(w) = \begin{bmatrix} w(1, 1) J_J & w(1, 2) J_A & w(1, 3) J_P \\
 w(2, 1) A_J & w(2, 2) A_A & w(2, 3) A_P \\
 w(3, 1) P_J & w(3, 2) P_A & w(3, 2) P_P \end{bmatrix}$$

$$\pi_{J}^{(k+1)} = \pi_{J}^{(k)} w(1, 1) J_J + \pi_{A}^{(k)} w(2, 1) A_J + \pi_{P}^{(k)} w(3, 1) P_J$$

$$\pi_{A}^{(k+1)} = \pi_{J}^{(k)} w(1, 2) J_A + \pi_{A}^{(k)} w(2, 2) A_A + \pi_{P}^{(k)} w(3, 2) P_A$$

$$\pi_{P}^{(k+1)} = \pi_{J}^{(k)} w(1, 3) J_P + \pi_{A}^{(k)} w(2, 3) A_P + \pi_{P}^{(k)} w(3, 3) P_P$$
The model

The matrix \(M \)

We have to weight \(M \) in order to emphasize the role of some matrices rather than others in the computation of the ranks.

\[
M(w) = \begin{bmatrix}
 w(1, 1) J_J & w(1, 2) J_A & w(1, 3) J_P \\
 w(2, 1) A_J & w(2, 2) A_A & w(2, 3) A_P \\
 w(3, 1) P_J & w(3, 2) P_A & w(3, 2) P_P
\end{bmatrix}
\]

\[
\pi_J^{(k+1)} = \pi_J^{(k)} w(1, 1) J_J + \pi_A^{(k)} w(2, 1) A_J + \pi_P^{(k)} w(3, 1) P_J
\]

\[
\pi_A^{(k+1)} = \pi_J^{(k)} w(1, 2) J_A + \pi_A^{(k)} w(2, 2) A_A + \pi_P^{(k)} w(3, 2) P_A
\]

\[
\pi_P^{(k+1)} = \pi_J^{(k)} w(1, 3) J_P + \pi_A^{(k)} w(2, 3) A_P + \pi_P^{(k)} w(3, 3) P_P
\]
We have to weight M in order to emphasize the role of some matrices rather than others in the computation of the ranks.

$$M(w) = \begin{bmatrix} w(1, 1) J_J & w(1, 2) J_A & w(1, 3) J_P \\ w(2, 1) A_J & w(2, 2) A_A & w(2, 3) A_P \\ w(3, 1) P_J & w(3, 2) P_A & w(3, 2) P_P \end{bmatrix}$$

$$\begin{align*}
\pi_J^{(k+1)} &= \pi_J^{(k)} w(1, 1) J_J + \pi_A^{(k)} w(2, 1) A_J + \pi_P^{(k)} w(3, 1) P_J \\
\pi_A^{(k+1)} &= \pi_J^{(k)} w(1, 2) J_A + \pi_A^{(k)} w(2, 2) A_A + \pi_P^{(k)} w(3, 2) P_A \\
\pi_P^{(k+1)} &= \pi_J^{(k)} w(1, 3) J_P + \pi_A^{(k)} w(2, 3) A_P + \pi_P^{(k)} w(3, 3) P_P
\end{align*}$$
The model

The matrix M

π is the eigenvector corresponding to the dominant eigenvalue of M.

$$\pi^T M = \lambda \pi^T$$

The matrix M is non-negative, but not necessarily irreducible or primitive.

Perron-Frobenius guarantees only that there exist a $\lambda = \rho(M)$ and a corresponding non-negative eigenvector.
The model

The matrix M

π is the eigenvector corresponding to the dominant eigenvalue of M.

$$\pi^T M = \lambda \pi^T$$

The matrix M is non-negative, but not necessarily irreducible or primitive.

Perron-Frobenius guarantees only that there exist a $\lambda = \rho(M)$ and a corresponding non-negative eigenvector.
The model

The matrix \(M \)

\(\pi \) is the eigenvector corresponding to the dominant eigenvalue of \(M \).

\[\pi^T M = \lambda \pi^T \]

The matrix \(M \) is non-negative, but not necessarily irreducible or primitive.

Perron-Frobenius guarantees only that there exist a \(\lambda = \rho(M) \) and a corresponding non-negative eigenvector.
The model

The matrix M

This model has two major problems

- We have to add *semantic* to the model

Some of the matrices should be normalized by row others by column

- We have to fix the math
The model

The matrix M

This model has two major problems

- We have to add *semantic* to the model

 Some of the matrices should be normalized by row others by column

- We have to fix the *math*
The model

The matrix M

This model has two major problems

- We have to add *semantic* to the model

Some of the matrices should be normalized by row others by column

- We have to fix the *math*
The model

Adding Semantic

We introduce some normalization.

The normalization of some block or others depends on what one want to evaluate.
We introduce some normalization.

The normalization of some block or others depends on what one want to evaluate.
Some proposals:

- Subtract the diagonal to the diagonal blocks J_j, A_A to avoid self-citations
- Invariance with respect to the number of authors

Blocks A_J, A_P, P_J, should be normalized by column.

- Invariance with respect to the length of the reference list
Adding Semantic

Some proposals:

- Subtract the diagonal to the diagonal blocks J_J, A_A to avoid self-citations
- Invariance with respect to the number of authors

Blocks A_{J}, A_{P}, P_{J}, should be normalized by column.

- Invariance with respect to the length of the reference list
The model

Adding Semantic

Some proposals:

- Subtract the diagonal to the diagonal blocks J_J, A_A to avoid self-citations
- Invariance with respect to the number of authors

Blocks A_J, A_P, P_J, should be normalized by column.

- Invariance with respect to the length of the reference list

The remaining blocks should be normalized by row.
The model

Adding Semantic

Some proposals:

- Subtract the diagonal to the diagonal blocks J_J, A_A to avoid self-citations
- Invariance with respect to the number of authors

Blocks A_J, A_P, P_J, should be normalized by column.

- Invariance with respect to the length of the reference list

The remaining blocks should be normalized by row.
The model

Adding Semantic

Some proposals:

- Subtract the diagonal to the diagonal blocks J_J, A_A to avoid self-citations
- Invariance with respect to the number of authors

Blocks A_J, A_P, P_J, should be normalized by column.

- Invariance with respect to the length of the reference list

The remaining blocks should be normalized by row.
The model

Adding Semantic

Some proposals:

- Subtract the diagonal to the diagonal blocks J_J, A_A to avoid self-citations
- Invariance with respect to the number of authors

Blocks A_J, A_P, P_J, should be normalized by column.

- Invariance with respect to the length of the reference list

The remaining blocks should be normalized by row.
Fixing the math: a first possibility

- Make every block row-stochastic, and choose the matrix of the weights w also row-stochastic.
- The matrix $\tilde{M}(w)$ becomes then globally row-stochastic.
- We can compute π as the PageRank vector of $\tilde{M}(w)$.

D.A. Bini, G. M. Del Corso, F. Romani

Ranking algorithms for scientific publications
First model

Fixing the math: a first possibility

- Make every block **row-stochastic**, and choose the matrix of the weights w also row-stochastic.
- The matrix $\tilde{M}(w)$ becomes then globally row-stochastic.
- We can compute π as the PageRank vector of $\tilde{M}(w)$.
Fixing the math: a first possibility

- Make every block row-stochastic, and choose the matrix of the weights w also row-stochastic.
- The matrix $\tilde{M}(w)$ becomes then globally row-stochastic.
- We can compute π as the PageRank vector of $\tilde{M}(w)$.
We do not force $M(w)$ to be stochastic, but we remain more “close” to the intuition behind the model.

Problems

- M is not necessarily irreducible or primitive.
- In this case the power method will not converge, since there are $|\lambda_1| = |\lambda_2|$ but $\lambda_1 \neq \lambda_2$.

Second model

Fixing the math: a second possibility

- We do not force $M(w)$ to be stochastic, but we remain more “close” to the intuition behind the model.

Problems

- M is not necessarily irreducible or primitive.
- In this case the power method will not converge, since there are $|\lambda_1| = |\lambda_2|$ but $\lambda_1 \neq \lambda_2$.

Fixing the math: a second possibility

- We do not force $M(w)$ to be stochastic, but we remain more “close” to the intuition behind the model.

Problems

- M is not necessarily irreducible or primitive.

- In this case the power method will not converge, since there are $|\lambda_1| = |\lambda_2|$ but $\lambda_1 \neq \lambda_2$.
Second model

Fixing the math: a second possibility

- We do not force $M(w)$ to be stochastic, but we remain more “close” to the intuition behind the model.

Problems

- M is not necessarily irreducible or primitive.
- In this case the power method will not converge, since there are $|\lambda_1| = |\lambda_2|$ but $\lambda_1 \neq \lambda_2$.
Second model

A possible solution

To force M to be irreducible and primitive consider the matrix

$$
\hat{M} = \begin{bmatrix}
M & \varepsilon \mathbf{e} \\
\varepsilon \mathbf{e}^T & \varepsilon
\end{bmatrix}
$$

\hat{M} is irreducible and primitive

Under suitable hypothesis

$$
y(\varepsilon) = \hat{\pi} + \varepsilon \frac{\|\pi\|_1}{\lambda_1} \mathbf{e}_n + O(\varepsilon^2)
$$

The dominant eigenvector of \hat{M} ranks well also the documents belonging to small components.
Second model

A possible solution

- To force M to be irreducible and primitive consider the matrix

\[
\hat{M} = \begin{bmatrix}
M & \varepsilon \mathbf{e} \\
\varepsilon \mathbf{e}^T & \varepsilon
\end{bmatrix}
\]

- \hat{M} is irreducible and primitive

- Under suitable hypothesis

\[
y(\varepsilon) = \hat{\pi} + \varepsilon \frac{\|\pi\|_1}{\lambda_1} \mathbf{e}_n + O(\varepsilon^2)
\]

- The dominant eigenvector of \hat{M} ranks well also the documents belonging to small components.

D.A. Bini, G. M. Del Corso, F. Romani

Ranking algorithms for scientific publications
To force M to be irreducible and primitive consider the matrix

$$\hat{M} = \begin{bmatrix} M & \varepsilon \mathbf{e} \\ \varepsilon \mathbf{e}^T & \varepsilon \end{bmatrix}$$

- \hat{M} is irreducible and primitive
- Under suitable hypothesis

$$\mathbf{y}(\varepsilon) = \hat{\pi} + \varepsilon \frac{\|\pi\|_1}{\lambda_1} \mathbf{e}_n + O(\varepsilon^2)$$

- The dominant eigenvector of \hat{M} ranks well also the documents belonging to small components.
A possible solution

- To force M to be irreducible and primitive consider the matrix

$$\hat{M} = \begin{bmatrix} M & \epsilon \mathbf{e} \\ \epsilon \mathbf{e}^T & \epsilon \end{bmatrix}$$

- \hat{M} is irreducible and primitive
- Under suitable hypothesis

$$y(\epsilon) = \hat{\pi} + \epsilon \frac{\|\pi\|_1}{\lambda_1} \mathbf{e}_n + O(\epsilon^2)$$

- The dominant eigenvector of \hat{M} ranks well also the documents belonging to small components.
These methods are not time aware!

- Newly published papers do not have yet received enough citations.
 Their rank is destined to be low.
- The same for junior researchers whose rank remains lower than that of senior researchers.
These methods are **not time aware!**

- Newly published papers do not have *yet* received enough citations
 - Their rank is destined to be low
 - The same for junior researchers whose rank remains lower than that of senior researchers
Second model

A problem...

These methods are not time aware!

- Newly published papers do not have yet received enough citations
 Their rank is destined to be low
 The same for junior researchers whose rank remains lower than that of senior researchers
These methods are not time aware!

- Newly published papers do not have yet received enough citations
 Their rank is destined to be low
 The same for junior researchers whose rank remains lower than that of senior researchers
Second model

A proposal for mostly recent cited papers

If we do not require the matrix to be row stochastic, we can scale the citation matrix P_P with an exponential decay function.

The importance of a paper decays over the time.

A paper not cited recently looses its importance.

An old paper that is cited recently increases its importance.
If we do not require the matrix to be row stochastic, we can scale the citation matrix P_p with an **exponential decay** function.

The importance of a paper decays over the time

A paper not cited recently loses its importance

An old paper that is cited recently increases its importance
If we do not require the matrix to be row stochastic, we can scale the citation matrix P_P with an exponential decay function.

The importance of a paper decays over the time.

A paper not cited recently loses its importance.

An old paper that is cited recently increases its importance.
Second model

A proposal for mostly recent cited papers

If we do not require the matrix to be row stochastic, we can scale the citation matrix P_P with an exponential decay function.

The importance of a paper decays over the time

A paper not cited recently loses its importance

An old paper that is cited recently increases its importance
Experimental results

- We apply our ideas to a set of more than 300,000 papers, 120,000 authors and 3500 math. journals.
- The references have been crawled from the AMS MathSciNet database, starting from the 2007 indexed papers.
- The database is incomplete. Only papers published after 1998 on specific journals have an expandable list of reference.
Experimental results

- We apply our ideas to a set of more than 300,000 papers, 120,000 authors and 3500 math. journals.
- The references have been crawled from the AMS MathSciNet database, starting from the 2007 indexed papers.
- The database is incomplete. Only papers published after 1998 on specific journals have an expandable list of reference.
Experimental results

- We apply our ideas to a set of more than 300,000 papers, 120,000 authors and 3500 math. journals.
- The references have been crawled from the AMS MathSciNet database, starting from the 2007 indexed papers.
- The database is incomplete. Only papers published after 1998 on specific journals have an expandable list of reference.
The matrix

![Matrix Diagram]

$nz = 4640192$
Top Journals

<table>
<thead>
<tr>
<th>Journal</th>
<th>num. cit</th>
<th>num. pap.</th>
<th>IF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trans. AMS</td>
<td>22796</td>
<td>5247</td>
<td>0.820</td>
</tr>
<tr>
<td>Inventiones Mathematicae</td>
<td>21181</td>
<td>2481</td>
<td>1.659</td>
</tr>
<tr>
<td>Annals of Mathematics</td>
<td>19365</td>
<td>2193</td>
<td>2.426</td>
</tr>
<tr>
<td>Proc. AMS</td>
<td>16722</td>
<td>6045</td>
<td>0.513</td>
</tr>
<tr>
<td>J. Algebra</td>
<td>15059</td>
<td>4457</td>
<td>0.568</td>
</tr>
<tr>
<td>Duke Math. J.</td>
<td>11939</td>
<td>2161</td>
<td>1.409</td>
</tr>
<tr>
<td>Mathematische Annalen</td>
<td>11248</td>
<td>2670</td>
<td>0.902</td>
</tr>
<tr>
<td>J. Functional Analysis</td>
<td>13778</td>
<td>2437</td>
<td>0.866</td>
</tr>
<tr>
<td>Comm. on Pure Appl. Math.</td>
<td>12111</td>
<td>1227</td>
<td>2.031</td>
</tr>
</tbody>
</table>

D.A. Bini, G. M. Del Corso, F. Romani

Ranking algorithms for scientific publications
These results are not in accordance with the IF

The rank is not the same of counting the citations received or the number of papers published
These results are not in accordance with the IF

The rank is not the same of counting the citations received or the number of papers published
Top authors - time aware method

<table>
<thead>
<tr>
<th>Author</th>
<th>num. cit</th>
<th>num. pap.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lions, Pierre-Louis (FM)</td>
<td>2641</td>
<td>199</td>
</tr>
<tr>
<td>Erdös, Paul</td>
<td>1358</td>
<td>377</td>
</tr>
<tr>
<td>Bourgain, Jean (FM)</td>
<td>1019</td>
<td>156</td>
</tr>
<tr>
<td>Simon, Barry</td>
<td>1502</td>
<td>198</td>
</tr>
<tr>
<td>Shelah, Saharonh</td>
<td>972</td>
<td>333</td>
</tr>
<tr>
<td>Brezis, Haïm</td>
<td>1698</td>
<td>127</td>
</tr>
<tr>
<td>Lustzig, George</td>
<td>1145</td>
<td>87</td>
</tr>
<tr>
<td>Caffarelli, Luis</td>
<td>1288</td>
<td>131</td>
</tr>
<tr>
<td>Yau, Shing Tung (FM)</td>
<td>1571</td>
<td>136</td>
</tr>
<tr>
<td>Connes, Alain (FM)</td>
<td>1114</td>
<td>79</td>
</tr>
<tr>
<td>Arnold, Vladimir</td>
<td>551</td>
<td>90</td>
</tr>
</tbody>
</table>
Top papers

<table>
<thead>
<tr>
<th>paper</th>
<th>pos.</th>
<th>cit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crandall, Ishii, Lions, P. L. Bull. AMS (1992)</td>
<td>2</td>
<td>221</td>
</tr>
<tr>
<td>Saad, Schultz, SISC (1986)</td>
<td>3</td>
<td>197</td>
</tr>
<tr>
<td>Ambrosetti, Rabinowitz, J. Func. Anal. (1973)</td>
<td>5</td>
<td>170</td>
</tr>
<tr>
<td>Hironaka, Ann. of Math. (1964)</td>
<td>19</td>
<td>127</td>
</tr>
</tbody>
</table>
Top papers - time aware method

<table>
<thead>
<tr>
<th>paper</th>
<th>pos.</th>
<th>cit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crandall, Ishii, Lions, P. L. Bull. AMS (1992)</td>
<td>2</td>
<td>221</td>
</tr>
<tr>
<td>Ambrosetti, Rabinowitz, J. Func. Anal. (1973)</td>
<td>5</td>
<td>170</td>
</tr>
<tr>
<td>Aronszajn, Trans. AMS (1950)</td>
<td>82</td>
<td>89</td>
</tr>
<tr>
<td>Culler, Gordon, Luecke, Shalen Ann. of Math. (1987)</td>
<td>43</td>
<td>105</td>
</tr>
</tbody>
</table>

Top papers - time aware method

<table>
<thead>
<tr>
<th>paper</th>
<th>pos.</th>
<th>cit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kirkpatrick, Gelatt, Vecchi - Simulated Annealing</td>
<td>2</td>
<td>1337</td>
</tr>
<tr>
<td>R. Bryant - BDD</td>
<td>1</td>
<td>1636</td>
</tr>
<tr>
<td>Rivest, Shamir, Adleman - Public Key criptography</td>
<td>3</td>
<td>1218</td>
</tr>
<tr>
<td>Geusebroek, Smeulders, van de Weijer (gauss filtering)</td>
<td>10</td>
<td>834</td>
</tr>
<tr>
<td>Sally Floyd, Van Jacobson (TCP/IP)</td>
<td>4</td>
<td>1125</td>
</tr>
<tr>
<td>Diffie, Hellman - Cryptography</td>
<td>31</td>
<td>553</td>
</tr>
<tr>
<td>Ousterhout - Tcl and the Tk Toolkit</td>
<td>8</td>
<td>913</td>
</tr>
<tr>
<td>Harel - Complex Systems</td>
<td>6</td>
<td>1042</td>
</tr>
<tr>
<td>Elman - Neural Networks</td>
<td>26</td>
<td>589</td>
</tr>
<tr>
<td>Jones - VDM</td>
<td>23</td>
<td>609</td>
</tr>
</tbody>
</table>
Conclusions

- We introduced a flexible model
- The nice matrix structure is a potential source of algorithmic and theoretical problems
Conclusions

- We introduced a flexible model
- The nice matrix structure is a potential source of algorithmic and theoretical problems
Thank you!