Overview	The Problem	Common metrics	The model	Experimental results	Conclusions

Evaluating scientific products by means of citation-based models

Gianna M. Del Corso joint work with Dario A. Bini and Francesco Romani

Dipartimento di Informatica, Università di Pisa, Italy

The Mathematics of Ranking, Brussels, October 15 2008

G. M. Del Corso Citation-based evaluation of scientific products

- 2 Common metrics
- 3 The model
 - One-class model
 - Two-class model
 - Three-class model
- 4 Experimental results
- **5** Conclusions

- Number of scientific journals and papers is increasing at an almost exponential rate
- What to read? What to cite? Which journals subscribe? How to evaluate research?
- This burden affects researchers, funding agencies, university administrators, reviewers

Difficult to give an in-depth evaluation of the research Use indirect indicators of quality

イロト イヨト イヨト

- Number of scientific journals and papers is increasing at an almost exponential rate
- What to read? What to cite? Which journals subscribe? How to evaluate research?
- This burden affects researchers, funding agencies, university administrators, reviewers

- Number of scientific journals and papers is increasing at an almost exponential rate
- What to read? What to cite? Which journals subscribe? How to evaluate research?
- This burden affects researchers, funding agencies, university administrators, reviewers

- Number of scientific journals and papers is increasing at an almost exponential rate
- What to read? What to cite? Which journals subscribe? How to evaluate research?
- This burden affects researchers, funding agencies, university administrators, reviewers

- Number of scientific journals and papers is increasing at an almost exponential rate
- What to read? What to cite? Which journals subscribe? How to evaluate research?
- This burden affects researchers, funding agencies, university administrators, reviewers

The Problem

Most of "automatic" methods rely on citation analysis

The evaluation of research using citation analysis has weaknesses...

- Is a citation always a trusting vote?
- Data source and coverage
- How do authors choose the papers to cite?
- ... but also some pros
 - Peer review is not always practicable
 - There are plausible assumptions underlying the use of citation analysis as a heuristic
 - Simple and objective

Citation-based evaluation of scientific products

Most of "automatic" methods rely on citation analysis

The evaluation of research using citation analysis has weaknesses...

- Is a citation always a trusting vote?
- Data source and coverage
- How do authors choose the papers to cite?
- ... but also some pros
 - Peer review is not always practicable
 - There are plausible assumptions underlying the use of citation analysis as a heuristic
 - Simple and objective

Citation-based evaluation of scientific products

Most of "automatic" methods rely on citation analysis

The evaluation of research using citation analysis has weaknesses...

- Is a citation always a trusting vote?
- Data source and coverage
- How do authors choose the papers to cite?
- ... but also some pros
 - Peer review is not always practicable
 - There are plausible assumptions underlying the use of citation analysis as a heuristic
 - Simple and objective

Most of "automatic" methods rely on citation analysis

The evaluation of research using citation analysis has weaknesses...

- Is a citation always a trusting vote?
- Data source and coverage
- How do authors choose the papers to cite?
- ... but also some pros
 - Peer review is not always practicable
 - There are plausible assumptions underlying the use of citation analysis as a heuristic
 - Simple and objective

Citation-based evaluation of scientific products

Most of "automatic" methods rely on citation analysis

The evaluation of research using citation analysis has weaknesses...

- Is a citation always a trusting vote?
- Data source and coverage
- How do authors choose the papers to cite?
- ... but also some pros
 - Peer review is not always practicable
 - There are plausible assumptions underlying the use of citation analysis as a heuristic
 - Simple and objective

Most of "automatic" methods rely on citation analysis

The evaluation of research using citation analysis has weaknesses...

- Is a citation always a trusting vote?
- Data source and coverage
- How do authors choose the papers to cite?
- ... but also some pros
 - Peer review is not always practicable
 - There are plausible assumptions underlying the use of citation analysis as a heuristic
 - Simple and objective

Most of "automatic" methods rely on citation analysis

The evaluation of research using citation analysis has weaknesses...

- Is a citation always a trusting vote?
- Data source and coverage
- How do authors choose the papers to cite?
- ... but also some pros
 - Peer review is not always practicable
 - There are plausible assumptions underlying the use of citation analysis as a heuristic
 - Simple and objective

Most of "automatic" methods rely on citation analysis

The evaluation of research using citation analysis has weaknesses...

- Is a citation always a trusting vote?
- Data source and coverage
- How do authors choose the papers to cite?
- ... but also some pros
 - Peer review is not always practicable
 - There are plausible assumptions underlying the use of citation analysis as a heuristic
 - Simple and objective

3

Most of "automatic" methods rely on citation analysis

The evaluation of research using citation analysis has weaknesses...

- Is a citation always a trusting vote?
- Data source and coverage
- How do authors choose the papers to cite?
- ... but also some pros
 - Peer review is not always practicable
 - There are plausible assumptions underlying the use of citation analysis as a heuristic
 - Simple and objective

Overview The Problem C		Common metrics	The model	The model Experimental results 000000000000000000000000000000000000	
Notati	on				

We can represent the citation process as a graph and hence as a binary matrix

$$C_{ij} = 1$$
 iff p_i cites p_j .

Assume that receiving a citation is always good!

3

Common metrics:

Different metrics for different purposes

- Ranking journals Libraries, scholars for deciding where to publish, ...
- Ranking papers What to read, what to cite, ...
- Ranking authors distribution of grants, hiring people, ...

3

Common metrics:

Different metrics for different purposes

- Ranking journals Libraries, scholars for deciding where to publish, ...
- Ranking papers What to read, what to cite, ...
- Ranking authors distribution of grants, hiring people, ...

Common metrics:

Different metrics for different purposes

- Ranking journals Libraries, scholars for deciding where to publish, ...
- Ranking papers What to read, what to cite, ...
- Ranking authors distribution of grants, hiring people, ...

Common metrics:

Different metrics for different purposes

- Ranking journals Libraries, scholars for deciding where to publish, ...
- Ranking papers What to read, what to cite, ...
- Ranking authors distribution of grants, hiring people, ...

Common metrics: Journals

Citation Statistics: Impact Factor, AMS MR, Citeseer,...

Pros: Easy to calculate, time aware, objective, etc.

- Cons: Depend on the area.
 - In the same journal articles with different citation rates.
 - The ranking provided doesn't always agree with the widely accepted journal's reputation.

Common metrics: Journals

Citation Statistics: Impact Factor, AMS MR, Citeseer,...

Pros: Easy to calculate, time aware, objective, etc.

Cons: Depend on the area.

In the same journal articles with different citation rates.

The ranking provided doesn't always agree with the widely accepted journal's reputation.

Common metrics: Journals

Citation Statistics: Impact Factor, AMS MR, Citeseer,...

Pros: Easy to calculate, time aware, objective, etc.

Cons: Depend on the area.

In the same journal articles with different citation rates.

The ranking provided doesn't always agree with the widely accepted journal's reputation.

The ISI Impact factor

The ISI IF defines the status of a journal for a specific year.

It is defined as the mean number of citations that occurred in the considered year y to articles published in a given journal j during the previous two years.

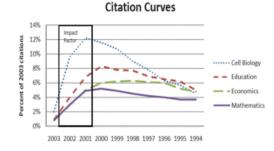
$$IF(j, y) = \frac{\sum_{k} (c_{kj}(y, y-1) + c_{kj}(y, y-2))}{n(j, y)},$$

where

n(j, y) = number of papers published in journal j in years y - 2, y - 1

The ISI Impact factor

The ISI IF defines the status of a journal for a specific year.


It is defined as the mean number of citations that occurred in the considered year y to articles published in a given journal j during the previous two years.

$$IF(j, y) = \frac{\sum_{k} (c_{kj}(y, y-1) + c_{kj}(y, y-2))}{n(j, y)},$$

where

n(j, y) = number of papers published in journal j in years y - 2, y - 1

The ISI Impact factor

[IMU, 2008]

The time window of two years is too small for many disciplines.

・ロト ・回 ・ ・ ヨ ・ ・

3

The ISI Impact factor

Journals	Ranked	by	Impact:	Mathematics
----------	--------	----	---------	-------------

Rank	2006 Impact Factor	Impact 2002-06	Impact 1981-2006
1	J. Amer. Math. Soc.	J. Amer. Math. Soc.	Annals of Mathematics
	(2.55)	(5.08)	(24.82)
2	Annals of Mathematics	Acta Mathematica	Comm. Pure Appl. Math.
	(2.43)	(4.79)	(24.12)
3	Bull. Amer. Math. Soc.	Bull. Amer. Math. Soc.	Acta Mathematica
	(2.39)	(4.46)	(22.93)
4	Comm. Pure Appl. Math.	Annals of Mathematics	Inventiones Mathemat.
	(2.03)	(4.28)	(18.64)
5	Inventiones Mathemat.	Fdns. Computat. Math.	J. Different. Geometry
	(1.66)	(3.93)	(17.31)
6	J. Eur. Math. Soc.	Comm. Pure Appl. Math.	Bull. Amer. Math. Soc.
	(1.49)	(3.74)	(16.31)
7	Duke Mathematical J.	Inventiones Mathemat.	Ann. Sci. Ecole Norm.
	(1.41)	(3.50)	(12.99)
8	Publ. Mathematiques	Ann. Sci. Ecole Norm.	J. Amer. Math. Soc.
	(1.35)	(2.59)	(12.40)
9	Acta Mathematica	Duke Mathematical J.	SIAM J. Algebr. Discr.
	(1.33)	(2.57)	(12.35)
10	Geometry & Topology	J. Different. Geometry	Duke Mathematical J.
	(1.27)	(2.53)	(10.01)

[ScienceWatch.com, 2008]

3

G. M. Del Corso

Citation-based evaluation of scientific products

Common metrics: Journals

PageRank-like techniques: Eigenfactor, SCImago, RedJasper, ...

Based on the idea that not all the citations are equal

=

G. M. Del Corso Citation-based evaluation of scientific products

Common metrics: Journals

PageRank-like techniques: Eigenfactor, SCImago, RedJasper, ...

Based on the idea that not all the citations are equal

=

<ロト <回ト < 三ト < 三ト

Common metrics: Journals

PageRank-like techniques: Eigenfactor, SCImago, RedJasper, ...

Based on the idea that not all the citations are equal

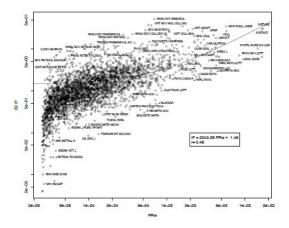
イロト イポト イヨト イヨト

Common metrics: Journals

Pros: Quality is more important than quantity, metric of prestige, nice mathematical properties [see the assiomatic approach Palacios-Huerta, Volij, 04]

Common metrics: Eigenfactor

	MFACT			
eigenfactor search mapping information contact				
search results			page 1 of 2 total journals found: 194	
Article Influence [™] Score(AI): a measure of a journal's prestige base Eigenfactor [™] Score(EF): A measure of the overall value provided by				
Journal Name	Percentile	Score -	Score	
1. COMMUNICATIONS IN MATHEMATICAL PHYSICS ISSN: 0010-3616	EF 95.60 AI 93.70	0.051589	1.9796	
2. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS ISSN: 0022-247X	EF 94.60 AI 63.20	0.044306	0.61695	
3. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY ISSN: 0002-9939	EF 94.10 AI 72.20	0.041509	0.77775	
4. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY ISSN: 0002-9947	EF 94.10 AI 90.60	0.0408	1.5685	
5. JOURNAL OF ALGEBRA ISSN: 0021-8693	EF 93.70 AI 72.20	0.039226	0.78009	
6. INVENTIONES MATHEMATICAE ISSN: 0020-9910	EF 93.30 A1 98.00	0.036108	4.2979	
7. ANNALS OF MATHEMATICS ISSN: 0003-486X	EF 92.10 A1 98.20	0.030788	4.7078	
8. JOURNAL OF FUNCTIONAL ANALYSIS ISSN: 0022-1236	EF 92.10 AI 89.00	0.030677	1.4314	
9. JOURNAL OF DIFFERENTIAL EQUATIONS ISSN: 0022-0396	EF 90.60 AI 84.60	0.026688	1.1457	
10. DUKE MATHEMATICAL JOURNAL ISSN: 0012-7094	EF 90.30 AI 95.90	0.025898	2.5417	



G. M. Del Corso

Citation-based evaluation of scientific products

Common metrics: Journals

Hybrid techniques: Y-factor [Bollen, et al. 2006]

3

∢ ≣⇒

G. M. Del Corso

Citation-based evaluation of scientific products

Common metrics: Journals

Hybrid technique: Y-factor

 $Y(j) = IF(j) \times PR_w(j)$

3

G. M. Del Corso

Citation-based evaluation of scientific products

Common metrics: Journals

Hybrid technique: Y-factor

 $Y(j) = IF(j) \times PR_w(j)$

3

G. M. Del Corso

Citation-based evaluation of scientific products

Common metrics: Papers

• Relevance of the journal where the paper is published

- Not all the papers in a journal have the same quality
- Number of citations received
 - Citation gathering can be a very slow process.

3

< ロ > < 回 > < 回 > < 回 > < 回 >

Common metrics: Papers

- Relevance of the journal where the paper is published
 - Not all the papers in a journal have the same quality
- Number of citations received
 - Citation gathering can be a very slow process

3

< ロ > < 回 > < 回 > < 回 > < 回 >

Common metrics: Papers

- Relevance of the journal where the paper is published
 - Not all the papers in a journal have the same quality
- Number of citations received
 - Citation gathering can be a very slow process

< ロ > < 回 > < 回 > < 回 > < 回 >

Common metrics: Papers

- Relevance of the journal where the paper is published
 - Not all the papers in a journal have the same quality
- Number of citations received
 - Citation gathering can be a very slow process

Common metrics: Authors

- Top author if she publishes in "top" journals
- More accurate measures *h*-index, *m*-index, *g*-index, *g*₁-index

=

G. M. Del Corso

Citation-based evaluation of scientific products

Common metrics: Authors

- Top author if she publishes in "top" journals
- More accurate measures *h*-index, *m*-index, *g*-index, *g*₁-index

=

[BDR ETNA 08]

- In the classical approach the ranking of journals is based on citations
- The ranking of papers and authors follows from the rank of the journals where the research is published

We proposed an integrated ranking of authors, journals, papers, areas, and institutions

Mutual reinforcement between papers, journals, authors

• • • • • • • • • • • •

[BDR ETNA 08]

- In the classical approach the ranking of journals is based on citations
- The ranking of papers and authors follows from the rank of the journals where the research is published

We proposed an integrated ranking of authors, journals, papers, areas, and institutions

Mutual reinforcement between papers, journals, authors

• • • • • • • • • • • •

[BDR ETNA 08]

- In the classical approach the ranking of journals is based on citations
- The ranking of papers and authors follows from the rank of the journals where the research is published

We proposed an integrated ranking of authors, journals, papers, areas, and institutions

Mutual reinforcement between papers, journals, authors

[BDR ETNA 08]

- In the classical approach the ranking of journals is based on citations
- The ranking of papers and authors follows from the rank of the journals where the research is published

We proposed an integrated ranking of authors, journals, papers, areas, and institutions

Mutual reinforcement between papers, journals, authors

Our Proposal

We have seen there are different uses of ranking

- Research evaluation by funding agencies
- Hiring in University or in a Industrial context
- Choosing individuals for a research team
- Many others ...

We try to design a tunable method to capture the different needs

 The model
 Experimental results
 Conclusions

Our Proposal

We have seen there are different uses of ranking

- Research evaluation by funding agencies
- Hiring in University or in a Industrial context
- Choosing individuals for a research team
- Many others ...

We try to design a tunable method to capture the different needs

Our Proposal

We have seen there are different uses of ranking

- Research evaluation by funding agencies
- Hiring in University or in a Industrial context
- Choosing individuals for a research team
- Many others ...

We try to design a tunable method to capture the different needs

Our Proposal

We have seen there are different uses of ranking

- Research evaluation by funding agencies
- Hiring in University or in a Industrial context
- Choosing individuals for a research team
- Many others ...

We try to design a tunable method to capture the different needs

Our Proposal

We have seen there are different uses of ranking

- Research evaluation by funding agencies
- Hiring in University or in a Industrial context
- Choosing individuals for a research team
- Many others ...

We try to design a tunable method to capture the different needs

Our Proposal

We have seen there are different uses of ranking

- Research evaluation by funding agencies
- Hiring in University or in a Industrial context
- Choosing individuals for a research team
- Many others ...

We try to design a tunable method to capture the different needs

- A paper is important if published in an important journal but also if cited by important papers and authored by important authors
- An author is important if she has important co-authors and has written important papers published in important journals
- A journal is important if collects citations from important journals, publishes important papers by important authors

- A paper is important if published in an important journal but also if cited by important papers and authored by important authors
- An author is important if she has important co-authors and has written important papers published in important journals
- A journal is important if collects citations from important journals, publishes important papers by important authors

- A paper is important if published in an important journal but also if cited by important papers and authored by important authors
- An author is important if she has important co-authors and has written important papers published in important journals
- A journal is important if collects citations from important journals, publishes important papers by important authors

- A paper is important if published in an important journal but also if cited by important papers and authored by important authors
- An author is important if she has important co-authors and has written important papers published in important journals
- A journal is important if collects citations from important journals, publishes important papers by important authors

	J	А	Р
J	citation	publication	publication
Α	publication	co-authorship	authorship
Ρ	publication	authorship	citation

- A paper is important if published in an important journal but also if cited by important papers and authored by important authors
- An author is important if she has important co-authors and has written important papers published in important journals
- A journal is important if collects citations from important journals, publishes important papers by important authors

	J	А	P
J	citation	publication	publication
Α	publication	co-authorship	authorship
Р	publication	authorship	citation

We described and analyze three models

- One-class model, made up by Papers only
- Two-class model, made up by Papers and Authors
- Three-class model, made up by Papers, Authors and Journals

$$C = (c_{i,j})$$
 citation matrix $n \times n$
 $\mathbf{e} = (1, 1, \dots, 1)^T$, $\mathbf{d} = C\mathbf{e}$, assume that $d_i \neq 0$, $i = 1 : n$
 $P = (p_{i,i}) := \text{Diag}(\mathbf{d})^{-1}C$

3

▲ロト ▲圖ト ▲屋ト ▲屋ト

Overview	The Problem	Common metrics	The model	Experimental results	Conclusions
			0000000000	000000000000000000000000000000000000000	
One-class mod	del				

- *P* is row stochastic, i.e., *P***e** = **e**
- If *P* is irreducible

by the Perron-Frobenius theorem it exists unique a vector $\pi > 0$ such that

$$\pi^{T} = \pi^{T} P, \quad \mathbf{e}^{T} \pi = 1, \quad \pi_{j} = \sum_{i=1}^{n} \pi_{i} \frac{c_{i,j}}{d_{i}}$$

 π_i is the rank of paper i

3

Overview	The Problem	Common metrics	The model	Experimental results	Conclusions
			0000000000	000000000000000000000000000000000000000	0
One-class mode	l .				

- *P* is row stochastic, i.e., $P\mathbf{e} = \mathbf{e}$
- If *P* is irreducible

by the Perron-Frobenius theorem it exists unique a vector $\pi > 0$ such that

$$\pi^T = \pi^T P, \quad \mathbf{e}^T \pi = 1, \quad \pi_j = \sum_{i=1}^n \pi_i \frac{c_{i,j}}{d_i}$$

 π_i is the rank of paper *i*

3

Overview	The Problem	Common metrics	The model	Experimental results	Conclusions
			0000000000	000000000000000000000000000000000000000	0
One-class mode	el 👘				

- *P* is row stochastic, i.e., $P\mathbf{e} = \mathbf{e}$
- If *P* is irreducible

by the Perron-Frobenius theorem it exists unique a vector $\pi>0$ such that

$$\boldsymbol{\pi}^{T} = \boldsymbol{\pi}^{T} \boldsymbol{P}, \quad \mathbf{e}^{T} \boldsymbol{\pi} = 1, \quad \pi_{j} = \sum_{i=1}^{n} \pi_{i} \frac{c_{i,j}}{d_{i}}$$

 π_i is the rank of paper i

3

G. M. Del Corso Citation-based evaluation of scientific products

Overview	The Problem	Common metrics	The model	Experimental results	Conclusions
			0000000000	000000000000000000000000000000000000000	0
One-class mode	el 👘				

- *P* is row stochastic, i.e., $P\mathbf{e} = \mathbf{e}$
- If *P* is irreducible

by the Perron-Frobenius theorem it exists unique a vector $\pi>0$ such that

$$\boldsymbol{\pi}^{T} = \boldsymbol{\pi}^{T} \boldsymbol{P}, \quad \mathbf{e}^{T} \boldsymbol{\pi} = 1, \quad \pi_{j} = \sum_{i=1}^{n} \pi_{i} \frac{c_{i,j}}{d_{i}}$$

 π_i is the rank of paper i

3

The principle contained in the equation

$$\pi_j = \sum_{i=1}^n \pi_i \frac{c_{i,j}}{d_i}$$

is that each paper equally distributes its importance among all the cited papers.

3

Overview	The Problem	Common metrics	The model	Experimental results	
One-class mo	del				
Proble	ms				

- Reduciblility of P
- Dangling nodes, i.e., papers which cite no papers,
- Even when P is irreducible it may be periodic

1

Overview	The Problem	Common metrics	The model	Experimental results	Conclusions
			0000000000	0000000000000000000000000000000000000	00
One-class mo	del				
Proble	ms				
Гюыс	1115				

- Reduciblility of P
- Dangling nodes, i.e., papers which cite no papers,
- Even when P is irreducible it may be periodic

=

Overview	The Problem	Common metrics	The model	Experimental results	Conclusions
			00000000000	0000000 00000000000000000000000000000	0
One-class mod	del				
Proble	ms				

- Reduciblility of P
- Dangling nodes, i.e., papers which cite no papers,
- Even when P is irreducible it may be periodic

3

If P is stochastic and reducible

$$P \approx \left[\begin{array}{cc} P_{1,1} & P_{1,2} \\ O & P_{2,2} \end{array} \right]$$

then $[\mathbf{0}^T, \mathbf{\pi_2}^T]$, where $\mathbf{\pi}_2^T$ is such that

$$\pi_2^T P_{2,2} = \pi_2^T.$$

3

Overview	The Problem	Common metrics	The model	Experimental results	Conclusions
			00000000000	000000000000000000000000000000000000000	0
One-class mode	d i				
Exampl	е				

If P is stochastic and periodic we have more than an eigenvalue with modulo $\rho(P)$.

Problems of convergence of numerical algorithms for computing eigenvectors

3

Overview	The Problem	Common metrics	The model	Experimental resi
			000000000000	000000000000000000000000000000000000000
One-class mo	odel			

Remedy:

We introduce a dummy paper which cites and is cited by all the existing papers except by itself

The dummy paper collects the importances of all the papers and redistributes them uniformly to all the subjects by creating no privileges

Overview	The Problem	Common metrics	The model	Experimental results	Conclusions		
			000000000000000000000000000000000000000				
One-class model							

Remedy:

We introduce a dummy paper which cites and is cited by all the existing papers except by itself

The dummy paper collects the importances of all the papers and redistributes them uniformly to all the subjects by creating no privileges

< 17 > 4

In matrix terms we add one row and one column to the matrix \boldsymbol{C} made of all ones

Example:

$$C = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ \hline 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

The new matrix is irreducible and aperiodic if $C \neq 0$ (there exist cycles of length 2 and 3)

3

Overview

The Problem

ommon metrics

イロト イヨト イヨト イヨト

One-class model

Similar to Google's PageRank?

Same problems, but solved differently!

3

The model Experimental results Conclusions

One-class model

Theoretical issues: Model validation

• What happens if we add a new citation from a paper to another one?

- What happens if we add a new paper with citations?
- Does the rank of the newly cited paper increase more than that of the other papers?
- Can we formalize and quantify this property?

One-class model

Theoretical issues: Model validation

- What happens if we add a new citation from a paper to another one?
- What happens if we add a new paper with citations?
- Does the rank of the newly cited paper increase more than that of the other papers?
- Can we formalize and quantify this property?

The model Experimental results Conclusions

イロト イポト イヨト イヨト

One-class model

Theoretical issues: Model validation

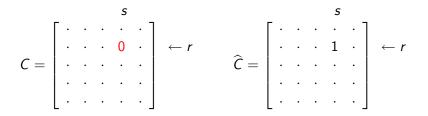
- What happens if we add a new citation from a paper to another one?
- What happens if we add a new paper with citations?
- Does the rank of the newly cited paper increase more than that of the other papers?
- Can we formalize and quantify this property?

The model Experimental results Conclusions

One-class model

Theoretical issues: Model validation

- What happens if we add a new citation from a paper to another one?
- What happens if we add a new paper with citations?
- Does the rank of the newly cited paper increase more than that of the other papers?
- Can we formalize and quantify this property?



One-class model

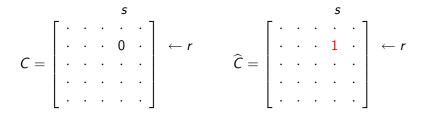
Theoretical results

Let C be an irreducible adjacency matrix

$$(r,s)$$
 such that $c_{r,s} = 0$
define $\widehat{C} = (\widehat{c}_{i,j})$ such that $\widehat{c}_{r,s} = 1$, $\widehat{c}_{i,j} = hc_{i,j}$ otherwise;

Define $P = \text{Diag}(C\mathbf{e})^{-1}C$, $\widehat{P} = \text{Diag}(\widehat{C}\mathbf{e})^{-1}\widehat{C}$

Citation-based evaluation of scientific products


The model Experimental results Conclusion:

One-class model

Theoretical results

Let C be an irreducible adjacency matrix

$$(r, s)$$
 such that $c_{r,s} = 0$
define $\widehat{C} = (\widehat{c}_{i,j})$ such that $\widehat{c}_{r,s} = 1$, $\widehat{c}_{i,j} = hc_{i,j}$ otherwise

Define $P = \text{Diag}(C\mathbf{e})^{-1}C$, $\widehat{P} = \text{Diag}(\widehat{C}\mathbf{e})^{-1}\widehat{C}$

Citation-based evaluation of scientific products

Overv	lew	The Froblem	common metrics	000000000000000000000000000000000000000	•0000000000000000000000000000000000000	
One-o	lass model					
	Note:					
		ipping of <i>c_{rs},</i> r of <i>P</i> .	will produce a	change in	all the nonzero ent	ries

The model

Experimental results

The Problem

4

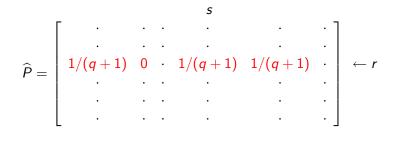
▲□→ ▲□→ ▲目→ ▲目→

Overview	The Problem	Common metrics	The model	Experimental results	Conclusions
			0000000000	00000000000000000000000000000000000000	00
One-class mo	del				

Note:

The flipping of c_{rs} , will produce a change in all the nonzero entries of row r of \widehat{P} .

・ロト ・日ト ・ヨト


÷.

3

Overview	The Problem	Common metrics	The model	Experimental results	Conclusions
			000000000	0000000000000000000000000000000000000	00
One-class mo	del				

Note:

The flipping of c_{rs} , will produce a change in all the nonzero entries of row r of \hat{P} .

(日) (同) (E) (E) (E) (E)

Overview	The Problem	Common metrics	The model	Experimental results	Conclusions
			000000000	00000000000000000000000000000000000000	00
One-class mo	del				

Theorem:

[BDR, ETNA 08]

・ロト ・回 ・ ・ ヨ ・ ・

문 🛌 🖻

For the left Perron vectors π and $\widehat{\pi}$ of P and \widehat{P} it holds

$$\sigma \frac{\widehat{\pi}_r}{\pi_r} \leq \frac{\widehat{\pi}_j}{\pi_i} \leq \frac{\widehat{\pi}_s}{\pi_s} \quad j = 1, \dots, n, \quad \sigma = q/(q+1) < 1$$

where q is the number of ones in the r-th row of C;

$$1 < rac{\widehat{\pi}_s}{\pi_s} \quad ext{and} \quad rac{\widehat{\pi}_j}{\pi_j} < rac{\widehat{\pi}_s}{\pi_s}, \quad ext{if} \ \ c_{r,j}
eq 0$$

Overview	The Problem	Common metrics	The model	Experimental results	Conclusions
			000000000	000000000000000000000000000000000000000	000
One-class mod	del				

Theorem:

[BDR, ETNA 08]

For the left Perron vectors π and $\widehat{\pi}$ of P and \widehat{P} it holds

$$\sigma \frac{\widehat{\pi}_r}{\pi_r} \leq \frac{\widehat{\pi}_j}{\pi_j} \leq \frac{\widehat{\pi}_s}{\pi_s} \quad j = 1, \dots, n, \quad \sigma = q/(q+1) < 1$$

where q is the number of ones in the r-th row of C;

$$1 < rac{\widehat{\pi}_s}{\pi_s}$$
 and $rac{\widehat{\pi}_j}{\pi_j} < rac{\widehat{\pi}_s}{\pi_s}$, if $c_{r,j} \neq 0$

3

Overv	iew	The Proble	em	Common metrics	1110 1110 4001	Experimental results	
One-c	lass model						
	Theore	em:				[BDR, ETNA	A 08]
	E		.				
	For the	e left F	erron	vectors π	and $\widehat{\pi}$ of P an	d P it holds	
		$\widehat{\pi}_{r}$	$\widehat{\pi}$:	$\hat{\pi}_{c}$			

$$\sigma \frac{\pi_r}{\pi_r} \leq \frac{\pi_j}{\pi_j} \leq \frac{\pi_s}{\pi_s} \quad j = 1, \dots, n, \quad \sigma = q/(q+1) < 1$$

where q is the number of ones in the *r*-th row of C;

$$1 < rac{\widehat{\pi}_s}{\pi_s}$$
 and $rac{\widehat{\pi}_j}{\pi_j} < rac{\widehat{\pi}_s}{\pi_s}$, if $c_{r,j} \neq 0$

The paper which receives a new citation has an increase of rank larger than the increase of any other paper

Overv	iew The Problem	Common metrics	The model	Experimental results	Conclusions
One-c	lass model				
	Theorem:			[BDR, ETNA	08]
	For the left Perror	vectors π and	I $\widehat{\pi}$ of P and	d \widehat{P} it holds	
	$\sigma \frac{\widehat{\pi}_r}{\pi_r} \le \frac{\widehat{\pi}_j}{\pi_j} \le \frac{\widehat{\pi}_j}{\widehat{\pi}_j} \ge \frac{\widehat{\pi}_j$	$\leq rac{\widehat{\pi}_{s}}{\pi_{s}} j=1,.$	$\ldots, n, \sigma =$	q/(q+1) < 1	

where q is the number of ones in the *r*-th row of C;

$$1 < rac{\widehat{\pi}_s}{\pi_s}$$
 and $rac{\widehat{\pi}_j}{\pi_j} < rac{\widehat{\pi}_s}{\pi_s}$, if $c_{r,j} \neq 0$

There are other perturbation results in the literature, but this is stronger!

3

Overview	The Problem	Common metrics	The model	Experimental results	Conclusions
			0000000000	000000000000000000000000000000000000000	
One-class mo	del				

Can we prove a stronger result?

If there are more than one citation we can prove that at least one of the newly cited papers has an increase of rank

More precisely...

3

ヘロト ヘヨト ヘヨト

Overview	The Problem	Common metrics	The model	Experimental results
			0000000000	0000000000000000000 00000000000000000
One-class mo	odel			

Can we prove a stronger result?

If there are more than one citation we can prove that at least one of the newly cited papers has an increase of rank

More precisely...

3

Overview	The Problem	Common metrics	The model	Experimental results	Conclus
			000000000	000000 000000000000000000000000000000	
One-class mod	lel				

Can we prove a stronger result?

If there are more than one citation we can prove that at least one of the newly cited papers has an increase of rank

More precisely...

3

Theorem: [BDR, 08]
For the left Perron vectors
$$\pi$$
 and $\hat{\pi}$ of P and \hat{P} it holds
 $\sigma \frac{\hat{\pi}_r}{\pi_r} \leq \frac{\hat{\pi}_j}{\pi_j} \leq \left(\prod_{i=1}^k \frac{\hat{\pi}_{s_i}}{\pi_{s_i}}\right)^{1/k} \leq \max_i \frac{\hat{\pi}_{s_i}}{\pi_{s_i}} \quad j = 1, \dots, n,$
for $\sigma = q/(q+k)$.

However..

There are even cases where one of newly cited paper has a decrease of rank

3

Theorem: [BDR, 08]
For the left Perron vectors
$$\pi$$
 and $\hat{\pi}$ of P and \hat{P} it holds

$$\sigma \frac{\hat{\pi}_r}{\pi_r} \leq \frac{\hat{\pi}_j}{\pi_j} \leq \left(\prod_{i=1}^k \frac{\hat{\pi}_{s_i}}{\pi_{s_i}}\right)^{1/k} \leq \max_i \frac{\hat{\pi}_{s_i}}{\pi_{s_i}} \quad j = 1, \dots, n,$$
for $\sigma = q/(q+k)$.

However..

There are even cases where one of newly cited paper has a decrease of rank

3

Theorem: [BDR, 08]
For the left Perron vectors
$$\pi$$
 and $\hat{\pi}$ of P and \hat{P} it holds
 $\sigma \frac{\hat{\pi}_r}{\pi_r} \leq \frac{\hat{\pi}_j}{\pi_j} \leq \left(\prod_{i=1}^k \frac{\hat{\pi}_{s_i}}{\pi_{s_i}}\right)^{1/k} \leq \max_i \frac{\hat{\pi}_{s_i}}{\pi_{s_i}} \quad j = 1, \dots, n,$
for $\sigma = q/(q+k)$.

However...

There are even cases where one of newly cited paper has a decrease of rank

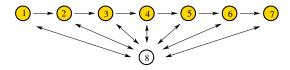
3

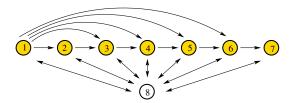
[BDR, 08]

For the left Perron vectors π and $\widehat{\pi}$ of P and \widehat{P} it holds

$$\sigma \frac{\widehat{\pi}_r}{\pi_r} \leq \frac{\widehat{\pi}_j}{\pi_j} \leq \left(\prod_{i=1}^k \frac{\widehat{\pi}_{s_i}}{\pi_{s_i}}\right)^{1/k} \leq \max_i \frac{\widehat{\pi}_{s_i}}{\pi_{s_i}} \quad j = 1, \dots, n,$$

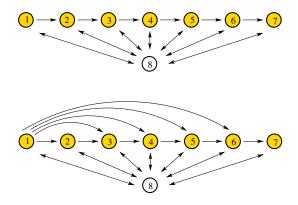
for
$$\sigma = q/(q+k)$$
.


However...


There are even cases where one of newly cited paper has a decrease of rank

=

One-class model

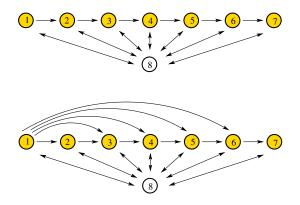

4

G. M. Del Corso

Citation-based evaluation of scientific products

◆□ > ◆□ > ◆臣 > ◆臣 > ○

One-class model


 $\pi = (0.05259, 0.07888, 0.09203, 0.09860, 0.10189, 0.10353, 0.10436)$ $\widehat{\pi} = (0.05119, 0.05972, 0.08958, 0.10451, 0.11197, 0.11570, 0.10904)$

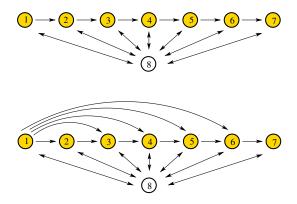
・ 同・ ・ ヨ・

A (1) > A (2) > A

One-class model

 $\pi = (0.05259, 0.07888, 0.09203, 0.09860, 0.10189, 0.10353, 0.10436)$ $\widehat{\pi} = (0.05119, 0.05972, 0.08958, 0.10451, 0.11197, 0.11570, 0.10904)$

while their ratio is given by



・ロト ・回ト ・ヨト・

-

1

One-class model

 $\widehat{\pi}/\pi = (0.97334, 0.75704, 0.97334, 1.05986, 1.09893, 1.11754, 1.04487)$

A similar result can be proved if we assume that only paper *s* receives a citation from papers r_1, r_2, \ldots, r_k .

Theorem: [BDR, 08]
For the left Perron vectors
$$\pi$$
 and $\hat{\pi}$ of P and \hat{P} it holds

$$\min_{i=1,k} \sigma_i \frac{\hat{\pi}_{r_i}}{\pi_{r_i}} \le \left(\prod_{i=1}^k \sigma_i \frac{\hat{\pi}_{r_i}}{\pi_{r_i}}\right)^{1/k} \le \frac{\hat{\pi}_j}{\pi_j} \le \frac{\hat{\pi}_s}{\pi_s} \quad j = 1, \dots, n,$$
for $\sigma_i = q_i/(q_i + 1)$. Moreover,

$$\frac{\hat{\pi}_j}{\pi_j} < \frac{\hat{\pi}_s}{\pi_s}, \quad \text{if } h_{r,j} \neq 0,$$
and $1 < \frac{\hat{\pi}_s}{\pi_s}$.

G. M. Del Corso

Citation-based evaluation of scientific products

Two-class model

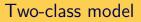
Two-class model

We consider both papers and authors

The author-paper matrix

K(a, p) = 1 if author a has written paper p

The matrix $A = KK^T$ is the matrix of co-authors

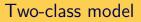

Assume that the dummy paper is written by a dummy author

 The model
 Experimental results
 Conclusions

 Conclusions
 Conclusions
 Conclusions

Two-class model

We consider both papers and authors The author-paper matrix


K(a, p) = 1 if author *a* has written paper *p*

The matrix $A = KK^T$ is the matrix of co-authors

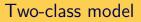
Assume that the dummy paper is written by a dummy author

Two-class model

We consider both papers and authors The author-paper matrix

K(a, p) = 1 if author a has written paper p

The matrix $A = KK^T$ is the matrix of co-authors


Assume that the dummy paper is written by a dummy author

 The model
 Experimental results
 Conclusions

 Conclusions
 Conclusions
 Conclusions

Two-class model

We consider both papers and authors The author-paper matrix

K(a, p) = 1 if author a has written paper p

The matrix $A = KK^T$ is the matrix of co-authors

Assume that the dummy paper is written by a dummy author

3

Overview	The Problem	Common metrics	The model	Experimental results	Conclusions
				000000000000000000000000000000000000000	00
Two-class mod	lel				

The system is represented by the matrix

$$S = \left[\begin{array}{cc} KK^T & K \\ K^T & C \end{array} \right]$$

which captures the relationship of authorship and citation among the different subjects of the model.

3

The system is represented by the matrix

$$S = \left[\begin{array}{cc} KK^T & K \\ K^T & C \end{array} \right]$$

which captures the relationship of authorship and citation among the different subjects of the model.

Look at the nice structure!

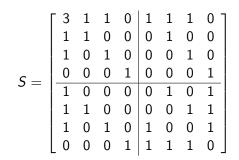
3

$P1 \rightarrow P2 \rightarrow P3 \rightarrow P1$ $A1 \rightarrow P1, P2, P3; A2 \rightarrow P2; A3 \rightarrow P3$

Then

$$C = \begin{bmatrix} 0 & 1 & 0 & | & 1 \\ 0 & 0 & 1 & | & 1 \\ 1 & 1 & 1 & | & 0 \end{bmatrix}, \quad K = \begin{bmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & | & 1 \end{bmatrix}$$
$$A = KK^{T} = \begin{bmatrix} 3 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

2343 2343


3

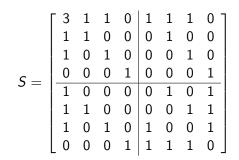
G. M. Del Corso

Citation-based evaluation of scientific products

The model Experimental results Conclusion

Two-class model

We make the four blocks row-stochastic


We combine them into a larger stochastic matrix adding weights.

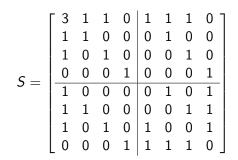
・ロト ・回ト ・ヨト ・ヨト

The model Experimental results Conclusion

Two-class model

We make the four blocks row-stochastic

We combine them into a larger stochastic matrix adding weights.



・ロト ・回ト ・ヨト ・ヨト

0				

・ロト ・回ト ・ヨト ・ヨト

Two-class model

We make the four blocks row-stochastic

We combine them into a larger stochastic matrix adding weights.

Overview	The Problem	Common metrics	The model	Experimental results	Conclusions
)0000000 000000 00000000000000000000000	00
Two-class mode	el 👘				

More precisely:

$$P = \begin{bmatrix} \gamma_{1,1}A_{1,1} & \gamma_{1,2}A_{1,2} \\ \gamma_{2,1}A_{2,1} & \gamma_{2,2}A_{2,2} \end{bmatrix} \quad A_{i,j} \text{ is row stochastic}$$

The rank vector is the Perron vector of P

$$\pi^T P = \pi^T$$

3

・ロ・・ (日・・ (日・・ (日・

Overview	The Problem	Common metrics	The model	Experimental results	Conclusions
				0000000 00000 000000000000000000000000	000
Two-class mo	odel				

Let
$$oldsymbol{\pi} = [oldsymbol{\pi}_{ ext{authors}}, oldsymbol{\pi}_{ ext{papers}}]$$
, one has

$$P = \left[\begin{array}{cc} \gamma_{1,1}A_{1,1} & \gamma_{1,2}A_{1,2} \\ \gamma_{2,1}A_{2,1} & \gamma_{2,2}A_{2,2} \end{array} \right]$$

$$\begin{array}{ll} \pi_{\text{authors}} &= \gamma_{1,1} \pi_{\text{authors}} A_{1,1} + \gamma_{2,1} \pi_{\text{papers}} A_{2,1} \\ \pi_{\text{papers}} &= \gamma_{1,2} \pi_{\text{authors}} A_{1,2} + \gamma_{2,2} \pi_{\text{papers}} A_{2,2} \end{array}$$

3

・ロト ・回ト ・ヨト ・ヨト

Overview	The Problem	Common metrics	The model	Experimental results	Conclusions
				0000000 000000 00000000000000000000000	000
Two-class mo	odel				

Let
$$oldsymbol{\pi} = [oldsymbol{\pi}_{ extsf{authors}}, oldsymbol{\pi}_{ extsf{papers}}]$$
, one has

$$P = \begin{bmatrix} \gamma_{1,1}A_{1,1} & \gamma_{1,2}A_{1,2} \\ \gamma_{2,1}A_{2,1} & \gamma_{2,2}A_{2,2} \end{bmatrix}$$

$$\begin{array}{ll} \pi_{\text{authors}} &= \gamma_{1,1} \pi_{\text{authors}} A_{1,1} + \gamma_{2,1} \pi_{\text{papers}} A_{2,1} \\ \pi_{\text{papers}} &= \gamma_{1,2} \pi_{\text{authors}} A_{1,2} + \gamma_{2,2} \pi_{\text{papers}} A_{2,2} \end{array}$$

3

Overview	The Problem	Common metrics	The model	Experimental results	Conclusions
				0000000 000000000 00000000000000000000	
Two-class mo	odel				

Let
$$oldsymbol{\pi} = [oldsymbol{\pi}_{ extsf{authors}}, oldsymbol{\pi}_{ extsf{papers}}]$$
, one has

$$P = \begin{bmatrix} \gamma_{1,1}A_{1,1} & \gamma_{1,2}A_{1,2} \\ \gamma_{2,1}A_{2,1} & \gamma_{2,2}A_{2,2} \end{bmatrix}$$

$$\begin{array}{ll} \pi_{\text{authors}} &= \gamma_{1,1} \pi_{\text{authors}} A_{1,1} + \gamma_{2,1} \pi_{\text{papers}} A_{2,1} \\ \pi_{\text{papers}} &= \gamma_{1,2} \pi_{\text{authors}} A_{1,2} + \gamma_{2,2} \pi_{\text{papers}} A_{2,2} \end{array}$$

3

・ロト ・回ト ・ヨト ・ヨト

Overview	The Problem	Common metrics	The model	Experimental results	Conclusions
				0000000 000000 00000000000000000000000	
Two-class mo	odel				

Let
$$\pmb{\pi} = [\pmb{\pi}_{ ext{authors}}, \pmb{\pi}_{ ext{papers}}]$$
, one has

$$P = \begin{bmatrix} \gamma_{1,1}A_{1,1} & \gamma_{1,2}A_{1,2} \\ \gamma_{2,1}A_{2,1} & \gamma_{2,2}A_{2,2} \end{bmatrix}$$

$$\begin{array}{ll} \pi_{\text{authors}} &= \gamma_{1,1} \pi_{\text{authors}} A_{1,1} + \gamma_{2,1} \pi_{\text{papers}} A_{2,1} \\ \pi_{\text{papers}} &= \gamma_{1,2} \pi_{\text{authors}} A_{1,2} + \gamma_{2,2} \pi_{\text{papers}} A_{2,2} \end{array}$$

3

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

Two-class model

Let
$$\pmb{\pi} = [\pmb{\pi}_{\scriptscriptstyle { ext{authors}}}, \pmb{\pi}_{\scriptscriptstyle { ext{papers}}}]$$
, one has

$$P = \left[\begin{array}{cc} \gamma_{1,1}A_{1,1} & \gamma_{1,2}A_{1,2} \\ \gamma_{2,1}A_{2,1} & \gamma_{2,2}A_{2,2} \end{array} \right]$$

$$\begin{array}{ll} \pi_{\text{authors}} &= \gamma_{1,1} \pi_{\text{authors}} A_{1,1} + \gamma_{2,1} \pi_{\text{papers}} A_{2,1} \\ \pi_{\text{papers}} &= \gamma_{1,2} \pi_{\text{authors}} A_{1,2} + \gamma_{2,2} \pi_{\text{papers}} A_{2,2} \end{array}$$

The weights γ_{ij} can be used to tune how much of their importance each player transfers to the subject.

The impact of co-authorship should be marginal respect to that of papers \rightarrow low $\gamma_{1,1}$

3

Λ.

イロト イヨト イヨト イヨト

Two-class model

Let
$$\boldsymbol{\pi} = [\boldsymbol{\pi}_{\scriptscriptstyle \mathsf{authors}}, \boldsymbol{\pi}_{\scriptscriptstyle \mathsf{papers}}]$$
, one has

$$P = \begin{bmatrix} \gamma_{1,1}A_{1,1} & \gamma_{1,2}A_{1,2} \\ \gamma_{2,1}A_{2,1} & \gamma_{2,2}A_{2,2} \end{bmatrix}$$

$$\pi_{\text{papers}} = \gamma_{1,2}\pi_{\text{authors}}\Lambda_{1,1} + \gamma_{2,1}\pi_{\text{papers}}\Lambda_{2,1}$$
$$\pi_{\text{papers}} = \gamma_{1,2}\pi_{\text{authors}}A_{1,2} + \gamma_{2,2}\pi_{\text{papers}}A_{2,2}$$

The weights γ_{ij} can be used to tune how much of their importance each player transfers to the subject.

Remark:

The previous perturbation theorems still hold in this model for perturbations concerning C only

3

Three-class model

Three-class model

We introduce in our model the class of journals

We introduce the journal-paper matrix

F(j, p) = 1 if journal j publishes paper p

- $G = (g_{i,j})$ such that $g_{i,j} = r$ if author i has published r papers in journal j
- $E = (e_{i,j})$ such that $e_{i,j} = k$ if k is the number of citations from papers published in journal i to papers published in journal j

3

・ロット 御 とう ほどう きょう

We introduce in our model the class of journals

We introduce the journal-paper matrix

F(j, p) = 1 if journal j publishes paper p

- $G = (g_{i,j})$ such that $g_{i,j} = r$ if author *i* has published *r* papers in journal *j*
- $E = (e_{i,j})$ such that $e_{i,j} = k$ if k is the number of citations from papers published in journal i to papers published in journal j

3

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

We introduce in our model the class of journals

We introduce the journal-paper matrix

F(j, p) = 1 if journal j publishes paper p

- $G = (g_{i,j})$ such that $g_{i,j} = r$ if author *i* has published *r* papers in journal *j*
- E = (e_{i,j}) such that e_{i,j} = k if k is the number of citations from papers published in journal i to papers published in journal j

3

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

It holds $E = FCF^T$, $G = FK^T$, the complete adjacency matrix is

$$S = \begin{bmatrix} FCF^{\mathsf{T}} & FK^{\mathsf{T}} & F \\ KF^{\mathsf{T}} & KK^{\mathsf{T}} & K \\ F^{\mathsf{T}} & K^{\mathsf{T}} & C \end{bmatrix}$$

3

It holds
$$E = FCF^T$$
, $G = FK^T$, the complete adjacency matrix is

$$S = \begin{bmatrix} FCF^{\mathsf{T}} & FK^{\mathsf{T}} & F \\ KF^{\mathsf{T}} & KK^{\mathsf{T}} & K \\ F^{\mathsf{T}} & K^{\mathsf{T}} & C \end{bmatrix}$$

The matrices in the first column contribute to the ranking of journals

3

・ロト ・回ト ・モト ・モト

It holds $E = FCF^T$, $G = FK^T$, the complete adjacency matrix is

$$S = \begin{bmatrix} FCF^T & FK^T & F\\ KF^T & KK^T & K\\ F^T & K^T & C \end{bmatrix}$$

The matrices in the second column contribute to the ranking of authors

=

G. M. Del Corso Citation-based evaluation of scientific products

It holds
$$E = FCF^T$$
, $G = FK^T$, the complete adjacency matrix is

$$S = \begin{bmatrix} FCF^T & FK^T & F \\ KF^T & KK^T & K \\ F^T & K^T & C \end{bmatrix}$$

The matrices in the third column contribute to the ranking of papers

3

G. M. Del Corso Citation-based evaluation of scientific products

・ロト ・回ト ・モト ・モト

Overview	The Problem	Common metrics	The model	Experimental results	Conclusions
				000000000000000000000000000000000000000	00
Three-class m	odel				

As for the two-class model...

Normalization of blocks and the use of a 3×3 parameter matrix $\Gamma = (\gamma_{i,j})$ lead to a stochastic matrix P of which the left Perron vector π represents the ranking of the subjects

Nice mathematical properties which relates the coupling matrix Γ with the "energy" of the three classes

・ロト ・回ト ・ヨト ・ヨト

As for the two-class model...

Normalization of blocks and the use of a 3×3 parameter matrix $\Gamma = (\gamma_{i,j})$ lead to a stochastic matrix P of which the left Perron vector π represents the ranking of the subjects

Nice mathematical properties which relates the coupling matrix Γ with the "energy" of the three classes

3

As for the two-class model...

Normalization of blocks and the use of a 3×3 parameter matrix $\Gamma = (\gamma_{i,j})$ lead to a stochastic matrix P of which the left Perron vector π represents the ranking of the subjects

Nice mathematical properties which relates the coupling matrix Γ with the "energy" of the three classes

Remarks ...

- Column normalization: blocks (Authors, Papers), (Authors, Journals) and (Papers, Journals) need column normalization
- Dummy journal: Introduction of a dummy journal which publishes the dummy paper.
- Probabilistic interpretation
- The Dummy Journal is the library, the dummy author is the librarian, the dummy paper is the catalog

イロト イヨト イヨト

Remarks ...

- Column normalization: blocks (Authors, Papers), (Authors, Journals) and (Papers, Journals) need column normalization
- Dummy journal: Introduction of a dummy journal which publishes the dummy paper.
- Probabilistic interpretation
- The Dummy Journal is the library, the dummy author is the librarian, the dummy paper is the catalog

Remarks ...

- Column normalization: blocks (Authors, Papers), (Authors, Journals) and (Papers, Journals) need column normalization
- Dummy journal: Introduction of a dummy journal which publishes the dummy paper.
- Probabilistic interpretation
- The Dummy Journal is the library, the dummy author is the librarian, the dummy paper is the catalog

Remarks ...

- Column normalization: blocks (Authors, Papers), (Authors, Journals) and (Papers, Journals) need column normalization
- Dummy journal: Introduction of a dummy journal which publishes the dummy paper.
- Probabilistic interpretation
- The Dummy Journal is the library, the dummy author is the librarian, the dummy paper is the catalog

Three-class model

Theoretical results for the three class model?

The previous perturbation theorems are not straightforward for this model

In fact...

Introducing a citation from paper *i* to paper *j* alters also the cross citation matrix.

=

Three-class model

Theoretical results for the three class model?

The previous perturbation theorems are not straightforward for this model

In fact...

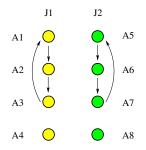
Introducing a citation from paper i to paper j alters also the cross citation matrix.

3

Three-class model

Theoretical results for the three class model?

The previous perturbation theorems are not straightforward for this model


In fact...

Introducing a citation from paper i to paper j alters also the cross citation matrix.

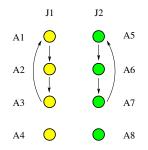
3

Overview	The Problem	Common metrics	The model	Experimental results	Conclusions
				00000000000000000000000000000000000000	00
Three-class m	odel				
Some	examples				

The yellow papers have the same rank of the corresponding green papers

Journal 1 has the same rank as Journal 2

Now we add a new citation



Э

3

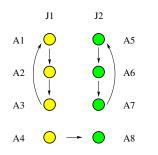
Citation-based evaluation of scientific products

Overview	The Problem	Common metrics	The model	Experimental results	Conclusions
				00000000000000000000000000000000000000	00
Three-class m	odel				
Some	examples				

The yellow papers have the same rank of the corresponding green papers

Journal 1 has the same rank as Journal 2

Now we add a new citation

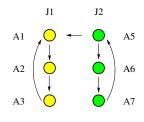


3

Citation-based evaluation of scientific products

Three-class model

Some examples



1

A.

글 🕨 🖌 글

Overview	The Problem	Common metrics	The model	Experimental results	Conclusions
				000000000000000000000000000	00
Three-class m	nodel				
Examp	ole				

A4 $\bigcirc \rightarrow \bigcirc$

A8

3

verview		Proble

Common metrics

Three-class model

Time

We need to add time into this mechanism

- Newly published papers do not have yet received enough citations
 - Their rank is destined to be low
 - The same for junior researchers whose rank remains lower than that of senior researchers
- How does it change the rank over the time?
- Was author X important in year y?

3

Overview	The Problem	Common metrics	The model	Experimental results	Conclusions
				00000000000000000000000000000000000000	•0
Three-class m	odel				
Time					
Time					

• Newly published papers do not have yet received enough citations

Their rank is destined to be low

The same for junior researchers whose rank remains lower than that of senior researchers

- How does it change the rank over the time?
- Was author X important in year y?

3

・ロト ・回ト ・ヨト ・ヨト

Overview	The Problem	Common metrics	The model	Experimental results	Conclusions
				00000000000000000000000000000000000000	•0
Three-class m	odel				
Time					
Time					

• Newly published papers do not have yet received enough citations

Their rank is destined to be low

The same for junior researchers whose rank remains lower than that of senior researchers

- How does it change the rank over the time?
- Was author X important in year y?

3

Overview	The Problem	Common metrics	The model	Experimental results	Conclusions
				00000000000000000000000000000000000000	•0
Three-class m	odel				
Time					
Time					

- Newly published papers do not have yet received enough citations
 Their rank is destined to be low
 The same for junior researchers whose rank remains lower than that of senior researchers
- How does it change the rank over the time?
- Was author X important in year y?

3

Overview	The Problem	Common metrics	The model	Experimental results	Conclusions
				00000000000000000000000000000000000000	•0
Three-class m	odel				
Time					
Time					

- Newly published papers do not have yet received enough citations
 Their rank is destined to be low
 The same for junior researchers whose rank remains lower than that of senior researchers
- How does it change the rank over the time?
- Was author X important in year y?

3

Overview	The Problem	Common metrics	The model	Experimental results	Conclusions
				00000000000000000000000000000000000000	•0
Three-class m	odel				
Time					
Time					

 Newly published papers do not have yet received enough citations
 Their rank is destined to be low

The same for junior researchers whose rank remains lower than that of senior researchers

- How does it change the rank over the time?
- Was author X important in year y?

3

• Scale the citation matrix *C* with an exponential decay function.

A paper not cited recently looses its importance

An old paper that is cited recently gains importance

3

• Scale the citation matrix C with an exponential decay function.

A paper not cited recently looses its importance

An old paper that is cited recently gains importance

3

- Scale the citation matrix C with an exponential decay function.
 - A paper not cited recently looses its importance
 - An old paper that is cited recently gains importance

3

Experiments

We used the CiteSeer dataset, focused primarily on the literature in computer and information sciences, made up by 250,000 authors, 350,000 papers.

3

We used the CiteSeer dataset, focused primarily on the literature in computer and information sciences, made up by 250,000 authors, 350,000 papers. **One class model:**

paper	pos.	cit.
Diffie, Hellman- New directions in Cryptography	31	553
Rivest, Shamir, Adleman - Public Key cryptography	3	1218
Bryant -Boolean Functions Manipulation, BDD	1	1636
Kirkpatrick, Gelatt, Vecchi- Simulated Annealing	2	1337
Floyd, Jacobson - TCP/IP Protocol	4	1125
Canny - Computational approach to Edge detection	10	834

3

Two-class model:

Author	cit	pap.	cit./pap.
Randal Bryant	2615	83	31.5
Sally Floyd	4950	91	54.4
John K. Ousterhout	2214	23	96.3
Luca Cardelli	2112	91	23.2
Van Jacobson	4719	40	118.0
Rakesh Agrawal	4745	83	57.2
Jack J. Dongarra	2799	291	9.6
Raj Jain	1038	116	8.9
Douglas C. Schmidt	2980	329	9.1
Vern Paxson	2735	66	41.4
John Mccarthy	911	41	22.2
Thomas A. Henzinger	3694	176	21.0

æ

・ロト ・回ト ・モト ・モト

The model Experimental results Com

Three class model: Journals (AMS-MR)

\approx 3500 journals, 110,000 authors, 300,000 papers

Journal	n. cit	n. pap.	IF	EF
Trans. AMS	22796	5247	0.820	0.041
Inventiones Mathematicae	21181	2481	1.659	0.039
Annals of Mathematics	19365	2193	2.426	0.031
Proc. AMS	16722	6045	0.513	0.042
Comm. Math. Phys	21997	3748	2.077	0.052
J. Algebra	15059	4457	0.568	0.039
Duke Math. J.	11939	2161	1.409	0.026
Mathematische Annalen	11248	2670	0.902	0.023
J. Functional Analysis	13778	2437	0.866	0.031
Comm. on Pure Appl. Math.	12111	1227	2.031	0.019

1

The model Experimental results C

Authors - time aware method (AMS-MR)

Author	num. cit	num. pap.
Lions, Pierre-Louis (FM)	2641	199
Erdös, Paul	1358	377
Bourgain, Jean (FM)	1019	156
Simon, Barry	1502	198
Shelah, Saharonh	972	333
Brezis, Haïm	1698	127
Lustzig, George	1145	87
Caffarelli, Luis	1288	131
Yau, Shing Tung (FM)	1571	136
Connes, Alain (FM)	1114	79
Arnold, Vladimir	551	90

Sorry, very few papers of Lucien Godeaux are in the database used

3

The model Experimental results C

Authors - time aware method (AMS-MR)

Author	num. cit	num. pap.
Lions, Pierre-Louis (FM)	2641	199
Erdös, Paul	1358	377
Bourgain, Jean (FM)	1019	156
Simon, Barry	1502	198
Shelah, Saharonh	972	333
Brezis, Haïm	1698	127
Lustzig, George	1145	87
Caffarelli, Luis	1288	131
Yau, Shing Tung (FM)	1571	136
Connes, Alain (FM)	1114	79
Arnold, Vladimir	551	90

Sorry, very few papers of Lucien Godeaux are in the database used

3

The model Experimental results C

Authors - time aware method (AMS-MR)

Author	num. cit	num. pap.
Lions, Pierre-Louis (FM)	2641	199
Erdös, Paul	1358	377
Bourgain, Jean (FM)	1019	156
Simon, Barry	1502	198
Shelah, Saharonh	972	333
Brezis, Haïm	1698	127
Lustzig, George	1145	87
Caffarelli, Luis	1288	131
Yau, Shing Tung (FM)	1571	136
Connes, Alain (FM)	1114	79
Arnold, Vladimir	551	90

Sorry, very few papers of Lucien Godeaux are in the database used

3

Conclusions

- Use automatic ranking only when strictly necessary
- Cannot replace peer review
- There are parameters that have to be agreed upon at a "political" level

Pros of our approach

- Flexible to meet multiple goals
- The ranking obtained is a mixture of ingredients...

- Use automatic ranking only when strictly necessary
- Cannot replace peer review
- There are parameters that have to be agreed upon at a "political" level

Pros of our approach

- Flexible to meet multiple goals
- The ranking obtained is a mixture of ingredients..

- Use automatic ranking only when strictly necessary
- Cannot replace peer review
- There are parameters that have to be agreed upon at a "political" level

Pros of our approach

- Flexible to meet multiple goals
- The ranking obtained is a mixture of ingredients..

- Use automatic ranking only when strictly necessary
- Cannot replace peer review
- There are parameters that have to be agreed upon at a "political" level

Pros of our approach

- Flexible to meet multiple goals
- The ranking obtained is a mixture of ingredients...we believe it is a mixed readed

- Use automatic ranking only when strictly necessary
- Cannot replace peer review
- There are parameters that have to be agreed upon at a "political" level

Pros of our approach

- Flexible to meet multiple goals
- The ranking obtained is a mixture of ingredients...we believe it is a nice recipe!

- Use automatic ranking only when strictly necessary
- Cannot replace peer review
- There are parameters that have to be agreed upon at a "political" level

Pros of our approach

- Flexible to meet multiple goals
- The ranking obtained is a mixture of ingredients...we believe it is a nice recipe!

- Use automatic ranking only when strictly necessary
- Cannot replace peer review
- There are parameters that have to be agreed upon at a "political" level

Pros of our approach

- Flexible to meet multiple goals
- The ranking obtained is a mixture of ingredients...we believe it is a nice recipe!

Open problems

Many open problems for mathematicians:

- More perturbation results for the three-class model: what happens if we add an author? Is it convenint to write a paper with your office-mate?
- Theoretical results for the time-aware mechanism.
- Can we apply similar ideas to "similar" problems?

3

Open problems

Many open problems for mathematicians:

- More perturbation results for the three-class model: what happens if we add an author? Is it convenint to write a paper with your office-mate?
- Theoretical results for the time-aware mechanism.
- Can we apply similar ideas to "similar" problems?

Open problems

Many open problems for mathematicians:

- More perturbation results for the three-class model: what happens if we add an author? Is it convenint to write a paper with your office-mate?
- Theoretical results for the time-aware mechanism.
- Can we apply similar ideas to "similar" problems?

Open problems

Many open problems for mathematicians:

- More perturbation results for the three-class model: what happens if we add an author? Is it convenint to write a paper with your office-mate?
- Theoretical results for the time-aware mechanism.
- Can we apply similar ideas to "similar" problems?

Overview

Thanks!

4

G. M. Del Corso Citation-I

Citation-based evaluation of scientific products

・ロト ・日 ・ ・ モ ・ ・ モ ・