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Lecture 3

3 The Singular Value Decomposition (SVD)

In this lecture we learn about one of the most fundamental and important
matrix decompositions of linear algebra: the SVD. It bears some similarity
with the eigendecomposition (ED), but is more general. Usually, the ED is
of interest only on symmetric square matrices, but the SVD may be applied
to any matrix. The SVD gives us important information about the rank,
the column and row spaces of the matrix, and leads to very useful solutions
and interpretations of least squares problems. We also discuss the concept
of matrix projectors, and their relationship with the SVD.

3.1 The Singular Value Decomposition (SVD)

We have found so far that the eigendecomposition is a useful analytic tool.
However, it is only applicable on square symmetric matrices. We now con-
sider the SVD, which may be considered a generalization of the ED to arbi-
trary matrices. Thus, with the SVD, all the analytical uses of the ED which
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before were restricted to symmetric matrices may now be applied to any
form of matrix, regardless of size, whether it is symmetric or nonsymmetric,
rank deficient, etc.

Theorem 1 Let A ∈ ℜm×n. Then A can be decomposed according to the
singular value decomposition as

A = UΣVT (1)

where U and V are orthonormal and

U ∈ ℜm×m, V ∈ ℜn×n.

Let p
∆
= min(m,n). Then

Σ =

p

m − p

[
Σ̃ 0

0 0

]

p n − p

where Σ̃ = diag(σ1, σ2, . . . , σp) and

σ1 ≥ σ2 ≥ σ3 . . . ≥ σp ≥ 0.

The matrix Σ must be of dimension ℜm×n (i.e., the same size as A), to main-
tain dimensional consistency of the product in (1). It is therefore padded
with zeros either on the bottom or to the right of the diagonal block, de-
pending on whether m > n or m < n, respectively.

Since U and V are orthonormal, we may also write (1) in the form:

UT

m×m

A

m×n

V

n×n

= Σ

m×n
(2)

where Σ is a diagonal matrix. The values σi which are defined to be positive,
are referred to as the singular values of A. The columns ui and vi of U and
V are respectively called the left and right singular vectors of A.
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The SVD corresponding to (1) may be shown diagramatically in the follow-
ing way:

A =























m×m

U













σ1

. . . 0

σp

0

0
. . .

0













m×n

Σ

















n×n

VT

(3)

Each line above represents a column of either U or V.

3.2 Existence Proof of the SVD

Consider two vectors x and y where ||x||2 = ||y||2 = 1, s.t. Ax = σy, where
σ = ||A||2. The fact that such vectors x and y can exist follows from the
definition of the matrix 2-norm. We define orthonormal matrices U and V

so that x and y form their first columns, as follows:

U = [y,U1]
V = [x,V1]

That is, U1 consists of a set of non–unique orthonormal columns which are
mutually orthogonal to themselves and to y; similarly for V1.

We then define a matrix A1 as

UT AV = A1

=

[
yT

U1
T

]
A[x,V1] (4)

The matrix A1 has the following structure:

[
yT

UT
1

]

︸ ︷︷ ︸

orthonormal

A
[

x V1

]

︸ ︷︷ ︸

orthonormal

=
[

yT

U1
T

] [
σy AV1

]
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=

σyT y yT AV1

↓ ↓
[

σ wT

0 B

]

1 n−1

1

m−1

∆
= A1. (5)

where B
∆
= UT

1 AV1. The 0 in the (2,1) block above follows from the fact
that U1 ⊥ y, because U is orthonormal.

Now, we post-multiply both sides of (5) by the vector

[
σ

w

]

and take 2-

norms:

∣
∣
∣
∣

∣
∣
∣
∣
A1

[
σ

w

]∣
∣
∣
∣

∣
∣
∣
∣

2

2

=

∣
∣
∣
∣

∣
∣
∣
∣

[
σ wT

0 B

] [
σ

w

]∣
∣
∣
∣

∣
∣
∣
∣

2

2

≥ (σ2 + wTw)2. (6)

This follows because the term on the extreme right is only the first element
of the vector product of the middle term. But, as we have seen, matrix
p-norms obey the following property:

||Ax||2 ≤ ||A||2 ||x||2 . (7)

Therefore using (6) and (7), we have

||A1||
2
2

∣
∣
∣
∣

∣
∣
∣
∣

[
σ

w

]∣
∣
∣
∣

∣
∣
∣
∣

2

2

≥

∣
∣
∣
∣

∣
∣
∣
∣
A1

[
σ

w

]∣
∣
∣
∣

∣
∣
∣
∣

2

2

≥ (σ2 + wTw)2. (8)

Note that

∣
∣
∣
∣

∣
∣
∣
∣

[
σ

w

]∣
∣
∣
∣

∣
∣
∣
∣

2

2

= σ2 +wTw. Dividing (8) by this quantity, we obtain

||A1||
2
2 ≥ σ2 + wTw. (9)

But, we defined σ = ||A||2. Therefore, the following must hold:

σ = ||A||2 =
∣
∣
∣
∣UTAV

∣
∣
∣
∣
2

= ||A1||2 (10)

where the equality on the right follows because the matrix 2-norm is invari-
ant to matrix pre- and post-multiplication by an orthonormal matrix. By
comparing (9) and (10), we have the result w = 0.
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Substituting this result back into (5), we now have

A1 =

[
σ 0

0 B

]

. (11)

The whole process repeats using only the component B, until An becomes
diagonal.

�

It is instructive to consider an alternative proof for the SVD. The following
is useful because it is a constructive proof, which shows us how to form the
components of the SVD.

Theorem 2 Let A ∈ ℜm×n be a rank r matrix (r ≤ p = min(m,n)). Then
there exist orthonormal matrices U and V such that

UT AV =

[
Σ̃ 0

0 0

]

(12)

where
Σ̃ = diag (σ1, . . . , σr) , σi > 0, i = 1, . . . , r. (13)

Proof:

Consider the square symmetric positive semi–definite matrix AT A1. Let the
eigenvalues greater than zero be σ2

1, σ
2
2 , . . . , σ

2
r . Then, from our knowledge

of the eigendecomposition, there exists an orthonormal matrix V ∈ ℜn×n

such that

V T AT AV =

[

Σ̃
2

0

0 0

]

. (14)

where Σ̃2 = diag[σ2
1 , . . . , σ

2
r ]. We now partition V as [V 1 V 2], where

V 1 ∈ ℜn×r. Then (14) has the form
[

V T
1

V2
T

]

n

AT A
[

V 1 V 2

]

r n − r

=

[

Σ̃
2

0

0 0

]

. (15)

1The concept of positive definiteness is discussed next lecture. It means all the eigen-

values are greater than or equal to zero.
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Then by equating corresponding blocks in (15) we have

V T
1 AT AV 1 = Σ̃

2
(r × r) (16)

V T
2 AT AV 2 = 0. (n − r) × (n − r) (17)

From (16), we can write

Σ̃
−1

V T
1 AT AV 1Σ̃

−1
= I. (18)

Then, we define the matrix U1 ∈ ℜm×r from (18) as

U1 = AV 1Σ̃
−1

. (19)

Then from (18) we have UT
1 U1 = I and it follows that

UT
1 AV 1 = Σ̃. (20)

From (17) we also have
AV 2 = 0. (21)

We now choose a matrix U2 so that U = [U 1 U2], where U2 ∈ ℜm×(m−r),
is orthonormal. Then from (19) and because U1 ⊥ U2, we have

UT
2 U1 = UT

2 AV 1Σ̃
−1

= 0. (22)

Therefore
UT

2 AV 1 = 0. (23)

Combining (20), (21) and (23), we have

UT AV =

[
UT

1 AV 1 UT
1 AV 2

UT
2 AV 1 UT

2 AV 2

]

=

[
Σ̃ 0

0 0

]

(24)

�

The proof can be repeated using an eigendecomposition on the matrix
AAT ∈ ℜm×m instead of on AT A. In this case, the roles of the orthonormal
matrices V and U are interchanged.

The above proof is useful for several reasons:
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• It is short and elegant.

• We can also identify which part of the SVD is not unique. Here, we
assume that AT A has no repeated non–zero eigenvalues. Because V 2

are the eigenvectors corresponding to the zero eigenvalues of AT A, V 2

is not unique when there are repeated zero eigenvalues. This happens
when m < n + 1, (i.e., A is sufficiently short) or when the nullity of
A ≥ 2, or a combination of these conditions.

By its construction, the matrix U2 ∈ ℜm×m−r is not unique whenever
it consists of two or more columns. This happens when m − 2 ≥ r.

It is left as an exercise to show that similar conclusions on the unique-
ness of U and V can be made when the proof is developed using the
matrix AAT .

3.3 Partitioning the SVD

Following the second proof, we assume that A has r ≤ p non-zero singular
values (and p− r zero singular values). Later, we see that r = rank(A). For
convenience of notation, we arrange the singular values as:

σ1

max

≥ · · · ≥ σr

min

non-zero

s.v.

︸ ︷︷ ︸

r non-zero s.v’s

> σr+1 = · · · = σp

︸ ︷︷ ︸

p−r zero s.v.’s

= 0

In the remainder of this lecture, we use the SVD partitioned in both U and
V . We can write the SVD of A in the form

A =
[

U1 U2

]
[

Σ̃ 0

0 0

] [
V T

1

V T
2

]

(25)

where where Σ̃ ∈ ℜr×r = diag(σ1, . . . , σr), and U is partitioned as

U =
[

U1 U2

]
m

r m−r
(26)
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The columns of U1 are the left singular vectors associated with the r nonzero
singular values, and the columns of U2 are the left singular vectors associated
with the zero singular values. V is partitioned in an analogous manner:

V =
[

V 1 V 2

]
n

r n−r
(27)

3.4 Interesting Properties and Interpretations of the SVD

The above partition reveals many interesting properties of the SVD:

3.4.1 rank(A) = r

Using (25), we can write A as

A =
[

U1 U2

]
[

Σ̃V T
1

0

]

= U1Σ̃V T
1

= U1B (28)

where B ∈ ℜr×n ∆
= Σ̃V T

1 . From (28) it is clear that the ith, i = 1, . . . , r
column of A is a linear combination of the columns of U 1, whose coefficients
are given by the ith column of B. But since there are r ≤ n columns in
U1, there can only be r linearly independent columns in A. Thus, if A

has r non-zero singular values, it follows from the definition of rank that
rank(A) = r. It is straightforward to show the converse: if A is rank r,
then it has r nonzero singular values.

This point is analogous to the case previously considered in Lecture 2, where
we saw rank is equal to the number of non-zero eigenvalues, when A is a
square symmetric matrix. In this case however, the result applies to any
matrix. This is another example of how the SVD is a generalization of the
eigendecomposition.

Determination of rank when σ1, . . . , σr are distinctly greater than zero, and
when σr+1, . . . , σp are exactly zero is easy. But often in practice, due to
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finite precision arithmetic and fuzzy data, σr may be very small, and σr+1

may be not quite zero. Hence, in practice, determination of rank is not so
easy. A common method is to declare rank A = r if σr+1 ≤ ǫ, where ǫ is a
small number specific to the problem considered.

3.4.2 N(A) = R(V 2)

Recall the nullspace N(A) = {x 6= 0 | Ax = 0}. So, we investigate the set
{x} such that Ax = 0. Let x ∈ span(V 2); i.e., x = V 2c, where c ∈ ℜn−r.
By substituting (25) for A, by noting that V 1 ⊥ V 2 and that V T

1 V 1 = I,
we have

Ax =
[

U1 U2

]
[

Σ̃ 0

0 0

] [
0

c

]

= 0. (29)

Thus, span(V 2) is at least a subspace of N(A). However, if x contains any
components of V 1, then (29) will not be zero. But since V = [V 1V 2] is a
complete basis in ℜn, we see that V 2 alone is a basis for the nullspace of A.

3.4.3 R(A) = R(U1)

Recall that the definition of range R(A) is {y | y = Ax, x ∈ ℜn}. From
(25),

Ax =
[

U 1 U2

]
[

Σ̃ 0

0 0

] [
V T

1

V T
2

]

x

=
[

U 1 U2

]
[

Σ̃ 0

0 0

] [
d1

d2

]

(30)

where
r

n − r

[
d1

d2

]

=

[
V T

1

V T
2

]

x. (31)

From the above we have

Ax =
[

U1 U2

]
[

Σ̃d1

0

]

= U1

(

Σ̃d1

)

(32)
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We see that as x moves throughout ℜn, the quantity Σ̃d1 moves through-
out ℜr. Thus, the quantity y = Ax in this context consists of all linear
combinations of the columns of U1. Thus, an orthonormal basis for R(A)
is U1.

3.4.4 R(AT ) = R(V1)

Recall that R(AT ) is the set of all linear combinations of rows of A. Our
property can be seen using a transposed version of the argument in Section
3.4.3 above. Thus, V1 is an orthonormal basis for the rows of A.

3.4.5 R(A)⊥ = R(U 2)

From Sect. 3.4.3, we see that R(A) = R(U1). Since from (25), U1 ⊥ U2,
then U2 is a basis for the orthogonal complement of R(A). Hence the result.

3.4.6 ||A||2 = σ1 = σmax

This is easy to see from the definition of the 2-norm and the ellipsoid example
of section 3.6.

3.4.7 Inverse of A

If the svd of a square matrix A is given, it is easy to find the inverse. Of
course, we must assume A is full rank, (which means σi > 0) for the inverse
to exist. The inverse of A is given from the svd, using the familiar rules, as

A−1 = V Σ−1UT . (33)

The evaluation of Σ−1 is easy because Σ is square and diagonal. Note that
this treatment indicates that the singular values of A−1 are [σ−1

n , σ−1
n−1, . . . , σ

−1
1 ].
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3.4.8 The SVD diagonalizes any system of equations

Consider the system of equations Ax = b, for an arbitrary matrix A. Using
the SVD of A, we have

UΣV T x = b. (34)

Let us now represent b in the basis U, and x in the basis V, in the same
way as in Sect. 3.6. We therefore have

c =
r

m − r

[
c1

c2

]

=

[
UT

1

UT
2

]

b (35)

and

d =
r

n − r

[
d1

d2

]

=

[
V T

1

V T
2

]

x (36)

Substituting the above into (34), the system of equations becomes

Σd = c. (37)

This shows that as long as we choose the correct bases, any system of equa-
tions can become diagonal. This property represents the power of the SVD;
it allows us to transform arbitrary algebraic structures into their simplest
forms.

Eq. (37) can be expanded as

[
Σ̃ 0

0 0

] [
d1

d2

]

=

[
c1

c2

]

(38)

The above equation reveals several interesting facts about the solution of
the system of equations. First, if m > n (A is tall) and A is full rank,
then the right blocks of zeros in Σ are empty. In this case, the system of
equations can be satisfied only if c2 = 0. This implies that UT

2 b = 0, or
that b ∈ R(U1) = R(A) for a solution to exist.

If m < n (A is short) and full rank, then the bottom blocks of zeros in Σ are
empty. This implies that a solution to the system of equations exists for any
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c or b. We note however in this case that d1 = Σ̃
−1

c and d2 is arbitrary.

The solution x is not unique and is given by x = V 1Σ̃
−1

c + V 2d2, where
d2 is any n − r vector.

If A is not full rank, then none of the zero blocks in (38) are empty. This
implies that the two paragraphs above both apply in this case.

3.4.9 The “rotation” interpretation of the SVD

From the SVD relation A = UΣV T , we have

AV = UΣ. (39)

Note that since Σ is diagonal, the matrix UΣ on the right has orthogonal
columns, whose 2–norm’s are equal to the corresponding singular value.
We can therefore interpret the matrix V as an orthonormal matrix which
rotates the rows of A so that the result is a matrix with orthogonal columns.
Likewise, we have

UT A = ΣV T . (40)

The matrix ΣV T on the right has orthogonal rows with 2–norm equal to the
corresponding singular value. Thus, the orthonormal matrix UT operates
(rotates) the columns of A to produce a matrix with orthogonal rows.

In the case where m > n, (A is tall), then the matrix Σ is also tall, with
zeros in the bottom m − n rows. Then, only the first n columns of U are
relevant in (39), and only the first n rows of UT are relevant in (40). When
m < n, a corresponding transposed statement replacing U with V can be
made.

3.5 Relationship between SVD and ED

It is clear that the eigendecomposition and the singular value decomposition
share many properties in common. The price we pay for being able to
perform a diagonal decomposition on an arbitray matrix is that we need two
orthonormal matrices instead of just one, as is the case for square symmetric
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matrices. In this section, we explore further relationships between the ED
and the SVD.

Using (25), we can write

AT A = V

[
Σ̃ 0

0 0

]

UT U

[
Σ̃ 0

0 0

]

V T

= V

[

Σ̃
2

0

0 0

]

V T . (41)

Thus it is apparent, that the eigenvectors V of the matrix AT A are the
right singular vectors of A, and that the singular values of A squared are
the corresponding nonzero eigenvalues. Note that if A is short (m < n) and
full rank, the matrix AT A will contain n − m additional zero eigenvalues
that are not included as singular values of A. This follows because the rank
of the matrix AT A is m when A is full rank, yet the size of AT A is n × n.

As discussed in Golub and van Loan, the SVD is numerically more stable to
compute than the ED. However, in the case where n >> m, the matrix V

of the SVD of A becomes large, which means the SVD on A becomes more
costly to compute, relative to the eigendecomposition of AT A.

Further, we can also say, using the form AAT , that

AAT = U

[

Σ̃
2

0

0 0

]

V T V

[

Σ̃
2

0

0 0

]

UT

= U

[

Σ̃
2

0

0 0

]

UT (42)

which indicates that the eigenvectors of AAT are the left singular vectors
U of A, and the singular values of A squared are the nonzero eigenvalues
of AAT . Notice that in this case, if A is tall and full rank, the matrix
AAT will contain m − n additional zero eigenvalues that are not included
as singular values of A.

We now compare the fundamental defining relationships for the ED and the
SVD:
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For the ED, if A is symmetric, we have:

A = QΛQT → AQ = QΛ,

where Q is the matrix of eigenvectors, and Λ is the diagonal matrix of
eigenvalues. Writing this relation column-by-column, we have the familiar
eigenvector/eigenvalue relationship:

Aqi = λiqi i = 1, . . . , n. ∗ (43)

For the SVD, we have

A = UΣVT → AV = UΣ

or
Avi = σiui i = 1, . . . , p, ∗ (44)

where p = min(m,n). Also, since AT = V ΣUT → AT U = V Σ, we have

AT ui = σivi i = 1, . . . , p. ∗ (45)

Thus, by comparing (43), (44), and (45), we see the singular vectors and
singular values obey a relation which is similar to that which defines the
eigenvectors and eigenvalues. However, we note that in the SVD case, the
fundamental relationship expresses left singular values in terms of right sin-
gular values, and vice-versa, whereas the eigenvectors are expressed in terms
of themselves.

Exercise: compare the ED and the SVD on a square symmetric matrix,
when i) A is positive definite, and ii) when A has some positive and some
negative eigenvalues.

3.6 Ellipsoidal Interpretation of the SVD

The singular values of A, where A ∈ ℜm×n are the lengths of the semi-axes
of the hyperellipsoid E given by:

E = {y | y = Ax, ||x||2 = 1} .
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span(v1)

span(v2)

span(u1)

span(u2)

sigma1

sigma2

{x |  ||x|| = 1}

E

Figure 1: The ellipsoidal interpretation of the SVD. The locus of points
E = {y | y = Ax, ||x||2 = 1} defines an ellipse. The principal axes of the
ellipse are aligned along the left singular vectors ui, with lengths equal to
the corresponding singular value.
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That is, E is the set of points mapped out as x takes on all possible values
such that ||x||2 = 1, as shown in Fig. 1. To appreciate this point, let us
look at the set of y corresponding to {x | ||x||2 = 1}. We take

y = Ax (46)

= UΣV T x.

Let us change bases for both x and y. Define

c = UT y

d = V T x. (47)

Then (46) becomes
c = Σd. (48)

We note that ||d||2 = 1 if ||x||2 = 1. Thus, our problem is transformed into
observing the set {c} corresponding to the set {d | ||d||2 = 1}. The set {c}
can be determined by evaluating 2-norms on each side of (48):

p
∑

i=1

(
ci

σi

)2

=

p
∑

i=1

(di)
2 = 1. (49)

We see that the set {c} defined by (49) is indeed the canonical form of an
ellipse in the basis U. Thus, the principal axes of the ellipse are aligned
along the columns ui of U, with lengths equal to the corresponding singular
value σi. This interpretation of the SVD is useful later in our study of
condition numbers.

3.7 An Interesting Theorem

First, we realize that the SVD of A provides a “sum of outer-products”
representation:

A = UΣVT =

p
∑

i=1

σiuivi
T , p = min(m,n). (50)
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Given A ∈ ℜm×n with rank r, then what is the matrix B ∈ ℜm×n with rank
k < r closest to A in 2-norm? What is this 2-norm distance? This question
is answered in the following theorem:

Theorem 3 Define

Ak =

k∑

i=1

σiuivi
T , k ≤ r, (51)

then
min

rank(B)=k

||A− B||2 = ||A− Ak||2 = σk+1.

In words, this says the closest rank k < r matrix B matrix to A in the 2–
norm sense is given by Ak. Ak is formed from A by excluding contributions
in (50) associated with the smallest singular values.

Proof:

Since UTAkV = diag(σ1 . . . σk, 0 . . . 0) it follows that rank(Ak) = k, and
that

||A− Ak||2 =
∣
∣
∣
∣UT (A − Ak)V

∣
∣
∣
∣
2

= || diag(0 . . . 0, σk+1 . . . σr, 0 . . . 0)||2
= σk+1. (52)

where the first line follows from the fact the the 2-norm of a matrix is invari-
ant to pre– and post–multiplication by an orthonormal matrix (properties of
matrix p-norms, Lecture 2). Further, it may be shown that, for any matrix
B ∈ ℜm×n of rank k < r, 2

||A− B||2 ≥ σk+1 (53)

Comparing (52)and (53), we see the closest rank k matrix to A is Ak given
by (51).

�

2Golub and van Loan pg. 73.
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This result is very useful when we wish to approximate a matrix by another
of lower rank. For example, let us look at the Karhunen-Loeve expansion
as discussed in Lecture 1. For a sample xn of a random process x ∈ ℜm, we
express x as

xi = Vθi (54)

where the columns of V are the eigenvectors of the covariance matrix R. We
saw in Lecture 2 that we may represent xi with relatively few coefficients by
setting the elements of θ associated with the smallest eigenvalues of R to
zero. The idea was that the resulting distortion in x would have minimum
energy.

This fact may now be seen in a different light with the aid of this theorem.
Suppose we retain the j = r elements of a given θ associated with the largest

r eigenvalues. Let θ̃
∆
= [θ1, θ2, . . . , θr, 0, . . . , 0]

T and x̃ = Vθ̃. Then

R̃ = E(x̃x̃T )

= E(Vθ̃θ̃
T
V)

= V













E | θ1 |2

. . .

E | θr |2

0
. . .

0













VT

= V Λ̃V T , (55)

where Λ̃ = diag [λ1 . . . , λr, 0 . . . , 0]. Since R̃ is positive definite, square
and symmetric, its eigendecomposition and singular value decomposition
are identical; hence, λi = σi, i = 1, . . . , r. Thus from this theorem, and
(55), we know that the covariance matrix R̃ formed from truncating the
K-L coefficients is the closest rank–r matrix to the true covariance matrix
R in the 2–norm sense.
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4 Orthogonal Projections

4.1 Sufficient Conditions for a Projector

Suppose we have a subspace S = R(X), where X = [x1 . . .xn] ∈ ℜm×n is
full rank, m > n, and an arbitrary vector y ∈ ℜm. How do we find a matrix
P ∈ ℜm×m so that the product P y ∈ S ?

The matrix P is referred to as a projector. That is, we can project an
arbitrary vector y onto the subspace S, by premultiplying y by P. Note
that this projection has non-trivial meaning only when m > n. Otherwise,
y ∈ S already for arbitrary y.

A matrix P is a projection matrix onto S if:

1. R(P) = S

2. P2 = P

3. PT = P

A matrix satisfying condition (2) is called an idempotent matrix. This is the
fundamental property of a projector.

We now show that these three conditions are sufficient for P to be a pro-
jector. An arbitrary vector y can be expressed as

y = ys + yc (56)

where ys ∈ S and yc ∈ S⊥ (the orthogonal complement subspace of S). We
see that ys is the desired projection of y onto S. Thus, in mathematical
terms, our objective is to show that

Py = ys. (57)

Because of condition 2, P2 = P, hence

Ppi = pi i = 1, . . . ,m (58)
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where pi is a column of P. Because ys ∈ S, and also (p1 . . .pm) ∈ S

(condition1), then ys can be expressed as a linear combination of the pi’s:

ys =

m∑

i=1

cipi, ci ∈ ℜ. (59)

Combining (58) and (59), we have

Pys =

m∑

i=1

ciPpi =

m∑

i=1

cipi = ys. (60)

If R(P) = S (condition 1), then Pyc = 0. Hence,

Py = P(ys + yc) = Pys = ys. (61)

i.e., P projects y onto S, if P obeys conditions 1 and 2. Furthermore, by
repeating the above proof, and using condition 3, we have

yT P ∈ S

i.e., P projects both column- and row–vectors onto S, by pre- and post-
multiplying, respectively. Because this property is a direct consequence of
the three conditions above, then these conditions are sufficient for P to be
a projector.

�

4.2 A Definition for P

Let X = [x1 . . .xn], xi ∈ ℜm, n < m be full rank. Then the matrix P

where
P = X(XT

X)−1XT (62)

is a projector onto S = R(X). Other definitions of P equivalent to (62) will
follow later after we discuss pseudo inverses.

Note that when X has orthonormal columns, then the projector becomes
XXT ∈ ℜm×m, which according to our previous discussion on orthonormal
matrices in Chapter 2, is not the m × m identity.

Exercises:
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• prove (62).

• How is P in (62) formed if r = rank(X) < n?

Theorem 4 The projector onto S defined by (62) is unique.

Proof:

Let Y be any other m × n full rank matrix such that R(Y ) = S. Since X

and Y are both in S, each column of Y must be a linear combination of the
columns of X. Therefore, there exists a full-rank matrix C ∈ ℜn×n so that

Y = XC. (63)

The projector P 1 formed from Y is therefore

P 1 = Y (Y T Y )−1Y T

= XC(CT XT XC)−1CT XT

= XCC−1(XT X)−1C−T CT XT

= X(XT X)−1XT

= P . (64)

Thus, the projector formed from (62) onto S is unique, regardless of the set
of vectors used to form X, provided the corresponding matrix X is full rank
and that R(X) = S.

�

In Section 4.1 we discussed sufficient conditions for a projector. This means
that while these conditions are enough to specify a projector, there may
be other conditions which also specify a projector. But since we have now
proved the projector is unique, the conditions in Section 4.1 are also neces-
sary.

4.3 The Orthogonal Complement Projector

Consider the vector y, and let ys be the projection of y onto our subspace
S, and yc be the projection onto the orthogonal complement subspace S⊥.
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Thus,

y = ys + yc

= Py + yc. (65)

Therefore we have

y − Py = yc

(I − P)y = yc. (66)

It follows that if P is a projector onto S, then the matrix (I − P) is a
projector onto S⊥. It is easily verified that this matrix satisfies the all
required properties for this projector.

4.4 Orthogonal Projections and the SVD

Suppose we have a matrix A ∈ ℜm×n of rank r. Then, using the partitions
of (25), we have these useful relations:

1. V1V1
T is the orthogonal projector onto [N(A)]⊥ = R(AT ).

2. V2V2
⊥T is the orthogonal projector onto N(A)

3. U1U1
T is the orthogonal projector onto R(A)

4. U2U2
T is the orthogonal projector onto [R(A)]⊥ = N(AT )

To justify these results, we show each projector listed above satisfies the
three conditions for a projector:

1. First, we must show that each projector above is in the range of the
corresponding subspace (condition 1). In Sects. 3.6.2 and 3.6.3, we
have already verified that V2 is a basis for N(A), and that U1 is a
basis for R(A), as required. It is easy to verify that the remaining two
projectors above (no.’s 1 and 4 respectively) also have the appropriate
ranges.

2. From the orthonormality property of each of the matrix partitions
above, it is easy to see condition 2 (idempotency) holds in each case.
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3. Finally, each matrix above is symmetric (condition 3). Therefore, each
matrix above is a projector onto the corresponding subspace.
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