Soluzione della prova scritta di Calcolo Numerico 6 Giugno 2002

Esercizio 1

- (a) Gli interi da 1 a 8 vengono rappresentati esattamente mentre $9 = (.1001)_2 \cdot 2^4$ viene arrotondato a $10 = (.101)_2 \cdot 2^4$. Notiamo che $9 = 2^3 + 1$ e $10 = 2^3 + 2$.
- (b) Sulla base di quanto ottenuto al punto precedente si trova subito che i due interi cercati sono $2^{24} + 1$ e $2^{24} + 2$. Infatti 2^{24} è il primo intero di 25 cifre binarie ma si può rappresentare esattamente. Invece $2^{24} + 1$ deve essere arrotondato a $2^{24} + 2$ che si può rappresentare esattamente.

Esercizio 2

- (a) La funzione y = g(x) ha $\alpha = 0$ come unico punto fisso e in α non è derivabile. Procedendo allora a uno studio diretto della successione generata si osserva che per $x_0 > 0$ risulta $x_k = (1/2)^k x_0$ ossia il metodo genera una successione monotona decrescente tendente ad α . Per $x_0 < 0$ risulta $x_1 > 0$ e si ricade nel caso precedente. Quindi il metodo risulta convergente per ogni $x_0 \in \mathbb{R}$
- (b) Anche in questo caso la funzione g risulta non derivabile in $\alpha = 0$ che è il suo unico punto fisso. Preso $x_0 \neq 0$ risulta $x_{2k} = (3/2)^k x_0$ e quindi la sottosuccessione delle iterate di indice pari diverge. Dunque il metodo risulta non convergente per ogni punto iniziale $x_0 \neq 0$.

Esercizio 3

Per eliminare la prima colonna di Q sono necessarie n(n+1) operazioni moltiplicative. Anche l'eliminazione delle successive colonne di Q ha lo stesso costo. Quindi con $n^2(n+1)$ operazioni moltiplicative la matrice viene ridotta alla forma

$$\begin{pmatrix} D & P \\ 0 & \widehat{R} \end{pmatrix}.$$

A questo punto si tratta di eseguire l'eliminazione sulla matrice \widehat{R} . Trascurando i termini di ordine inferiore il costo complessivo risulta dunque

$$n^3 + \frac{n^3}{3} = \frac{4}{3}n^3.$$

Esercizio 4

Sia

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.$$

Si trova $\varphi(A)=\sqrt{2}$ e $\varphi(A^2)=2\sqrt{2}$ dunque $\varphi(A^2)>\varphi(A)^2$ mentre se φ definisse una norma matriciale dovrebbe aversi $\varphi(A^2)\leq \varphi(A)^2$

Esercizio 5

(a) Si trova subito il sistema delle equazioni normali

$$\begin{pmatrix} 10 & 4 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} m \\ q \end{pmatrix} = \begin{pmatrix} 3\alpha \\ 2+\alpha \end{pmatrix},$$

da cui
$$m = (5\alpha - 8)/14$$
 e $q = (10 - \alpha)/7$.

(b) Imponendo il passaggio della retta di approssimazione per esempio per (0,2) si trova $\alpha = -4$ e quindi m = -2 e q = 2. Si verifica subito che la retta ottenuta passa anche per (1,0) e (3,-4).