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Recommender systems: algorithms for recommending
items of interest for users

Content-based
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» Neighborhood methods: Suggest to a user items similar to
those she liked in the past

v

v

» Latent factor models: Explain the ratings by characterizing
both items and users on a few factors inferred from the
ratings patterns



Latent factor models
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Figure 2. A simplified illustration of the latent factor approach, which

Escapist

characterizes both users and movies using two axes—male versus female
and serious versus escapist.




The model

A dataset of recommendation can be viewed as a weighted
bipartite graph:

G=(UULQ),
» U set of users, [ set of items, Q2 C U x I.

» V={1,2,...,v} set of possible votes
» Vo=VUu?



The model

Associate the Utility matrix

1777
2377
A=17415
7713
5774

The goal of a recommender system is to predict some of the 7 to
make personalized recommendations



The latent factor models

v

We assume the expressed ratings as characterized by a low
number of latent factors.

v

For example in movies: genres, actors, directors

v

Low-rank approximation of the utility matrix

v

The model is trained using the available ratings and used
to predict new ratings.



Nonnegative Matrix Factorization approach

v

Define the projector 7, as

M if (i,j) SRY
0 otherwise

Po(M) = {

v

Given k < min(n,m), find W and H such that

min || 7o (A — WHD)|2, W e R H e R™* WHT <.

» User u is represented by row vector w,, while h; represents
item i.

v

k represents the number of “latent factors” of our data.



Nonnegative Matrix Factorization approach

1 T2 nxk mxk
II}\}II?EHA_WH Iz, WeRP HeRY
» This problem is non convex — many local minima

» The problem is convex in either one of the two matrices.

1
m1nkf||A WHT ||, min ~[|4 - WHT |2
WeR"X HeR}*



Nonnegative Matrix Factorization approach

Hiy = argminy. o[|A — WiX|7
: T |12
Wit = argminy [|A — YH; 4 ||,

» The Alternating Nonnegative Least Square is a very
successful class of algorithms.

» Every limit point generated from the ANLS framework is a
stationary point for the non-convex original problem.

» Many methods to solve the least square problems in
ANLS: Active set, projected gradient, projected
quasi-Newton, greedy coordinate descent.



Recommender system with NMF

v

In our case A is not completely known (only a few ratings)

v

This problem is not convex too!

v

We can proceed similarly to the NMF

v

Many attempts in this direction: regularization techniques
to avoid overfitting, addition of a prior factor to avoid
overgrow of W and H, etc



Our Approach

» Adaptively we update the Utility matrix on the ? with the
current values of W;H!

» Regularization is performed with a cut to v of the entries of
T
WiH,
» Stopping criteria to avoid stagnation.

Unfortunately no theoretical results on the convergence!
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The algorithm

Co =Pa(A), Wy =rand(m,k),Hy=0
flag=TRUE, mFE =0,j =0
while(j < jmax & flag)

j++

mFEOld + mFE

H; = argminy.|Cjoy — Wj_1 X"}

W; = argminy([Cj—1 — YH]THIZD

R+ cutv([WjHjT])

C]' — Pa(A) + Pg(R)

MIE = maxg |A — R| Maximum Integer error

1Pa(A—W;HT) || )
mFE = T]] Mean Frobenius error

|mFE|

flag = (MIE # 0 &

endwhile
Output: R

> tol)
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Experimental results

Experiments to address
» Convergence of the iterative schema
» Accuracy of predictions
Data:
» MovieLens 100K, 1M, 10M ratings on a scale 1-5.

» Synthetic matrix generated as product of two random
matrices of rank k.



Evaluation metrics

Let © C ), we define

» MAEg = W Mean Absolute Error
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Evaluation metrics

» CMAE = MAE, — % Constrained MAE

A:{(u,i) €Q|rui24oraui24}

Z(u,i)e@ mm(”uizrui)

> 0o = g

, 0-1 Loss

1if (am- >4&r, < 4)‘(&1,41' <4&r, > 4)
0 otherwise.

mm(auiarui) = {

A low value of 0-1 Loss indicates that the algorithm returns
almost always correct recommendations



Evaluation metrics

So = {(Ll,l) € G‘aui > 4-} ,Re = {(M,Z) S @’1’1”' > 4_}

» Precision: the fraction of items correctly recommended
over the number of recommended items

|Se| N |Re

Precisiong = 100 ,
© Rl

> Recall: the fraction of items correctly recommended over
the number of items that should be recommended

|Se| N [Re

Recallg = 100
© |Se]
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Convergence

» Is our iterative scheme correct?

> Is the latent factor model adequate?

» For a sufficiently large value of k, mFE, MIE, MAEq, 0-1¢,
converge to zero?

» This corresponds to the correct reconstruction of all the
observed ratings of the utility matrix.



Convergence

MovieLens 100K MovieLens 100K
mFE CMAE

k=150

10 100 1000 10

For large values of k we have convergence to zero while for
moderately small values of k the two metrics stagnate



Convergence

MovieLens 1M

k=300

Trend of Precision (dashed lines) and Recall (solid) for different
values of k. Since the cardinality of S does not change during
the iterations, the value of Precision increases in a more regular

way. This is due to the increase of the set of recommendations
Ra.



Convergence

Synthetic data: We construct a 1000 x 5000 matrix As; with
rank(As) = 20, and |2| = 500K (90% of the entries are ?).
Is our algorithm able to capture the structure of the rank-20

matrix?
Matrix |k iter  MAEq | 0-1q | Recallg | Precisiong
15(84,430| 0.265|0.113| 88.26 88.68
Synthetic |20 65,590 | 0.214[0.028| 96.62 97.60
25/51,480| 0.199|0.022| 9741 98.09




Convergence

Synthetic data: We construct a 1000 x 5000 matrix As; with
rank(As) = 20, and |2| = 500K (90% of the entries are ?).
Is our algorithm able to capture the structure of the rank-20

matrix?
Matrix |k iter  MAEq | 0-1q | Recallg | Precisiong
15(84,430| 0.265|0.113| 88.26 88.68
Synthetic |20 65,590 | 0.214[0.028| 96.62 97.60
25/51,480| 0.199|0.022| 9741 98.09

The problem is underdetermined we expect that the larger the k
the better the fit of the values in 2. Even if A; can be totally
reconstructed using rank 20 matrix our algorithm misses to
find the global minimum



Convergence

Matrix k| mFE|MAEq| 0-1g |Recallg | Precisiong
60594 0.602| 0.220| 79.79 80.78

10({0.500| 0.551{0.1925| 82.26 83.18

MovieLens 100K | 50[0.133| 0.269| 0.055| 94.93 95.10
100|0.023| 0.103| 0.002| 99.78 99.83

150|0.004| 0.040 0 100 100

15(0.540| 0.575| 0.203| 81.80 83.27

25/0.470| 0.536| 0.181| 83.81 84.86

MovieLens IM [100|0.226| 0.357| 0.093| 91.89 91.93
200(0.109| 0.234| 0.041| 96.46 96.33

300(0.059| 0.163| 0.018| 98.56 98.37

By increasing the value of k we get a better approximation and
all the error measures decrease. The values 0 in 0-1 Loss and
the 100% of Precision and Recall mean that we never have a
mismatch in the reconstruction of positive ratings.
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Accuracy of predictions

Split the data among two disjoint sets
> Qgo Training Set: 80% of ratings uniformly sampled
> Oy Test Set: ©yy = 2 — Qg.

» The algorithm learns from gy but the performance is
evaluated on Oy.

» A large value of k is not a good option since the model
tend to overfit the data

» The time is linear in k. Small k implies lower time



Accuracy of predictions

Matrix k|MAEq,, | 0-1g,, | Recallg,, | Precisiong,,
6| 0.6253(0.2550 77.04 79.27
MovieLens 1M |10| 0.5940|0.2555 77.21 78.82
15| 0.5642(0.2605 77.05 77.89
6| 0.6093(0.2630 74.56 72.69
MovieLens 10M | 10| 0.5937|0.2612 74.95 72.48
15| 0.5864 (0.2633 75.20 71.70

Predictions of recommendations:

» Low values of 0-1 Loss

» High Precision and Recall




Comparison with other NMF methods

MovieLens 1M MovieLens 10M
Method MAEg,, | CMAEg,, | 0-1g,, || MAEg,, | CMAE |0-1¢,,
KNN Pearson 0.823 0.721] 0.423 0.842| 0.743] 0.434
NMF 1.243 1.106 | 0.463 1.356| 1.234| 0.487
rNMF 0.684 0.574| 0.384 0.698| 0.586| 0.396
pNMF 0.664 0.526 | 0.270 0.676| 0.542| 0.284
cutNMF 0.675 0.659 | 0.255 0.639| 0.654| 0.263

We see that our method performs well for the 0-1 Loss and
MAE measures. In this table are reported the values obtained
with k = 6 (the best value for pPNMF).




Comparison with other methods

MovieLens 1M, 20%
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Conclusion and further work

» We proposed an Adaptive approach for Personalized
recommendations

» Assumes the latent factor model
» Dataset-dependent

» Shown convergence and effectiveness in recommending
items



What's next

» Since the goal is to recommend only a few top items to a
user, use other error measure such as NDCG, AUR, etc.

» We are interested in recommending only a few items to
each user, it is not really important to retrieve all the
missing ratings.

» Understand better the role of k.
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