Calcolo Numerico A/B Foglio di esercizi n. 2

Gianna Del Corso <delcorso@di.unipi.it>

22 ottobre 2013

In questa dispensa ci sono alcuni esercizi proposti di settimana in settimana. Il loro svolgimento non è in alcun modo obbligatorio, ma siete incoraggiati a svolgerli e a approfondire gli eventuali dubbi a ricevimento o alla lezione successiva!

1 Esercizi sui metodi di iterazione finzione

Esercizio 1. Per approssimare le soluzioni dell'equazione f(x) = 0 si vuole modificare il metodo delle tangenti utilizzando piuttosto che rette delle iperboli y = b + a/x. Supposto assegnato il punto iniziale x_0 , come si calcola la successiva iterata x_1 del metodo modificato?

Esercizio 2. Si consideri l'equazione

$$x^6 + 3x + 1 = 0.$$

- (a) Si determini il numero delle soluzioni reali negative dell'equazione.
- (b) Per ogni $x_0 \in \mathbb{R}$, si studi la convergenza del metodo delle tangenti quando si assuma x_0 come punto iniziale.
- (c) Si studi la convergenza del metodo iterativo

$$x_{i+1} = -\frac{x_i^6 + 1}{3}$$

quando si assuma come punto iniziale un qualsiasi punto x_0 reale.

Esercizio 3. È data la funzione

$$f(x) = e^x - 4x^2 + 4.$$

- (a) Si dica quante soluzioni ha l'equazione f(x) = 0 e se ne diano degli intervalli di separazione.
- (b) Per ognuna delle soluzioni si studi la convergenza del metodo delle tangenti (compresa scelta del punto iniziale ed ordine di convergenza).
- (c) Si dica se l'equazione

$$x = g(x)$$
, con $g(x) = \frac{4 + e^x}{4x}$

è equivalente all'equazione f(x) = 0 e si studi la convergenza del metodo iterativo $x_{i+1} = g(x_i)$ ad ogniuna delle soluzioni positive.

Esercizio 4. È data l'equazione

$$f(x) = \frac{x}{2} - x + 1 = 0$$

- (a) Si disegni il grafico di f(x). Quante soluzioni reali ha l'equazione?
- (b) Si determini un numero ω tale che il metodo delle tangenti converga per ogni $x_0<\omega.$
- (c) Si dica che cosa accade applicando il metodo delle tangenti a partire dal punto $x_0 = 0$.
- (d) Si calcolino due iterazioni del metodo delle tangenti a partire dal punto $x_0 = -2$ e si dia una limitazione dell'errore assoluto da cui è affetta l'approssimazione trovata.

Esercizio 5. È data l'equazione

$$f(x) = \frac{1-x}{e^x}$$

- (a) Tracciare il grafico di f(x) individuando in particolare l'ascissa α del punto di intersezione del grafico con l'asse delle ascisse, l'ascissa β del punto di minimo.
- (b) Se si sceglie $x_0 < \alpha$ il metodo delle tangenti applicato all'equazione f(x) = 0 genera una successione convergente? Giustificare la risposta.
- (c) Se si sceglie $\alpha < x_0 < \beta$ il metodo delle tangenti applicato all'equazione f(x) = 0 genera una successione convergente? Giustificare la risposta.
- (d) Se si sceglie $x_0 > \beta$ il metodo delle tangenti applicato all'equazione f(x) = 0 genera una successione convergente? Giustificare la risposta.
- (e) In ciascuno dei casi precedenti in cui il metodo risulta convergente indicare, con opportuna giustificazione, l'ordine di convergenza.