An Ontology-based Approach to Support
Formal Verification of Concurrent Systems

Natalia Garanina'?3, Igor Anureev!?, Elena Sidoroval3,

Vladimir Zyubin??, and Sergei Gorlatch*

! A.P. Ershov Institute of Informatics Systems, Novosibirsk, Russia
{garanina, anureev, lena}@iis.nsk.su
2 Institute of Automation and Electrometry, Novosibirsk, Russia
zyubin@iae.nsk.su
3 Novosibirsk State University, Russia
4 University of Muenster, Germany
gorlatch@uni-muenster.de

Abstract. Formal verification ensures the absence of design errors in a
system with respect to system’s requirements. This is especially impor-
tant for the control software of critical systems, ranging from automatic
components of avionics and spacecrafts to modules of distributed banking
transactions. In this paper, we present a verification support that auto-
matically extracts a concurrent system’s requirements from the technical
documentation and formally verifies the system design using an external
or built-in verification tool that checks whether the system meets the ex-
tracted requirements. Our support approach also provides visualization
and editing options for both the system model and requirements. The
key data components of our support are ontological descriptions of the
verified system and its requirements. We describe the methods used by
our system modules and we illustrate their work for the use case of an
automatic control system.

Keywords: Ontology - Information extraction - Formal verification -
Requirement engineering - Formal semantics

1 Introduction

Our long-term goal is a comprehensive approach to support formal verification of
concurrent systems. Our verification is based on patterns, because many require-
ments on real-world systems have recurring formulations with similar properties.
We rely on the well-proven methods of model checking for formal verification.
Systems for supporting the development and verification of requirements
based on patterns are an active topic of research [4,16,17,19,20,21]. Patterns
are parameterized expressions in natural language that describe typical require-
ments for the behaviour of a system. Usually, parameters of patterns are system
events or their combinations. For example, in pattern “The event Restart will
occur”, Restart is a parameter. The key property of patterns is that they have

precisely-defined formal semantics. Patterns make it easier for developers to spec-
ify and verify typical system requirements. The drawback of the current support
systems is that they offer only manual formulation of requirements and descrip-
tion of its formal semantics, sometimes with visualization. The first approach to
employ an ontology as a knowledge organization method for patterns [21] does
not yet use all benefits of the ontological knowledge representation.

Our envisaged advantage over the state-of-the-art approaches is that our
system supports a user-friendly, integrated strategy for the quality assurance
of concurrent systems using a single tool that extracts, corrects, and verifies
models, together with textual explanation and visualization of requirements. In
particular, our support system offers the following functionality: 1) constructing
the model of a concurrent system and the system requirements by extracting
information about them from technical documentation, 2) generating typical re-
quirements from the internal description of this extracted model, 3) representing
the extracted requirements in a mathematical, linguistic and graphical manner,
4) editing these different representations, 5) checking the integrity and consis-
tency of the model’s and requirements’ representations, 6) choosing a suitable
verifier for checking the model requirements, and 7) translating the model rep-
resentation into the input language of the selected verifier. In comparison to
the state-of-the-art support systems, our generation of requirements both from
technical documentation and from the internal description of the concurrent sys-
tem model is automatic, which considerably simplifies the work of requirement
engineers. However, due to the linguistic ambiguities in technical documenta-
tion, a correction of extracted requirements and models is usually required; it is
accomplished by the editors of our system.

An important feature of our approach is the intensive use of ontologies for
representing knowledge about concurrent systems and their requirements. First,
we use ontologies in the information extraction process and, second, all sys-
tem modules (except a verifier) use ontology instances and relations between
them. The ontological representation allows us to realize the following useful
functions: 1) specializing concurrent system descriptions for a particular subject
domain by using auxiliary ontology axioms and rules; 2) checking the integrity
of a concurrent system description; 3) checking the integrity and consistency of
a requirements’ description; and 4) naturally supporting the term consistency
between the description of a system and system’s requirements.

The following Section 2 sketches our system for supporting formal system
verification as a whole. Section 3 outlines our ontology-based methods used in the
module of information extraction and illustrates them with a use case of a bottle-
filling system. In Section 4 defines the Requirement and Process Ontologies used
for the internal description of systems and requirements. Sections 58 describe
the program modules of our system and the methods they use. Section 9 discusses
our current system’s limitations that we plan to address in future work.

2 The System for Supporting Formal Verification

Fig. 1 presents an overview of our envisaged system for supporting formal veri-
fication of concurrent systems that automatically extracts and generates system
requirements. The key data components of the system are Process Ontology
[7] and Requirement Ontology based on patterns [11] (shown in bold boxes in
Fig. 1). We use ontologies for the internal representation of concurrent systems
and requirements: an ontology is a convenient way to systematize knowledge,
which facilitates formulating and checking non-trivial consistency properties.
Besides, there are several well-developed tools for creating, editing and checking
ontologies [1,3]. In our case, the contents of ontologies are ontological descriptions
of a particular concurrent system model and the requirements it must meet.

Technical
documentation
1) — T

4)

Checking S -
Integrity and |——] Invalid \

. Requirements /
Consistency ‘. Requirements -

Process Requirements

7) —
Ontology Ontology [I Translator |« » { Language
Representation
\6) 3
T
Ontology of 5)
Specification Logics, FS-Translator
Graphical ‘
Checking \ Representation /
Integrity 2)
Selection of { Formula \‘ i S
e ‘—_1 . Edi
777777777 VEFI@ | Representation | «_Editor |

{ Invalid v
_ Processes !

1)

A4

—
M-Translator IE—»\ Answer w
\ J

Fig. 1. The System for Supporting Formal Verification

System descriptions are extracted from corpus of technical documentation
by the module of information extraction [9,8,10] (box (1) in Fig. 1). The require-
ments extracted from documentation can be extended with the descriptions of
requirements, automatically generated from the ontological description of the
system by the module of requirement extraction (box (2)). The descriptions of
the system model and the requirements are the basis for formal verification.

To verify a system, it is necessary to choose a suitable verifier taking into ac-
count the formal semantics of the ontology-based requirement representation. If
such a verifier is available, we translate the ontological description of the system
into the model specification input language of the verifier, and the requirements’

description is translated into the input language of the verifier (usually, this lan-
guage is some temporal logic). If no suitable verifier is available, then our system
uses the special verification algorithms for specific patterns. In this paper, we do
not consider the verification part of our system; it is painted grey in Fig. 1.

The extracted description of the system model and its requirements may be
incomplete or incorrectly constructed due to insufficiency of information pre-
sented in technical documentation. The integrity and consistency checking mod-
ules verify the correctness of the constructed instances of the Process Ontology
(box (3) in Fig. 1) and the Requirement Ontology (box (4)). In addition, as
a rule, a large number of requirements are formulated for concurrent systems.
Therefore, for the Requirement Ontology, it is also reasonable to check the se-
mantic consistency of a requirement set using standard ontological methods.
The output of these checking modules are sets of incorrectly constructed enti-
ties of the considered concurrent system, as well as incorrectly formulated or
inconsistent requirements (dashed rounded boxes (1) and (2) in Fig. 1).

A key feature of our ontologies is their formally defined semantics, which
enables formal verification. The Formal Semantic Translator (box (5) in Fig. 1)
generates the formulas of temporal logics for the instances of the Requirement
Ontology. Its output describes the requirements in the input language of a verifi-
cation tool. Dealing with requirements involves not only their formal semantics,
but also their representations both in natural language and in graphical form.
Two translation modules (boxes (6) and (7) in Fig. 1) produce the language and
graphical representations of requirements: they are important, because due to the
ambiguity of the natural language, it is possible that the extracted and generated
requirements may not meet the engineer’s expectations, and manual corrections
are required. This correction can use the editors for ontology representations, as
well as the editors for formal, language and graphical representations (shown in
dashed boxes in Fig. 1). In the following sections, we describe in more detail the
main ontologies and the non-grey modules in Fig. 1.

3 The Information Extraction Module

Fig. 2 shows the general scheme of our information extraction module that takes
technical documentation as input and searches for concepts and relations to
populate the Process and Requirement Ontologies described below. We use the
rule-based multi-agent approach to implement this module [9].

The process of information extraction includes the preliminary (lexical) step
and the main (ontological) step. At the lexical step, the module constructs a text
model that includes the terminological, thematic, and segment coverings of the
input text. The terminological covering is the result of lexical text analysis that
extracts the terms of a subject domain from the text and forms lexical objects
using semantic vocabularies. The segment text covering is a division of the input
text into formal fragments (clauses, sentences, paragraphs, headlines, etc.) and
genre fragments (document title, annotation, glossary, etc.). The thematic cov-
ering selects text fragments of a particular topic. The construction of a thematic

Facts
schemes

£ EI
i E 3
2 g

N

text covering

extraction

Module of Coreference —— o
|::> information N - ten)
resolution module ¥ S |
Lo } (o

Object text
covering

Terminological

e

text covering
M e
5= Ambiguity
I::> resolution
i module
temsg.\l.raet:fng Conflict variants of
,,,,,,,, object text covering

Fig. 2. The Information Extraction and Ontology Population Module

covering is based on the thematic classification methods. At the lexical step, the
module constructs objects that represent instances of concepts and relations of
the domain ontology from the lexical objects. Our module uses the ontology pop-
ulation rules which are automatically generated from lexico-syntactic patterns
formulated by experts taking into account the ontology and language of a sub-
ject domain. Each lexico-syntactic pattern describes a typical situation for the
subject area in terms of specific subject types of objects in the situation. These
lexico-syntactic patterns constrain morphological, syntactic, genre, lexical, and
semantic characteristics of the objects. The outputs of modules of disambigua-
tion [8] and co-reference resolution [10] are used to choose the best version of
text analysis for populating the ontology with a consistent set of instances of
subject domain concepts and relations found in the input text.

To implement the described extraction technology for analyzing concurrent
systems and their requirements, we create a knowledge base that includes: 1) a
genre model of the input text for constructing segments, 2) a semantic dictio-
nary, and 3) lexico-syntactic patterns for the subject domain. We illustrate this
approach below, using the subject domain of automatic control systems (ACS).

We view Technical Documentation (TD) as a set of documents used for the
design, creation and use of any technical objects. TDs have strong genre fea-
tures: they do not contain figurative expressions, evaluative adjectives, almost
no adverbs, the natural language ambiguity is compensated by the use of pre-
viously defined terms, etc. For this genre, we mark out sub-genre Purpose (the
description of the system and its elements with respect to goals and functions)
and sub-genre Scenario (the description of sequences of actions of automatic
processes and the corresponding input and output states of the system). The
detection of these genre fragments is based on a set of lexical markers which
indicate that these sub-genres are located in the headings of the text.

The main component of the knowledge base of our information extraction
module is a semantic dictionary. The system of lexico-semantic characteristics
in the dictionary provides the connection of subject vocabulary with the ontology
elements. For the ACS subject domain, we define the following lexical-semantic
classes of lexical units in the dictionary:

the vocabulary for the names of entities (objects, substances, technical de-
vices and their parts, software products and their components);
the vocabulary for naming situations:
e state predicates (absence, be, contain),
e event predicates for representing automatic processes and actions (move,
rotate, feed, warm up, turn on, stop),
e functional predicates (used for, provide),
e mental predicates (control, measure, monitor, determine);
the parametric vocabulary:
e the names of qualitative/quantitative parameters (e.g., level, position),
e the numbers and units of measurement, lexical names of reference scores
(e.g., low/high, given position),
e the predicates of quantitative change (e.g., fall, grow, normalize, etc.);
— the reference designation:
e as proper names (e.g., Large Solar Vacuum Telescope — LSVT),
e as unique numeric identifiers for designating referents of objects (e.g.,
temperature is measured by sensor (12)).

For constructing the lexico-syntactic patterns for descriptions of technological
processes, we define the following types of situations: 1) actions leading the
system or its components into enabled /disabled state; 2) activity characteristics
for the functionality of the system or its components; 3) states of the values of
quantitative or qualitative parameters; 4) processes for changing the parameters
of system elements; and 5) information transfer processes. Most of situations and
lexical names described in the TD texts are universal. Therefore, the generated
lexico-syntactic patterns can be used for a large class of technical objects. Our
developed methods are focused on the analysis of a linear text, however, after
small changes, they can be also applied to tables or TD schemas containing
language labels.

Illustrative example. Let us illustrate our ontology-based approach to sup-
port formal verification with a system documentation text taken from [18]. This
technical documentation describes the work of a bottle-filling system and in-
cludes several requirements on the system. We use two lexico-syntactic pat-
terns shown in Fig. 3 to extract an ontology object corresponding to a sensor
from the following text: “Two sensors®9! are also attached to the tank
to read®9? the fluid level® 9% information”. With terms argl, arg2, and
arg3, satisfying the syntactical Condition, the SensorConstructl-pattern cre-
ates an object of class Process with predefined attribute values following the
ACS-ontology structure, as explained in the next section. The SensorFeatures
pattern evaluates the attribute values of this sensor object using only the ACS-
ontology structure without the input text.

Scheme SensorConstruct1: Scheme SensorFeatures

genre_segment System_description segment Clause argl: Object:: PROCESS(type: Sensor)
argl: Term::Sensor() arg2: Object::Controller()
arg2: Term::Measuring() —sereate x = Channel::(from: argl, to: arg2)
arg3: Object:: Parameter() create y = ComAction:(from: argl, to: x,

message: argl.shared, when: frue)

Condition CGov{arg2, argl, arg3), .
edit argl(channels: add(x), comacts: add(y))

preposition(argl, arg2), preposition (arg2, arg3)
— ereate PROCESS::(type: argl::sem, shared: arg3)

Fig. 3. Example: The lexico-syntactic patterns for extracting objects for “sensors”

4 The Ontologies

We consider an ontology as a structure that includes the following elements:
(1) a finite, non-empty set of classes, (2) a finite, non-empty set of data at-
tributes and relation attributes, and (3) a finite, non-empty set of domains of
data attributes. Each class is defined by a set of attributes. Data attributes take
values from domains, and relation attributes’ values are instances of classes. An
information content of an ontology is a set of instances of its classes formed
by taking particular values of their attributes. In our case, the input data for
populating the Process and Requirement Ontologies is technical documentation.

We represent the classes of our ontologies, their properties and axioms using
the system Protégé [3] with the OWL language [2] and the SWRL language
[13]. These properties and axioms define the rules for checking the correctness of
attribute values. Using the SWRL rules, we define the conditions used in Protégé
for checking the correctness and consistency of ontological descriptions by the
Hermit inference engine [1].

The Process Ontology. The Process Ontology [7] is used for an ontological
description of a concurrent system by a set of its instances. We consider a concur-
rent system as a set of communicating processes that are described by the class
Process and are characterized by: 1) their type for a subject-domain description
(e.g. sensor, controller); 2) sets of local and shared variables; 3) a list of actions
on these variables which change their values; 4) a list of channels for the process
communication; and 5) a list of communication actions for sending messages.
The process variables (class Variable) and constants (class Constant) take val-
ues in domains from a set consisting of basic types (Booleans, finite subsets of
integers or strings for enumeration types) and finite derived types. Initial con-
ditions of the variable values can be defined by comparison with constants. The
actions of the processes (class Action) include operations over variables’ values.
The enabling condition for each action is a guard condition (class Condition)
for the variable values and the contents of the sent messages. The processes can
send messages via channels (class Channel) under the guard conditions. The
communication channels are characterized by the type of reading messages, ca-
pacity, and modes of writing and reading. The Process Ontology has its formal
semantics as a labelled transition system.

The classes of the Process Ontology are universal: they do not take into

account the features of a subject domain. In order to describe specific-domain
process ontology, we use ontology axioms and SWRL-rules. In the next subsec-
tion, we give an example of an SWRL-rule which restricts the Process Ontology
for typical elements of automatic control systems (ACS), such as simple and
complex sensors, controllers, actuators and the controlled object.
The ACS Process Ontology. The SWRL-rules impose the following restric-
tions on sensors. Sensors must read the observed values from the variables shared
with the controlled object and they cannot change it. They have outgoing chan-
nels connecting them with controllers and communication actions for sending
messages to the controllers. There is at least one controller and a shared vari-
able associated with each sensor. Simple sensors have no local variables and
actions: they can observe exactly one variable shared with the controlled ob-
ject and send the observed value unchanged to controllers. Complex sensors can
process observable and local variables to produce output for controllers.

Controllers, actuators and controlled objects are also restricted by the corre-
sponding SWRL-rules. Controllers and actuators must not have shared variables.
Controllers must have output channels connecting them with other controllers
and actuators, and input channels connecting them with sensors and actuators.
Actuators must have output channels connecting them with controllers and the
controlled object, and input channels connecting them with controllers. There
must be at least one sensor and at least one actuator connected with a con-
troller via input and output channels, respectively. There must be at least one
controller and controlled object connected with an actuator through input and
output channels, respectively. A controlled object must be connected with actu-
ators by input channels. There must be at least one shared variable, one sensor
and one actuator associated with a controlled object.

The following SWRL rule establishes the existence of a connection between
a sensor and a single controller in an automatic control system:

Process(7p) “Process(7q) “type(?p,Sensor) “type(?q,Controller) ->
Channel (7c) “channels(?p, 7c) channels(?q, ?7c)

The lexico-syntactic patterns that extract information have to follow the
restrictions mentioned above. In particular, for the bottle-filling system from
[18] the patterns in Fig. 3 generate the sensor-process with name id? shown in
Fig. 4 that has to send the observable value of the fluid level to the controller-
process named Cont via channel Cont id1. The attribute values in bold capital
letters correspond to particular words in the input text, and other attribute
values are generated automatically using the subject domain restrictions without
direct text correspondence. For our text, a single controller-process is created at
the beginning of model extraction automatically. Other lexico-syntactic patterns
produce the actuator-process ¢d2 for the bottom valve that must be closed when
the fluid level is low. This closing action is controlled by the controller-process
that sends to id2 the Off-message when the sensor id! reports the low fluid
level. Sending communication actions are in ComActs-attributes and receiving
communication actions are in Actions-attributes.

Name id1 Name Cont Name id2

Type SENSOR Type controller Type ACTUATOR

Local - Local Sens_1; Do_1: {On, Off}, ... Local On, Off:Bool; Cont...
Shared fluid level Shared - Shared -

Actions Actions when true: Cont_idl ? Sens_1; ... Actions when true: Cont_id2 ? Cont;

Channels Cont_id1 Channels Cont_id1, Cont_id2, ... when Cont=0ff : Off=true; ...
ComActs | when true : Con_id1 ! fluid level ComActs | when Sens_1 <EMPTY : Cont_id2 ! Off;... | |Channels Cont_id2, Obj_id2, ...
ComActs | when Off: Obj_id2 ! Stop; ...

Fig. 4. Example: The processes of the bottle-filling system

The Requirement Ontology. Let us define how requirements are described
by specification patterns. Requirements are expressed using standard Boolean
connections of five basic patterns defining the appearance of certain events which
can be considered as a particular combination of parameter values of the model.
These patterns are: Universality (the event always takes place), Fxistence (the
event will occur sometime), Absence (the event will never occur), Precedence
(one event surely precedes another), and Response (one event always causes an-
other). The patterns and their events can be constrained by eventual, time, and
quantitative restrictions. Requirements expressed by these patterns have formal
semantics as formulas of temporal logics LTL, CTL and their real-time variants
[5,15]. In these semantics, patterns are formulated using temporal operators, and
events are specified as Boolean combinations of propositions. These semantics
unambiguously express requirements, and they precisely define the correspond-
ing verification method.

Using ontologies for organizing a set of system requirements makes it possible
to accurately systematize knowledge about them due to a hierarchical structure
of concepts and relations. With our approach to the system requirements’ pre-
sentation, the user can rely on a small set of class attributes to describe a wide
range of properties of concurrent systems. This variability in expressing require-
ments is important, because for the same system it is necessary to specify both
simple, easily verifiable properties (such as reachability of some states of the
system), and complex properties that depend on the execution time of the sys-
tem components. The possibility to formulate such different properties within a
single formalism increases the quality of support for the development of complex
systems as it covers the entire picture of the system requirements. Moreover, the
ontological representation of a set of requirements enables its consistency check-
ing. The output of our system of information extraction from natural language
text is a content of a certain ontology of a subject domain. The content of the
ontology is unique for each individual corpus of technical documentation.

Our Requirement Ontology [11] organizes the existing systems of specification
patterns [6,14] into unified structure and contains 11 classes and 14 relations
between them. This ontology is designed to specify the requirements of system
models described by the Process Ontology. Events of such systems occur in
discrete time and the processes are completely dependent on the observed system
states (including the current time), but may be non-deterministic.

In Fig. 5, the instance id! of the Requirement Ontology is produced by our
IE-module from the following text fragment: ‘‘Both the bottle-filling and
the heating operations are prohibited when the fluid is pumped to
the filler tank’’ [18]. The formal semantic of this requirement are given by
the LTL formula G(id3.Local.On — id2.Local Off Nid4.Local.Off), where id3
and id4 are identifiers for the inlet valve and the heating steam valve, respec-
tively. The other requirement gen id! is automatically generated by the Re-
quirement Extraction Module described in the next section.

Name id1 [Name gen_id1

Kind universality Kind existence

Time type linear Time type branch

Subil '|d3.'LocaI.On > Subl id2.Local . Off
id2.Local Off & id4.Local Off| |...

Fig. 5. Example: The requirements for the bottle-filling system

5 The Requirement Extraction Module

The task of this module is to prompt the requirement engineer to formulate
requirements expressed by patterns, because important requirements expressing
the correct behavior of the system are not always explicitly defined in the techni-
cal documentation using the actions and variables of the system processes. The
generated requirements use variables and events of the extracted (constructed)
system; the process ontology is the input of the module. This module explores the
ontological description of the processes to find in the attribute values the events
of interest whose satisfiability and appearance order can affect correctness. Such
events are: changing the values of shared variables, sending/receiving messages,
etc. The requirements may be subject-independent or subject-dependent. In any
concurrent system, the following communication properties can be formulated:
— every sent message will be read (or overwritten) (Response);

— every message that has been read was sent before (Precedence);

— every guard condition for actions and communication actions must be satisfied
in some system execution (Existence with Branching time).

For example, in Fig. 5, the right requirement for the bottle filling system gen_ id1
says that there is at least one point in at least one system execution when the
bottom valve is open. Its formal semantic is CTL formula EFid2. Local. Off.
The subject-specific requirements deal with the specifics entities of the subject
domain, hence the extraction module must be customized to the subject area.
For example, the typical requirements for ACS are as follows:

— the controller will send a control signal to the actuator (Existence);

— the actuator will send a modifying signal to the controlled object (Existence);
— the values captured by the sensor do not exceed its range (Universality).

Based on the found events, the module formulates the requirements as spe-
cially marked instances of the Requirement ontology, and populates the ontology
with them. After that, the requirement engineer can change these instance re-
quirements by adding eventual, time and quantitative restrictions, using the
editors described below, or remove these requirements.

6 The Integrity and Consistency Modules

The extracted descriptions of concurrent processes and requirements may be
incomplete due to insufficient information in the technical documentation. The
integrity and consistency modules check the correctness of the constructed on-
tology instances, i.e., the integrity of the Process and Requirement Ontologies,
taking into account the default attribute values. Both ontologies are described
in the OWL language of the Protégé system, with the ontology constraints for-
mulated by axioms and SWRL-rules, hence, it is possible to use standard tools
for inference ontology processing, e.g., Hermit.

For the Process Ontology, we can check the general integrity properties: def-
initeness of variables in processes, manipulation of only visible variables and
channels, mandatory execution of any actions, the interaction with the environ-
ment through channels or shared variables, etc. For ontologies of subject domain
systems, specific constraints described by axioms and SWRL-rules must also be
checked. Some constraints for the ACS ontology are described in Section 4.

The integrity of the Requirement Ontology mainly concerns the definiteness
of all attribute values for class instances. For example, an instance of class Order
must contain two events as the values of the attributes of the ordered events.
Besides the descriptive integrity, it is also necessary to check semantic integrity,
since a large number of requirements are usually formulated for concurrent sys-
tems, both from technical documentation and by the Extract Requirement mod-
ule. Formal verification of these requirements is a rather time-consuming process.
The Consistency part of the module is used to pre-check the simple consistency
of these requirements. Since an ontology is just a declarative description of a
subject area, it is only possible to check the compatibility of requirements whose
semantics do not have nested temporal operators. For more complex require-
ments, including, e.g., time restrictions, a special add-in is required. In this case,
it is reasonable to leave compatibility checking for standard formal verification
tools. The following SWRL-rule restricts the incompatible pair of requirements:
Proposition p holds always (Universality) vs.

Proposition p will be false sometime (FExistence):

Occurence (7f) “kindPat (7f,Univ) “Prop(?p) “PatS1(7f,7p) "~
Occurence(?g) “kindPat (7f ,Exis) “Prop(?7q) “PatS1(7f,7q)"
ProOp(?7q,Neg) “ProSubl1(?q,p) -> Answ(?a) res(7a,Errorl)

The modules report to the requirement engineer about the instances that do not
satisfy the ontology constraints, and he can correct them in the system editors.

7 The Representation Modules

This section describes three ways of requirement representation in our system.
The Formal Semantic Module. For using formal verification methods, re-
quirements for concurrent systems must be presented as formulas of some logic.
Since we focus on model checking (e.g., SPIN verification tool [12]), the formal
semantics for instances of the Requirement ontology are expressed by formulas
of temporal logics. The FST-module translates the requirement instances into
LTL or CTL formulas.
The translation takes several steps for determination:
1) determine whether time is branching or linear;
2) determine the requirement pattern;
3) determine the temporal /quantitative restrictions of the requirement /events;
4) compute the formula using the results of the previous steps, such that the
resulting formula corresponds to the requirement without eventual constraints;
5) determine the eventual constraints;
6) compute the formula using the results of the previous steps, such that the
resulting formula corresponds to the requirement with eventual constraints.
The translation grammar is highly context-sensitive. Hence, for calculating
formulas, the module uses mainly the tables of formulas’ dependence on the
restrictions and several analytic rules. The fragment of the table for Order re-

To | Tq | Dw | Pw | Quw | Do | P, | Q| Dg| Py | Qq Meaning

[ey e ey oy e >
0] 0] 0 0 0 oO|O0 0 0 0 0 | pinducesg
G(p->Fg

0 0 0 0 0 oO|0|0]|0]O z | pinduces zQ repetitions of g
G(p->F%)

0 0 0 0 0 oO|0|]0]O z 0 | pinduces appearance g with period zP
G(p -> F(g A G(q -> ~q U.q)))

Fig. 6. A fragment of the translation table for Response requirements

quirements on Fig. 6 illustrates three variants of formal semantics of the Response
requirement. The first columns of the table characterize the presence of dura-
tion D, periodic P, and quantitative) restrictions on the requirement pattern
itself (subscript o), p-event (subscript ,), and g-event (subscript ;). The time
delay of the first occurrence of p or ¢ events using 7}, or T, respectively, can be
taken into account. The last column contains a graphical, language, and formal
presentation of the Responce requirement for the following combination of re-
strictions: 1) an absence of restrictions (zero in each column), 2) the restriction

on the number of repetitions of proposition ¢ (number z in column @), and 3)
the restriction on the periodicity of proposition ¢ (number z in column Fy).
The Language Translation Module. The requirements represented as in-
stances of the Requirement Ontology or logic formulas are usually difficult to
understand. The LT-module provides a natural language description of require-
ments. It translates instances of the Requirement Ontology into statements in
natural language using a limited set of terms (e.g., “always”, “never”, “repetitions”,
etc.). The translation grammar for this module is low context-sensitive. Hence,
for formulating language expressions, the module uses mainly analytic rules. The
language statements for the Response requirement are shown in Fig. 6.

The Graphic Translation Module. Due to the ambiguity of natural lan-
guage, the language representations of requirements may be poly-semantic, and,
at the same time, their unambiguous formal semantics may be hard to read. For
smoothing the ambiguity of the first representation and the low readability of
the second, the GT-module translates a requirement instance into a graphic rep-
resentation which is a representative segment of a linear path (for linear time) or
a fragment of a computation tree (for branching time) with the depicted events
of the requirement. For this visualization, the module uses the tables of formulas
dependence on the restrictions and analytic rules equally. We develop a method
for translating the requirements with linear time into a graphical representation
in ASCII format. Examples of the translation are shown in the table in Fig. 6.

8 The Editors

Due to the incomplete formalization of technical documentation, the correct ex-

traction of a concurrent system and its requirements cannot be fully automatic.

The requirement engineers must be provided with the editors for the data com-

ponents of the verification process. For the Process and Requirement Ontologies

written in the OWL-language, there exist editors, in particular Protégé. How-

ever, for getting more visibility for the Process Ontology, we plan to develop a

special editor based on the semantic markup ontology. It will present the pro-

cesses in a tabular form as instances of classes with the corresponding constraints

of the domain, and it will visualize the scheme of data flows between processes.
The instances of the Requirement Ontology can be modified by the editor

that combines four editing methods depending on the representation type:

— Ontological representation: the values of class attributes can be changed fol-

lowing the axiomatic constraints.

— Language representation: the limited natural language is used.

— Graphic representation: the set of patterns for events ordering on a straight

line or in a tree is provided.

— Formal representation: the syntax elements of a formula can be changed within

the specified patterns.

All representations should be visible in the same window (the formula and the

text are usually not long). Changes in one of the representations affect the others.

9 Conclusion

In this paper, we propose an ontology-based support for verification of concurrent
systems. Our approach has the following advantages. First, it uses the universal
ontological representation of concurrent systems and the requirements on them,
which systematizes the system data and requirements and makes possible the
integrity and consistence checking. Second, our support provides several repre-
sentations of concurrent systems and requirements: the initial representation in
natural language as technical documentation, the ontological representation, the
formal representation as logic formulas, the representation in a limited natural
language, and the graphic representation. The system tools for viewing, edit-
ing, and navigating over these representations help the requirement engineers
to deal with requirements. Third, the formal semantics for ontologies of concur-
rent systems and requirements are used in formal methods for the verification
of concurrent systems to ensure their correctness and quality.

There are several directions for future work. Currently, we have developed
Process and Requirement Ontologies, their formal semantics and ontology ax-
ioms and rules for them. We will extend the set of requirement patterns that
can be generated from the Process Ontology with possible general correctness
requirements. We will study the possibilities to enrich the set of requirement
patterns that can be checked for consistency with ontology means. We also will
develop a semantic markup of classes of the Process Ontology for customizing it
to a specific subject domain. We work on designing new methods of translation
to Process Ontology from various formalisms of concurrent system descriptions
(e.g., Reflex [22]), to improve our approach. The information extraction methods
are already partially implemented; we will specialize them for important concur-
rent systems’ subject domains, in particular for automatic control systems. The
Requirement Extraction, Integrity and Consistence, and Representation modules
will also be implemented with the enriched sets of requirement patterns.

Acknowledgment. This research has been supported by Russian Foundation
for Basic Research (grant 17-07-01600), and by the BMBF project HPC2SE at
WWU Muenster (Germany).

References

1. HermiT OWL Reasoner. http://www.hermit-reasoner.com/

2. OWL Web Ontology Language Overview. https://www.w3.org/ TR /owl-features/

3. Protégé: A free, open-source ontology editor and framework for building intelligent
systems. https://protege.stanford.edu/

4. Autili, M., Grunske, L., Lumpe, M., Pelliccione, P., Tang, A.: Aligning qualitative,
real-time, and probabilistic property specification patterns using a structured En-
glish grammar. IEEE Transactions on Software Engineering 41(7), 620-638 (Jul
2015). https://doi.org/10/f3nth4

5. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)

6. Dwyer, M., Avrunin, G., Corbett, J.: Patterns in property specifications for finite-
state verification. In: Proc. of the 21st Int. Conference on Software Engineering. pp.
411-420. ICSE "99, ACM, New York, NY, USA (1999). https://doi.org/10/fp54nc

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Garanina, N., Anureev, I.: Verification oriented process ontology. Automatic Con-
trol and Computer Sciences 53(7) (2019), to appear

Garanina, N., Sidorova, E.: Context-dependent lexical and syntactic disambigua-
tion in ontology population. In: Proc. of the 25th International Workshop on
Concurrency, Specification and Programming (CS&P). pp. 101-112. Humboldt-
Universitat zu Berlin (2016)

Garanina, N., Sidorova, E., Bodin, E.: A multi-agent text analysis based on on-
tology of subject domain. In: Voronkov, A., Virbitskaite, I. (eds.) Perspectives of
System Informatics. LNCS, vol. 8974, pp. 102-110. Springer (2015)

Garanina, N., Sidorova, E., Kononenko, 1., Gorlatch, S.: Using multiple semantic
measures for coreference resolution in ontology population. International Journal
of Computing 16(3), 166-176 (2017)

Garanina, N., Zubin, V., Lyakh, T., Gorlatch, S.: An ontology of specification
patterns for verification of concurrent systems. In: Proc. of the 17th Intern. Conf.
SoMeT-18. Frontiers in Artificial Intelligence and Applications, vol. 303, pp. 515—
528. 10S Press, Amsterdam (2018). https://doi.org/10/c87f

Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley Professional, Boston, 1 edition edn. (2003)

Horrocks, I., et al.: SWRL: a Semantic Web Rule Language combining OWL and
RuleML. https://www.w3.org/Submission/SWRL/

Konrad, S., Cheng, B.: Real-time specification patterns. In: Proc. of 27th
Intern. Conf. on Software Engineering (ICSE). pp. 372-381 (May 2005).
https://doi.org/10/bzk6x5

Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Systems 2(4), 255-299 (1990). https://doi.org/10/fmg8jj

Mondragén, O., Gates, A., Roach, S.: Prospec: Support for elicitation and
formal specification of software properties. ENTCS 89(2), 67-88 (Oct 2003).
https://doi.org/10/fv94fk

Salamah, S., Gates, A., Kreinovich, V.: Validated templates for specification of
complex LTL formulas. Journal of Systems and Software 85(8), 1915-1929 (2012).
https://doi.org/10/c87s

Shanmugham, S., Roberts, C.: Application of graphical specification method-
ologies to manufacturing control logic development: A classification and com-
parison. Int. J. of Computer Integrated Manufacturing 11(2), 142-152 (2010).
https://doi.org/10/df3jsw

Smith, M., Holzmann, G., Etessami, K.: Events and constraints: A graphical editor
for capturing logic requirements of programs. In: Proc. of 5th IEEE International
Symposium on Requirements Engineering. pp. 14-22. IEEE, Toronto, Ontario,
Canada (27). https://doi.org/10/bw6r64

Wong, P., Gibbons, J.: Property specifications for workflow modelling. In: Leuschel,
M., Wehrheim, H. (eds.) Proc. of 7th International Conference “Integrated For-
mal Methods” (IFM). LNCS, vol. 5423, pp. 56-71. Springer Berlin Heidelberg,
Diisseldorf, Germany (Feb 2009). https://doi.org/10/cr25w9

Yu, J., et al.: Pattern based property specification and verification for service com-
position. In: Proc. of 7th International Conference on Web Information Systems
Engineering. LNCS, vol. 4255, pp. 156-168. Springer Berlin Heidelberg, Wuhan,
China (Oct 2006). https://doi.org/10/drqf85

Zyubin, V., Liakh, T., Rozov, A.: Reflex language: A practical notation for cyber-
physical systems. System informatics 12, 85-104 (2018). https://doi.org/10/c9b3

