
A Nonnegative Matrix factorization
Approach for recommender systems

Gianna M. Del Corso Francesco Romani

Dipartimento di Informatica, Università di Pisa, Italy

Introduction

The model
Latent Factor Model
Nonnegative Matrix Factorization
The algorithm

Experimental results
Evaluation Metrics
Convergence
Accuracy of predictions
Comparison with other methods

Conclusion and further work

Introduction

I Retailers propose to consumers many products and choices
I Help users to find items meeting testes and needs
I Recommender systems: algorithms for recommending

items of interest for users

I Content-based
I Collaborative filtering

I Neighborhood methods: Suggest to a user items similar to
those she liked in the past

I Latent factor models: Explain the ratings by characterizing
both items and users on a few factors inferred from the
ratings patterns

Introduction

I Retailers propose to consumers many products and choices
I Help users to find items meeting testes and needs
I Recommender systems: algorithms for recommending

items of interest for users

I Content-based
I Collaborative filtering

I Neighborhood methods: Suggest to a user items similar to
those she liked in the past

I Latent factor models: Explain the ratings by characterizing
both items and users on a few factors inferred from the
ratings patterns

Introduction

I Retailers propose to consumers many products and choices
I Help users to find items meeting testes and needs
I Recommender systems: algorithms for recommending

items of interest for users

I Content-based
I Collaborative filtering

I Neighborhood methods: Suggest to a user items similar to
those she liked in the past

I Latent factor models: Explain the ratings by characterizing
both items and users on a few factors inferred from the
ratings patterns

Introduction

I Retailers propose to consumers many products and choices
I Help users to find items meeting testes and needs
I Recommender systems: algorithms for recommending

items of interest for users

I Content-based
I Collaborative filtering

I Neighborhood methods: Suggest to a user items similar to
those she liked in the past

I Latent factor models: Explain the ratings by characterizing
both items and users on a few factors inferred from the
ratings patterns

Latent factor models
COVER FE ATURE

COMPUTER 44

vector qi R f, and each user u is associ-
ated with a vector pu R f. For a given item
i, the elements of qi measure the extent to
which the item possesses those factors,
positive or negative. For a given user u,
the elements of pu measure the extent of
interest the user has in items that are high
on the corresponding factors, again, posi-
tive or negative. The resulting dot product,
qi

T pu, captures the interaction between user
u and item i—the user’s overall interest in
the item’s characteristics. This approximates
user u’s rating of item i, which is denoted by
rui, leading to the estimate

r̂ui

= qi
T pu. (1)

The major challenge is computing the map-
ping of each item and user to factor vectors
qi, pu R f. After the recommender system
completes this mapping, it can easily esti-
mate the rating a user will give to any item
by using Equation 1.

Such a model is closely related to singular value decom-
position (SVD), a well-established technique for identifying
latent semantic factors in information retrieval. Applying
SVD in the collaborative filtering domain requires factoring
the user-item rating matrix. This often raises difficulties
due to the high portion of missing values caused by sparse-
ness in the user-item ratings matrix. Conventional SVD is
undefined when knowledge about the matrix is incom-
plete. Moreover, carelessly addressing only the relatively
few known entries is highly prone to overfitting.

Earlier systems relied on imputation to fill in missing
ratings and make the rating matrix dense.2 However, im-
putation can be very expensive as it significantly increases
the amount of data. In addition, inaccurate imputation
might distort the data considerably. Hence, more recent
works3-6 suggested modeling directly the observed rat-
ings only, while avoiding overfitting through a regularized
model. To learn the factor vectors (pu and qi), the system
minimizes the regularized squared error on the set of
known ratings:

min
* *,q p (,)u i

(rui qi
Tpu)

2 + (|| qi ||
2 + || pu ||

2) (2)

Here, is the set of the (u,i) pairs for which rui is known
(the training set).

The system learns the model by fitting the previously
observed ratings. However, the goal is to generalize those
previous ratings in a way that predicts future, unknown
ratings. Thus, the system should avoid overfitting the
observed data by regularizing the learned parameters,
whose magnitudes are penalized. The constant controls

recommendation. These methods have become popular in
recent years by combining good scalability with predictive
accuracy. In addition, they offer much flexibility for model-
ing various real-life situations.

Recommender systems rely on different types of
input data, which are often placed in a matrix with one
dimension representing users and the other dimension
representing items of interest. The most convenient data
is high-quality explicit feedback, which includes explicit
input by users regarding their interest in products. For
example, Netflix collects star ratings for movies, and TiVo
users indicate their preferences for TV shows by pressing
thumbs-up and thumbs-down buttons. We refer to explicit
user feedback as ratings. Usually, explicit feedback com-
prises a sparse matrix, since any single user is likely to
have rated only a small percentage of possible items.

One strength of matrix factorization is that it allows
incorporation of additional information. When explicit
feedback is not available, recommender systems can infer
user preferences using implicit feedback, which indirectly
reflects opinion by observing user behavior including pur-
chase history, browsing history, search patterns, or even
mouse movements. Implicit feedback usually denotes the
presence or absence of an event, so it is typically repre-
sented by a densely filled matrix.

A BASIC MATRIX FACTORIZATION MODEL
Matrix factorization models map both users and items

to a joint latent factor space of dimensionality f, such that
user-item interactions are modeled as inner products in
that space. Accordingly, each item i is associated with a

Geared
toward
males

Serious

Escapist

The Princess
Diaries

Braveheart

Lethal Weapon

Independence
Day

Ocean’s 11
Sense and
Sensibility

Gus

Dave

Geared
toward

females

Amadeus

The Lion King Dumb and
Dumber

The Color Purple

Figure 2. A simplified illustration of the latent factor approach, which
characterizes both users and movies using two axes—male versus female
and serious versus escapist.

The model

A dataset of recommendation can be viewed as a weighted
bipartite graph:

G = (U ∪ I,Ω),

I U set of users, I set of items, Ω ⊆ U × I.
I V = {1, 2, . . . , v} set of possible votes
I V0 = V ∪ ?

The model

u1

u2

u3

u4

u5

i1

i2

i3

i4

U

I

1

2

3

4

1

5

5

4

1

3

Associate the Utility matrix

A =


1 ? ? ?
2 3 ? ?
? 4 1 5
? ? 1 3
5 ? ? 4


The goal of a recommender system is to predict some of the ? to
make personalized recommendations

The latent factor models

I We assume the expressed ratings as characterized by a low
number of latent factors.

I For example in movies: genres, actors, directors
I Low-rank approximation of the utility matrix
I The model is trained using the available ratings and used

to predict new ratings.

Nonnegative Matrix Factorization approach

I Define the projector PΩ as

PΩ(M) =

{
mij if (i, j) ∈ Ω
0 otherwise

I Given k� min(n,m), find W and H such that

min
W,H
‖PΩ(A−WHT)‖2

F, W ∈ Rn×k
+ ,H ∈ Rm×k

+ ,WHT ≤ v.

I User u is represented by row vector wu, while hi represents
item i.

I k represents the number of “latent factors” of our data.

Nonnegative Matrix Factorization approach

min
W,H

1
2
‖A−WHT‖2

F, W ∈ Rn×k
+ ,H ∈ Rm×k

+

I This problem is non convex→many local minima
I The problem is convex in either one of the two matrices.

min
W∈Rn×k

+

1
2
‖A−WHT‖2

F, min
H∈Rm×k

+

1
2
‖A−WHT‖2

F

Nonnegative Matrix Factorization approach

Hi+1 = argminX≥0‖A−WiX‖2
F

Wi+1 = argminY≥0‖A− YHT
i+1‖2

F,

I The Alternating Nonnegative Least Square is a very
successful class of algorithms.

I Every limit point generated from the ANLS framework is a
stationary point for the non-convex original problem.

I Many methods to solve the least square problems in
ANLS: Active set, projected gradient, projected
quasi-Newton, greedy coordinate descent.

Recommender system with NMF

I In our case A is not completely known (only a few ratings)
I This problem is not convex too!
I We can proceed similarly to the NMF
I Many attempts in this direction: regularization techniques

to avoid overfitting, addition of a prior factor to avoid
overgrow of W and H, etc

Our Approach

I Adaptively we update the Utility matrix on the ? with the
current values of WiHT

i
I Regularization is performed with a cut to v of the entries of

WiHT
i

I Stopping criteria to avoid stagnation.

Unfortunately no theoretical results on the convergence!

Our Approach

I Adaptively we update the Utility matrix on the ? with the
current values of WiHT

i
I Regularization is performed with a cut to v of the entries of

WiHT
i

I Stopping criteria to avoid stagnation.

Unfortunately no theoretical results on the convergence!

Our Approach

I Adaptively we update the Utility matrix on the ? with the
current values of WiHT

i
I Regularization is performed with a cut to v of the entries of

WiHT
i

I Stopping criteria to avoid stagnation.

Unfortunately no theoretical results on the convergence!

The algorithm

C0 = PΩ(A), W0 = rand(m, k), H0 = 0
flag=TRUE, mFE = 0, j = 0
while(j < jmax & flag)

j + +;
mFEold ← mFE
Hj = argminX≥0‖Cj−1 −Wj−1XT‖2

F
Wj = argminY≥0‖Cj−1 − YHT

j ‖2
F

R← cutv([WjHT
j])

Cj ← PΩ(A) + PΩ̄(R)
MIE = maxΩ |A− R| Maximum Integer error

mFE =
‖PΩ(A−WjHT

j)‖F

|Ω| Mean Frobenius error

flag = (MIE 6= 0 &
|mFEold −mFE|

|mFE|
> tol)

endwhile
Output: R

The algorithm

C0 = PΩ(A), W0 = rand(m, k), H0 = 0
flag=TRUE, mFE = 0, j = 0
while(j < jmax & flag)

j + +;
mFEold ← mFE
Hj = argminX≥0‖Cj−1 −Wj−1XT‖2

F
Wj = argminY≥0‖Cj−1 − YHT

j ‖2
F

R← cutv([WjHT
j])

Cj ← PΩ(A) + PΩ̄(R)
MIE = maxΩ |A− R| Maximum Integer error

mFE =
‖PΩ(A−WjHT

j)‖F

|Ω| Mean Frobenius error

flag = (MIE 6= 0 &
|mFEold −mFE|

|mFE|
> tol)

endwhile
Output: R

The algorithm

C0 = PΩ(A), W0 = rand(m, k), H0 = 0
flag=TRUE, mFE = 0, j = 0
while(j < jmax & flag)

j + +;
mFEold ← mFE
Hj = argminX≥0‖Cj−1 −Wj−1XT‖2

F
Wj = argminY≥0‖Cj−1 − YHT

j ‖2
F

R← cutv([WjHT
j])

Cj ← PΩ(A) + PΩ̄(R)
MIE = maxΩ |A− R| Maximum Integer error

mFE =
‖PΩ(A−WjHT

j)‖F

|Ω| Mean Frobenius error

flag = (MIE 6= 0 &
|mFEold −mFE|

|mFE|
> tol)

endwhile
Output: R

The algorithm

C0 = PΩ(A), W0 = rand(m, k), H0 = 0
flag=TRUE, mFE = 0, j = 0
while(j < jmax & flag)

j + +;
mFEold ← mFE
Hj = argminX≥0‖Cj−1 −Wj−1XT‖2

F
Wj = argminY≥0‖Cj−1 − YHT

j ‖2
F

R← cutv([WjHT
j])

Cj ← PΩ(A) + PΩ̄(R)
MIE = maxΩ |A− R| Maximum Integer error

mFE =
‖PΩ(A−WjHT

j)‖F

|Ω| Mean Frobenius error

flag = (MIE 6= 0 &
|mFEold −mFE|

|mFE|
> tol)

endwhile
Output: R

The algorithm

C0 = PΩ(A), W0 = rand(m, k), H0 = 0
flag=TRUE, mFE = 0, j = 0
while(j < jmax & flag)

j + +;
mFEold ← mFE
Hj = argminX≥0‖Cj−1 −Wj−1XT‖2

F
Wj = argminY≥0‖Cj−1 − YHT

j ‖2
F

R← cutv([WjHT
j])

Cj ← PΩ(A) + PΩ̄(R)
MIE = maxΩ |A− R| Maximum Integer error

mFE =
‖PΩ(A−WjHT

j)‖F

|Ω| Mean Frobenius error

flag = (MIE 6= 0 &
|mFEold −mFE|

|mFE|
> tol)

endwhile
Output: R

Experimental results

Experiments to address
I Convergence of the iterative schema
I Accuracy of predictions

Data:
I MovieLens 100K, 1M, 10M ratings on a scale 1-5.
I Synthetic matrix generated as product of two random

matrices of rank k.

Evaluation metrics

Let Θ ⊆ Ω, we define

I MAEΘ =
∑

(u,i)∈Θ |aui−rui|
|Θ| Mean Absolute Error

Evaluation metrics

I CMAE = MAE∆ =
∑

(u,i)∈∆ |aui−rui|
|∆| , Constrained MAE

∆ = {(u, i) ∈ Ω| rui ≥ 4 or aui ≥ 4}

I 0-1Θ =
∑

(u,i)∈Θ mm(aui,rui)

|Θ| , 0-1 Loss

mm(aui, rui) =

{
1 if (aui ≥ 4 & rui < 4)|(aui < 4 & rui ≥ 4)
0 otherwise.

A low value of 0-1 Loss indicates that the algorithm returns
almost always correct recommendations

Evaluation metrics

I CMAE = MAE∆ =
∑

(u,i)∈∆ |aui−rui|
|∆| , Constrained MAE

∆ = {(u, i) ∈ Ω| rui ≥ 4 or aui ≥ 4}

I 0-1Θ =
∑

(u,i)∈Θ mm(aui,rui)

|Θ| , 0-1 Loss

mm(aui, rui) =

{
1 if (aui ≥ 4 & rui < 4)|(aui < 4 & rui ≥ 4)
0 otherwise.

A low value of 0-1 Loss indicates that the algorithm returns
almost always correct recommendations

Evaluation metrics

SΘ = {(u, i) ∈ Θ|aui ≥ 4} ,RΘ = {(u, i) ∈ Θ|rui ≥ 4}
I Precision: the fraction of items correctly recommended

over the number of recommended items

PrecisionΘ = 100
|SΘ| ∩ |RΘ|
|RΘ|

,

I Recall: the fraction of items correctly recommended over
the number of items that should be recommended

RecallΘ = 100
|SΘ| ∩ |RΘ|
|SΘ|

.

Convergence

I Is our iterative scheme correct?
I Is the latent factor model adequate?

I For a sufficiently large value of k, mFE, MIE, MAEΩ, 0-1Ω

converge to zero?
I This corresponds to the correct reconstruction of all the

observed ratings of the utility matrix.

Convergence

I Is our iterative scheme correct?
I Is the latent factor model adequate?

I For a sufficiently large value of k, mFE, MIE, MAEΩ, 0-1Ω

converge to zero?
I This corresponds to the correct reconstruction of all the

observed ratings of the utility matrix.

Convergence

k=10

k=50
k=150

10 100 1000
10

4
it

0.5

1.0

1.5

2.0

mFE

MovieLens 100K

k=10

k=50

k=150

10 100 1000
104

it

0.2

0.4

0.6

0.8

1.0

1.2

CMAE

MovieLens 100K

For large values of k we have convergence to zero while for
moderately small values of k the two metrics stagnate

Convergence

k=25

k=200

k=300

10 50 100 500 1000 5000
10

4
it

70

80

90

100

MovieLens 1M

Trend of Precision (dashed lines) and Recall (solid) for different
values of k. Since the cardinality of SΩ does not change during
the iterations, the value of Precision increases in a more regular
way. This is due to the increase of the set of recommendations
RΩ.

Convergence

Synthetic data: We construct a 1 000× 5 000 matrix As with
rank(As) = 20, and |Ω| = 500K (90% of the entries are ?).
Is our algorithm able to capture the structure of the rank-20
matrix?

Matrix k iter MAEΩ 0-1Ω RecallΩ PrecisionΩ

15 84,430 0.265 0.113 88.26 88.68
Synthetic 20 65,590 0.214 0.028 96.62 97.60

25 51,480 0.199 0.022 97.41 98.09

The problem is underdetermined we expect that the larger the k
the better the fit of the values in Ω. Even if As can be totally
reconstructed using rank 20 matrix our algorithm misses to
find the global minimum

Convergence

Synthetic data: We construct a 1 000× 5 000 matrix As with
rank(As) = 20, and |Ω| = 500K (90% of the entries are ?).
Is our algorithm able to capture the structure of the rank-20
matrix?

Matrix k iter MAEΩ 0-1Ω RecallΩ PrecisionΩ

15 84,430 0.265 0.113 88.26 88.68
Synthetic 20 65,590 0.214 0.028 96.62 97.60

25 51,480 0.199 0.022 97.41 98.09

The problem is underdetermined we expect that the larger the k
the better the fit of the values in Ω. Even if As can be totally
reconstructed using rank 20 matrix our algorithm misses to
find the global minimum

Convergence

Matrix k mFE MAEΩ 0-1Ω RecallΩ PrecisionΩ

6 0.594 0.602 0.220 79.79 80.78
10 0.500 0.551 0.1925 82.26 83.18

MovieLens 100K 50 0.133 0.269 0.055 94.93 95.10
100 0.023 0.103 0.002 99.78 99.83
150 0.004 0.040 0 100 100

15 0.540 0.575 0.203 81.80 83.27
25 0.470 0.536 0.181 83.81 84.86

MovieLens 1M 100 0.226 0.357 0.093 91.89 91.93
200 0.109 0.234 0.041 96.46 96.33
300 0.059 0.163 0.018 98.56 98.37

By increasing the value of k we get a better approximation and
all the error measures decrease. The values 0 in 0-1 Loss and
the 100% of Precision and Recall mean that we never have a
mismatch in the reconstruction of positive ratings.

Accuracy of predictions

Split the data among two disjoint sets
I Ω80 Training Set: 80% of ratings uniformly sampled
I Θ20 Test Set: Θ20 = Ω− Ω80.

I The algorithm learns from Ω80 but the performance is
evaluated on Θ20.

I A large value of k is not a good option since the model
tend to overfit the data

I The time is linear in k. Small k implies lower time

Accuracy of predictions

Split the data among two disjoint sets
I Ω80 Training Set: 80% of ratings uniformly sampled
I Θ20 Test Set: Θ20 = Ω− Ω80.

I The algorithm learns from Ω80 but the performance is
evaluated on Θ20.

I A large value of k is not a good option since the model
tend to overfit the data

I The time is linear in k. Small k implies lower time

Accuracy of predictions

Split the data among two disjoint sets
I Ω80 Training Set: 80% of ratings uniformly sampled
I Θ20 Test Set: Θ20 = Ω− Ω80.

I The algorithm learns from Ω80 but the performance is
evaluated on Θ20.

I A large value of k is not a good option since the model
tend to overfit the data

I The time is linear in k. Small k implies lower time

Accuracy of predictions

Split the data among two disjoint sets
I Ω80 Training Set: 80% of ratings uniformly sampled
I Θ20 Test Set: Θ20 = Ω− Ω80.

I The algorithm learns from Ω80 but the performance is
evaluated on Θ20.

I A large value of k is not a good option since the model
tend to overfit the data

I The time is linear in k. Small k implies lower time

Accuracy of predictions

Matrix k MAEΩ80 0-1Θ20 RecallΘ20 PrecisionΘ20

6 0.6253 0.2550 77.04 79.27
MovieLens 1M 10 0.5940 0.2555 77.21 78.82

15 0.5642 0.2605 77.05 77.89
6 0.6093 0.2630 74.56 72.69

MovieLens 10M 10 0.5937 0.2612 74.95 72.48
15 0.5864 0.2633 75.20 71.70

Predictions of recommendations:
I Low values of 0-1 Loss
I High Precision and Recall

Comparison with other NMF methods

MovieLens 1M MovieLens 10M
Method MAEΘ20 CMAEΘ20 0-1Θ20 MAEΘ20 CMAE 0-1Θ20

KNN Pearson 0.823 0.721 0.423 0.842 0.743 0.434
NMF 1.243 1.106 0.463 1.356 1.234 0.487
rNMF 0.684 0.574 0.384 0.698 0.586 0.396
pNMF 0.664 0.526 0.270 0.676 0.542 0.284
cutNMF 0.675 0.659 0.255 0.639 0.654 0.263

We see that our method performs well for the 0-1 Loss and
MAE measures. In this table are reported the values obtained
with k = 6 (the best value for pNMF).

Comparison with other methods

KNN

NMF

rNMF

pNMF

cutNMF

0.6 0.8 1.0 1.2 1.4
MAE

0.25

0.30

0.35

0.40

0.45

0.50

01Loss

MovieLens 1M, 20%

KNN

NMF

rNMF

pNMF

cutNMF

0.6 0.8 1.0 1.2 1.4
MAE

0.25

0.30

0.35

0.40

0.45

0.50

01Loss

Movielens 10M 20%

Conclusion and further work

I We proposed an Adaptive approach for Personalized
recommendations

I Assumes the latent factor model
I Dataset-dependent
I Shown convergence and effectiveness in recommending

items

What’s next

I Since the goal is to recommend only a few top items to a
user, use other error measure such as NDCG, AUR, etc.

I We are interested in recommending only a few items to
each user, it is not really important to retrieve all the
missing ratings.

I Understand better the role of k.

	Introduction
	The model
	Latent Factor Model
	Nonnegative Matrix Factorization
	The algorithm

	Experimental results
	Evaluation Metrics
	Convergence
	Accuracy of predictions
	Comparison with other NMF methods

	Conclusion and further work

