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Introduction

The model
Latent Factor Model
Nonnegative Matrix Factorization
The algorithm

Experimental results
Evaluation Metrics
Convergence
Accuracy of predictions
Comparison with other methods

Conclusion and further work



Introduction

I Retailers propose to consumers many products and choices
I Help users to find items meeting testes and needs
I Recommender systems: algorithms for recommending

items of interest for users

I Content-based
I Collaborative filtering

I Neighborhood methods: Suggest to a user items similar to
those she liked in the past

I Latent factor models: Explain the ratings by characterizing
both items and users on a few factors inferred from the
ratings patterns
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Latent factor models
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vector qi  R f, and each user u is associ-
ated with a vector pu  R f. For a given item 
i, the elements of qi measure the extent to 
which the item possesses those factors, 
positive or negative. For a given user u, 
the elements of pu measure the extent of 
interest the user has in items that are high 
on the corresponding factors, again, posi-
tive or negative. The resulting dot product,  
qi

T pu, captures the interaction between user 
u and item i—the user’s overall interest in 
the item’s characteristics. This approximates 
user u’s rating of item i, which is denoted by 
rui, leading to the estimate 

 
r̂ui  

= qi
T pu. (1) 

The major challenge is computing the map-
ping of each item and user to factor vectors 
qi, pu  R f. After the recommender system 
completes this mapping, it can easily esti-
mate the rating a user will give to any item 
by using Equation 1. 

Such a model is closely related to singular value decom-
position (SVD), a well-established technique for identifying 
latent semantic factors in information retrieval. Applying 
SVD in the collaborative filtering domain requires factoring 
the user-item rating matrix. This often raises difficulties 
due to the high portion of missing values caused by sparse-
ness in the user-item ratings matrix. Conventional SVD is 
undefined when knowledge about the matrix is incom-
plete. Moreover, carelessly addressing only the relatively 
few known entries is highly prone to overfitting. 

Earlier systems relied on imputation to fill in missing 
ratings and make the rating matrix dense.2 However, im-
putation can be very expensive as it significantly increases 
the amount of data. In addition, inaccurate imputation 
might distort the data considerably. Hence, more recent 
works3-6 suggested modeling directly the observed rat-
ings only, while avoiding overfitting through a regularized 
model. To learn the factor vectors (pu and qi), the system 
minimizes the regularized squared error on the set of 
known ratings: 

min
* *,q p ( , )u i

(rui  qi
Tpu)

2 + (|| qi ||
2 + || pu ||

2)  (2) 

Here,  is the set of the (u,i) pairs for which rui is known 
(the training set). 

The system learns the model by fitting the previously 
observed ratings. However, the goal is to generalize those 
previous ratings in a way that predicts future, unknown 
ratings. Thus, the system should avoid overfitting the 
observed data by regularizing the learned parameters, 
whose magnitudes are penalized. The constant  controls 

recommendation. These methods have become popular in 
recent years by combining good scalability with predictive 
accuracy. In addition, they offer much flexibility for model-
ing various real-life situations. 

Recommender systems rely on different types of 
input data, which are often placed in a matrix with one 
dimension representing users and the other dimension 
representing items of interest. The most convenient data 
is high-quality explicit feedback, which includes explicit 
input by users regarding their interest in products. For 
example, Netflix collects star ratings for movies, and TiVo 
users indicate their preferences for TV shows by pressing 
thumbs-up and thumbs-down buttons. We refer to explicit 
user feedback as ratings. Usually, explicit feedback com-
prises a sparse matrix, since any single user is likely to 
have rated only a small percentage of possible items. 

One strength of matrix factorization is that it allows 
incorporation of additional information. When explicit 
feedback is not available, recommender systems can infer 
user preferences using implicit feedback, which indirectly 
reflects opinion by observing user behavior including pur-
chase history, browsing history, search patterns, or even 
mouse movements. Implicit feedback usually denotes the 
presence or absence of an event, so it is typically repre-
sented by a densely filled matrix. 

A BASIC MATRIX FACTORIZATION MODEL 
Matrix factorization models map both users and items 

to a joint latent factor space of dimensionality f, such that 
user-item interactions are modeled as inner products in 
that space. Accordingly, each item i is associated with a 
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Figure 2. A simplified illustration of the latent factor approach, which 
characterizes both users and movies using two axes—male versus female 
and serious versus escapist. 



The model

A dataset of recommendation can be viewed as a weighted
bipartite graph:

G = (U ∪ I,Ω),

I U set of users, I set of items, Ω ⊆ U × I.
I V = {1, 2, . . . , v} set of possible votes
I V0 = V ∪ ?



The model
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Associate the Utility matrix

A =


1 ? ? ?
2 3 ? ?
? 4 1 5
? ? 1 3
5 ? ? 4


The goal of a recommender system is to predict some of the ? to
make personalized recommendations



The latent factor models

I We assume the expressed ratings as characterized by a low
number of latent factors.

I For example in movies: genres, actors, directors
I Low-rank approximation of the utility matrix
I The model is trained using the available ratings and used

to predict new ratings.



Nonnegative Matrix Factorization approach

I Define the projector PΩ as

PΩ(M) =

{
mij if (i, j) ∈ Ω
0 otherwise

I Given k� min(n,m), find W and H such that

min
W,H
‖PΩ(A−WHT)‖2

F, W ∈ Rn×k
+ ,H ∈ Rm×k

+ ,WHT ≤ v.

I User u is represented by row vector wu, while hi represents
item i.

I k represents the number of “latent factors” of our data.



Nonnegative Matrix Factorization approach

min
W,H

1
2
‖A−WHT‖2

F, W ∈ Rn×k
+ ,H ∈ Rm×k

+

I This problem is non convex→many local minima
I The problem is convex in either one of the two matrices.

min
W∈Rn×k

+

1
2
‖A−WHT‖2

F, min
H∈Rm×k

+

1
2
‖A−WHT‖2

F



Nonnegative Matrix Factorization approach

Hi+1 = argminX≥0‖A−WiX‖2
F

Wi+1 = argminY≥0‖A− YHT
i+1‖2

F,

I The Alternating Nonnegative Least Square is a very
successful class of algorithms.

I Every limit point generated from the ANLS framework is a
stationary point for the non-convex original problem.

I Many methods to solve the least square problems in
ANLS: Active set, projected gradient, projected
quasi-Newton, greedy coordinate descent.



Recommender system with NMF

I In our case A is not completely known (only a few ratings)
I This problem is not convex too!
I We can proceed similarly to the NMF
I Many attempts in this direction: regularization techniques

to avoid overfitting, addition of a prior factor to avoid
overgrow of W and H, etc



Our Approach

I Adaptively we update the Utility matrix on the ? with the
current values of WiHT

i
I Regularization is performed with a cut to v of the entries of

WiHT
i

I Stopping criteria to avoid stagnation.

Unfortunately no theoretical results on the convergence!
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The algorithm

C0 = PΩ(A), W0 = rand(m, k), H0 = 0
flag=TRUE, mFE = 0, j = 0
while(j < jmax & flag)

j + +;
mFEold ← mFE
Hj = argminX≥0‖Cj−1 −Wj−1XT‖2

F
Wj = argminY≥0‖Cj−1 − YHT

j ‖2
F

R← cutv([WjHT
j ])

Cj ← PΩ(A) + PΩ̄(R)
MIE = maxΩ |A− R| Maximum Integer error

mFE =
‖PΩ(A−WjHT

j )‖F

|Ω| Mean Frobenius error

flag = (MIE 6= 0 &
|mFEold −mFE|

|mFE|
> tol)

endwhile
Output: R
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Experimental results

Experiments to address
I Convergence of the iterative schema
I Accuracy of predictions

Data:
I MovieLens 100K, 1M, 10M ratings on a scale 1-5.
I Synthetic matrix generated as product of two random

matrices of rank k.



Evaluation metrics

Let Θ ⊆ Ω, we define

I MAEΘ =
∑

(u,i)∈Θ |aui−rui|
|Θ| Mean Absolute Error



Evaluation metrics

I CMAE = MAE∆ =
∑

(u,i)∈∆ |aui−rui|
|∆| , Constrained MAE

∆ = {(u, i) ∈ Ω| rui ≥ 4 or aui ≥ 4}

I 0-1Θ =
∑

(u,i)∈Θ mm(aui,rui)

|Θ| , 0-1 Loss

mm(aui, rui) =

{
1 if (aui ≥ 4 & rui < 4)|(aui < 4 & rui ≥ 4)
0 otherwise.

A low value of 0-1 Loss indicates that the algorithm returns
almost always correct recommendations
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Evaluation metrics

SΘ = {(u, i) ∈ Θ|aui ≥ 4} ,RΘ = {(u, i) ∈ Θ|rui ≥ 4}
I Precision: the fraction of items correctly recommended

over the number of recommended items

PrecisionΘ = 100
|SΘ| ∩ |RΘ|
|RΘ|

,

I Recall: the fraction of items correctly recommended over
the number of items that should be recommended

RecallΘ = 100
|SΘ| ∩ |RΘ|
|SΘ|

.



Convergence

I Is our iterative scheme correct?
I Is the latent factor model adequate?

I For a sufficiently large value of k, mFE, MIE, MAEΩ, 0-1Ω

converge to zero?
I This corresponds to the correct reconstruction of all the

observed ratings of the utility matrix.
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Convergence
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For large values of k we have convergence to zero while for
moderately small values of k the two metrics stagnate



Convergence
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Trend of Precision (dashed lines) and Recall (solid) for different
values of k. Since the cardinality of SΩ does not change during
the iterations, the value of Precision increases in a more regular
way. This is due to the increase of the set of recommendations
RΩ.



Convergence

Synthetic data: We construct a 1 000× 5 000 matrix As with
rank(As) = 20, and |Ω| = 500K (90% of the entries are ?).
Is our algorithm able to capture the structure of the rank-20
matrix?

Matrix k iter MAEΩ 0-1Ω RecallΩ PrecisionΩ

15 84,430 0.265 0.113 88.26 88.68
Synthetic 20 65,590 0.214 0.028 96.62 97.60

25 51,480 0.199 0.022 97.41 98.09

The problem is underdetermined we expect that the larger the k
the better the fit of the values in Ω. Even if As can be totally
reconstructed using rank 20 matrix our algorithm misses to
find the global minimum
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Convergence

Matrix k mFE MAEΩ 0-1Ω RecallΩ PrecisionΩ

6 0.594 0.602 0.220 79.79 80.78
10 0.500 0.551 0.1925 82.26 83.18

MovieLens 100K 50 0.133 0.269 0.055 94.93 95.10
100 0.023 0.103 0.002 99.78 99.83
150 0.004 0.040 0 100 100

15 0.540 0.575 0.203 81.80 83.27
25 0.470 0.536 0.181 83.81 84.86

MovieLens 1M 100 0.226 0.357 0.093 91.89 91.93
200 0.109 0.234 0.041 96.46 96.33
300 0.059 0.163 0.018 98.56 98.37

By increasing the value of k we get a better approximation and
all the error measures decrease. The values 0 in 0-1 Loss and
the 100% of Precision and Recall mean that we never have a
mismatch in the reconstruction of positive ratings.



Accuracy of predictions

Split the data among two disjoint sets
I Ω80 Training Set: 80% of ratings uniformly sampled
I Θ20 Test Set: Θ20 = Ω− Ω80.

I The algorithm learns from Ω80 but the performance is
evaluated on Θ20.

I A large value of k is not a good option since the model
tend to overfit the data

I The time is linear in k. Small k implies lower time
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Accuracy of predictions

Matrix k MAEΩ80 0-1Θ20 RecallΘ20 PrecisionΘ20

6 0.6253 0.2550 77.04 79.27
MovieLens 1M 10 0.5940 0.2555 77.21 78.82

15 0.5642 0.2605 77.05 77.89
6 0.6093 0.2630 74.56 72.69

MovieLens 10M 10 0.5937 0.2612 74.95 72.48
15 0.5864 0.2633 75.20 71.70

Predictions of recommendations:
I Low values of 0-1 Loss
I High Precision and Recall



Comparison with other NMF methods

MovieLens 1M MovieLens 10M
Method MAEΘ20 CMAEΘ20 0-1Θ20 MAEΘ20 CMAE 0-1Θ20

KNN Pearson 0.823 0.721 0.423 0.842 0.743 0.434
NMF 1.243 1.106 0.463 1.356 1.234 0.487
rNMF 0.684 0.574 0.384 0.698 0.586 0.396
pNMF 0.664 0.526 0.270 0.676 0.542 0.284
cutNMF 0.675 0.659 0.255 0.639 0.654 0.263

We see that our method performs well for the 0-1 Loss and
MAE measures. In this table are reported the values obtained
with k = 6 (the best value for pNMF).



Comparison with other methods
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Conclusion and further work

I We proposed an Adaptive approach for Personalized
recommendations

I Assumes the latent factor model
I Dataset-dependent
I Shown convergence and effectiveness in recommending

items



What’s next

I Since the goal is to recommend only a few top items to a
user, use other error measure such as NDCG, AUR, etc.

I We are interested in recommending only a few items to
each user, it is not really important to retrieve all the
missing ratings.

I Understand better the role of k.
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