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The Problem

I Eigenvalues computation of non linear function T (z)
I If not a matrix polynomial might have infinitely many

eigenvalues
I Computing eigenvalues located only in certain regions



The Problem

T : Ω → Ck×k

(NEP) find the pair (λ, v), v 6= 0 such that T (λ)v = 0.

Consider ∆ ∈ Ω, and find eigenvalues in ∆.

Possible approaches (see Güttel-Tisseur)
I Newton’s method
I Contour integrals
I Approximation of the nonlinear function with a matrix

polynomial
I Linearize to obtain a pencil (A,B)



The generalized eigenvalue problem

To find the eigenvalue of (A,B)
I QR on B−1A
I QZ on the pencil
I Arnoldi or other Krylov methods
I Since most of the eigenvalues have to be thrown away:

orthogonal iterations
I This is important when we have clustered eigenvalues



The generalized eigenvalue problem

To find the eigenvalue of (A,B)
I QR on B−1A
I QZ on the pencil
I Arnoldi or other Krylov methods
I Since most of the eigenvalues have to be thrown away:

inverse orthogonal iterations
I This is important when we have clustered eigenvalues



Inverse orthogonal iterations

I Generalization of inverse Power iterations
I Approximate the invariant subspace associated with the s

eigenvalues with smallest modulus
I Approximate the s eigenvalues with smallest modulus
I Given A ∈ Cn×n, and Q0 ∈ Cn×s compute{

AZi = Qi−1
QiRi = Zi economy size QR fact

I Usual hypothesis of convergence



Inverse orthogonal iterations: pencil

I On the pencil (A,B){
AZi = BQi−1
QiRi = Zi economy size QR fact

I Compute Vi−1Si−1 = BQi−1, full QR factorization.
I AZi = Vi−1Si−1, that is

V H
i−1AZi = Si−1, Si−1 is rectangular upper triang

Consider the RQ factorization of V H
i−1A.

I V H
i−1A = R̃i Q̃i we get

V H
i−1AZi = Si−1.

I Then Zi = Q̃H
i R̃−1

i Si−1 and Qi = Q̃H
i (:, 1 : s).



Inverse orthogonal iterations: pencil

I On the pencil (A,B){
AZi = BQi−1
QiRi = Zi economy size QR fact

I Compute Vi−1Si−1 = BQi−1, full QR factorization.
I AZi = Vi−1Si−1, that is

V H
i−1AZi = Si−1, Si−1 is rectangular upper triang

Consider the RQ factorization of V H
i−1A.

I V H
i−1A = R̃i Q̃i we get

R̃i Q̃iZi = Si−1.

I Then Zi = Q̃H
i R̃−1

i Si−1 and Qi = Q̃H
i (:, 1 : s).



Stopping criterion

The usual stopping criterion is

‖(I − Qi−1QH
i−1)Qi‖ < tol

In this case

Qi − Qi−1(QH
i−1Qi ) = E , ‖E‖ < tol

guarantees

‖r(A,B)‖
‖A−1B‖ =

‖A−1BQi−1 − Qi−1QH
i−1QiRi‖

‖A−1B‖ ≤ tol

Bound on the relative residual!



Back to the original problem

T : Ω → Ck×k holomorphic matrix-valued function, Ω ⊆ C open
and connected.
Focus on computing eigenvalues in a selected subset ∆ ∈ Ω
A possible approach

(NEP) =⇒ (PEP) =⇒ (LIN)

T (z) =⇒ P(z) =⇒ (A,B)

If T (z) is not a polynomial, we seek an approximation P(z) such
that

‖T (z)− P(z)‖ ≤ ε, z ∈ ∆ ⊆ Ω



Approximating polynomial

I Taylor polynomial This approximation is appropriate if
λ ∈ D̄σ,ρ ⊂ Ω

I Interpolation on suitable nodes
I Chebyshev nodes
I d + 1 Roots of unity
I d Roots of unity plus σ = 0



Approximating polynomial

I Taylor polynomial
Pd (z) = T (σ) + T ′(σ)(z − σ) + · · ·+ T (d)(σ) (z−σ)d

d! . This
approximation is appropriate if λ ∈ D̄σ,ρ ⊂ Ω

I Interpolation on suitable nodes
I Chebyshev nodes
I d + 1 Roots of unity
I d Roots of unity plus σ = 0



Approximating polynomial

I Taylor polynomial
Pd (z) = T (σ) + T ′(σ)(z − σ) + · · ·+ T (d)(σ) (z−σ)d

d! . This
approximation is appropriate if λ ∈ D̄σ,ρ ⊂ Ω

I Interpolation on suitable nodes
I Chebyshev nodes Suitable if the wanted eigenvalues of T lie in

or near the interval [−1; 1]
I d + 1 Roots of unity Suitable if the wanted eigenvalues of T

lie in open unit disk
I d Roots of unity plus σ = 0 Suitable if the wanted eigenvalues

of T lie in open unit disk



Approximating polynomial

For these approximations ...
I We can prove uniform convergence of the interpolant Pd (z) to

the T (z) inside “circular” regions in which T is holomorphic.
I If Pd (z) such that ‖T (z)− Pd (z)‖ ≤ ε, z ∈ ∆, and (λ, v) is

an eigenpair for Pn(z), λ ∈ ∆ =⇒ ‖T (λ)v‖ < ε.
I if det(T (µ)) 6= 0, µ ∈ ∆ =⇒ det(Pd (µ)) 6= 0.

Not always easy to choose the degree of the approximating
polynomial



Linearizations

Interested in Unitary-plus-low rank pencils...
We tested and compared different linearizations
I Generalized companion
I Unitary diagonal plus low rank
I Arrowed linearization → obtained considering the matrix

polynomial written in the Lagrange basis

In all these cases we get a pencil (A,B) with A and B unitary plus
rank k.
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rank k.

We can use compressed representations and fast and stable
methods



Linearizations

Interested in Unitary-plus-low rank pencils...
We tested and compared different linearizations
I Generalized companion
I Unitary diagonal plus low rank
I Arrowed linearization → obtained considering the matrix

polynomial written in the Lagrange basis

In all these cases we get a pencil (A,B) with A and B unitary plus
rank k.

We can use compressed representations and fast and stable
methods

The linearizations considered only need the evaluation of T (z) on
the interpolation nodes.



Related work
Most authors analyze the companion /block companion case...
I Since 2004 Bini, Daddi, Gemignani, Eidelman, Gohberg, Boito

(explicit QR on unitary plus rank 1)
I 2007 Chandrasekaran, Gu, Xia, Zhu (implicit QR on a QR

factorization of the companion)
I 2012 Delvaux, Frederik, Van Barel (block companion, the

matrix is stored using the Givens weight representation)
I 2015-2017 Aurentz, Mach, Robol, Vandebril, Watkins different

papers where the representation uses only unitary matrices
I 2011 Effenberger, Kresner Chebyshev interpolation points,

Krylov methods on the linearized problem
I 2013, Van Beeumen, Meerbergen, Michiels, Hermite

interpolation+ rational Krylov
I 2019 Saad, El-Guide, Miedlar Special rational approximation

+ orthogonal iteration



The LFR format

The matrices of the pencil (A,B) are unitary plus low rank.
A ∈ Uk can be represented in the LFR format

1. A = LFR
2. L is the product of k lower Hessenberg matrices
3. R is the product of k upper Hessenberg matrices
4. F = Q + TZH is unitary plus rank k,

Q =
[

Ik
Q̂

]

and T upper triangular, so that the correction is in the first k
rows



The LFR format
A small trick: we construct a larger matrix Â = L̂F̂ R̂ still unitary
plus low rank

Â =
[

A ∗
0kn 0kk

]
=
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The LFR format

I If ZH = L(n + 1 : n + k, :)Q ⇔ Â has the last k rows zero
I The structure of F̂ inherits the bandwidth profile of Â

1. F̂ is triangular ⇔ Â is triangular
2. F̂ is Hessenberg ⇔ Â is Hessenberg
3. F̂ is h−Hessenberg ⇔ Â is h−Hessenberg

These observations allow to greatly simplify the inverse orthogonal
iterations!



Orthogonal iterations on the structure

From a computational point of view it is preferable to work with A
in h-Hessenberg form
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Orthogonal iterations on the structure
Preprocessing A = LA(QA + TAZH

A )RA = LA(I + TAZ̃H
A )QARA

QR is a (k + h)−upper Hesenberg matrix

Find R(1)
A , k−Hess and Q(1)

A h-Hess such that

QARA = R(1)
A Q(1)

A

We have
A = LA(I + TAZ̃H

A )R(1)
A︸ ︷︷ ︸

R̂

Q(1)
A︸︷︷︸
Q̂

= R̂Q̂

Similarly B is kept factorized as B = Q̄R̄, where

B = Q(1)
B︸︷︷︸
Q̄

L(1)
B (I + TBZ̃H

B )RB︸ ︷︷ ︸
R̄

= Q̄R̄



Orthogonal iterations on the structure

At each step. Qi−1 is composed of s orthogonal columns, i.e. is
represented as s sequences of ascending Givens rotations
I Compute Vi−1Si−1 = BQi−1

We can work on the QR representation of B swapping unitary
matrices

BQi−1 = Q(1)
B L(1)

B (I + TBZ̃H
B )RBQi−1

We can work on the Schur parametrization of the unitary matrices
involved.



Orthogonal iterations on the structure

We have

BQi−1 = Q(1)
B L(1)

B (I + TBZ̃H
B )RBQi−1



Orthogonal iterations on the structure

We have

BQi−1 = Q(1)
B L(1)

B (I + TBZ̃H
B )Q̃i−1R̃B



Orthogonal iterations on the structure

We have

BQi−1 = Q(1)
B L(1)

B Q̃i−1(I + TBZ̃H
B )R̃B



Orthogonal iterations on the structure

We have

BQi−1 = Q(1)
B Q̂i−1L̃B(I + TBZ̃H

B )R̃B



Orthogonal iterations on the structure

We have

BQi−1 = Q(1)
B Q̂i−1︸ ︷︷ ︸
Vi−1

L̃B(I + TBZ̃H
B )R̃B︸ ︷︷ ︸

Si−1

The cost of retrieving the first s columns of Vi−1 depends on the
structure of Q(1)

B .



Basic operations with Givens rotations

Givens transformations can also interact with each other by means
of the fusion

�↪→�� � resulting in �� .

The turnover operation allows to rearrange the order of some
Givens transformations

�y ��
�
�
� →

�
�
�
�� � or

�
�
�
�� x�

→
� ��
�
�
� .

These basic operations require a constant number of flops.



Orthogonal iterations on the structure

RB is k-upper Hessenberg, Qi−1 is s-lower Hessenberg, we can
“swap” the two structures
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Orthogonal iterations on the structure

RB is k-upper Hessenberg, Qi−1 is s-lower Hessenberg, we can
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Orthogonal iterations on the structure
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Orthogonal iterations on the structure
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Orthogonal iterations on the structure
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Orthogonal iterations on the structure

We have swapped the structure

RBQk−1 = Q̃i−1R̃B =
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This can be performed in O(nks) flops.



Orthogonal iterations on the structure

In the case B is k-upper Hessenberg, Q(1)
B has the same structure,

we perform a swap of the structure Vi−1 = Q(1)
B Q̂i−1 = Q(2)

i−1Q(2)
B

we are in the same situation as before
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Orthogonal iterations on the structure
In the case B is k-upper Hessenberg, Q(1)

B has the same structure,
we perform a swap of the structure Vi−1 = Q(1)

B Q̂i−1 = Q(2)
i−1Q(2)

B
we are in the same situation as before

Vi−1 =
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B

The first s columns of Vi−1 are identified by the s ascending
sequences of Givens rotations



Orthogonal iterations on the structure

I Goal V H
i−1A = R̃i Q̃i

I The same reasoning can be applied to
V H

i−1A = V H
i−1LA(I + TAZ̃H

A )R(1)
A Q(1)

A .
I We have to swap factors until the RQ decomposition of

V H
i−1A is restored.

I V H
i−1A = V H

i−1LA(I + TAZ̃H
A )R(1)

A Q(1)
A

I At the end we have the new matrix Qi already factorized as
the product of s ascending sequences of Givens
transformations.
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Orthogonal iterations on the structure

I Goal V H
i−1A = R̃i Q̃i

I The same reasoning can be applied to
V H

i−1A = V H
i−1LA(I + TAZ̃H

A )R(1)
A Q(1)

A .
I We have to swap factors until the RQ decomposition of

V H
i−1A is restored.

I V H
i−1A = L̃A(I + TAZ̃H

A )R̃AV̄ H
i−1Q̃(1)

A
I At the end we have the new matrix Qi already factorized as

the product of s ascending sequences of Givens
transformations.



Orthogonal iterations on the structure

I Goal V H
i−1A = R̃i Q̃i

I The same reasoning can be applied to
V H

i−1A = V H
i−1LA(I + TAZ̃H

A )R(1)
A Q(1)

A .
I We have to swap factors until the RQ decomposition of

V H
i−1A is restored.

I V H
i−1A = L̃A(I + TAZ̃H

A )R̃AQ(2)
A Qi

I At the end we have the new matrix Qi already factorized as
the product of s ascending sequences of Givens
transformations.



Retrieving the eigenvalues

I At convergence construct the s × s pencil (QH
i AQi ,QH

i BQi )
I The smallest s eigenvalues of (A,B) are approximated by the

eigenvalues of (QH
i AQi ,QH

i BQi )
I In our experiments we used Matlab eig



Cost and Forward error

This method costs O(nks) flops per iterations if we start from a
pencil (A,B) in the LFR format and with A and B as in the
linearizations considered.
Similarly the cost is O(nks) per iteration if (A,B) is
Hessenberg-Triangular.

We consider the following relative forward error estimate

err(λ) = ‖T (λ)v‖2
‖T (λ)‖2‖v‖2

= σk
σ1
, for k > 1, err(λ) = σ1, for k = 1,

I λ is the approximated eigenvalue inside the unit circle,
I σi = σi (T (λ)), 1 = 1, . . . , k are the singular values of T (λ)
I v is its k−th right singular vector of T (λ).



Backward Error

A possible measure of the backward error is

bkerr = σs+1([AQi ,BQi ])
σ1([AQi ,BQi ])

at convergence AQi ≈ BQi



Numerical Experiments
From the NLEVP collection, non polynomial problems. We use the
stopping condition

‖(I − Qk−1QH
k−1)Qk‖ < 1.0e − 14

I Time-delay equation T (z) = z + T0 + T1 exp(6z − 1) with

T0 =
[
4 −1
−2 5

]
; T1 =

[
−2 1
4 −1

]
.

This function has three eigenvalues inside the unit circle.
I Model of cancer growth T (z) = z − A0 − A1 exp(−rz), where

This function has three eigenvalues inside the unit circle.
I Neutral functional differential equation

t(z) = −1 + 0.5z + z2 + hz2 exp(τz). For our choice of the
parameters h, τ the function has three eigenvalues inside the
unit circle.



Numerical Experiments

From the NLEVP collection
I Spectral abscissa optimization T (z) = zI3 − A− B exp(−zτ),

k = 3 Abscissa optimization techniques favor multiple roots
and clustered eigenvalues with potential numerical difficulties.
This function has 4 eigenvalues inside the unit circle.

I Hadeler problem T (z) = (exp(z)− 1)A2 + z2A1 − αA0, two
real eigenvalues 0 < λ < 1.



Numerical Experiments

Time Delay (k=2, s=3))
nodes Structure deg err(λ1) err(λ2) err(λ3) it bkerr
ωj

deg+1 comp 32 8.47e-13 1.20e-12 1.21e-12 50 7.90e-13
ωj

deg , 0 comp 32 8.47e-13 8.48e-13 2.56e-12 53 7.90e-13
ωj

deg , 0 u.diag 40 9.43e-15 4.34e-14 3.43e-13 51 1.06e-12
Cheb comp 32 5.07e-13 6.25e-10 6.25e-10 53 4.73e-13

Cancer growth (k=2, s=4)
nodes Structure deg err(λ1) err(λ2) err(λ3) it bkerr
ωj

deg+1 comp 29 2.65e-14 2.87e-14 8.83e-14 34 9.57e-14
ωj

deg , 0 comp 29 1.67e-15 1.83e-14 2.52e-14 33 9.57e-14
ωj

deg , 0 unit diag 32 8.14e-16 3.47e-15 6.16e-15 36 7.68e-15
Cheb comp 29 1.77e-15 1.27e-14 4.40e-12 36 7.53e-14

Complex eigenvalues: Interpolation on Chebyshev point is not
adequate



Numerical Experiments

Neutral functional differential equation (k=1, s=2)
nodes Structure deg err(λ1) err(λ2) it bkerr
ωj

deg+1 comp 60 3.19e-13 3.70e-13 37 4.36e-15
ωj

deg , 0 comp 60 1.71e-13 2.11e-13 37 3.85e-15
ωj

deg , 0 unit diag 64 9.35e-12 9.64e-12 40 3.19e-13
Cheb comp 62 8.90e-07 8.90e-07 55 5.66e-15

Complex eigenvalues: Interpolation on Chebyshev point is not
adequate

Spectral abscissa optimization (k=3, s=6)
nodes Structure deg err(λ1) err(λ2) err(λ3) it bkerr
ωj

deg+1 comp 26 7.09e-12 7.09e-12 5.37e-11 89 4.34e-14
ωj

deg , 0 comp 26 1.02e-11 1.02e-11 2.42e-11 90 4.33e-14
ωj

deg , 0 unit diag 48 1.49e-14 1.58e-14 1.73e-14 116 8.20e-13
Cheb comp 30 6.87e-15 7.08e-15 2.73e-09 116 1.21e-13



Numerical Experiments

Hadeler function (k=8, s=2)
nodes Structure deg err(λ1) err(λ2) it bkerr
ωj

deg+1 comp 14 7.51e-14 3.38e-12 75 1.13e-14
ωj

deg , 0 comp 14 7.84e-14 6.98e-13 77 8.39e-15
ωj

deg , 0 unit diag 16 1.76e-15 8.78e-15 81 4.82e-15
Cheb comp 16 1.35e-15 3.29e-13 80 4.53e-14



Conclusions

I In general we get better approximations than applying the QR
method to the same matrices

I For the companion pencil nks(#iter) versus n2k for QR/QZ
algorithms

I Prove the backward stability of the method
I Accelerating convergence trying incorporating Rayleight-Ritz

steps and a sort of deflation
I Design a fast method to reduce (in a backward stable way)

(A,B) to (H,T ) working on the LFR representation
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