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Abstract. The main goal of systems biology is to understand the dy-
namical properties of biological systems by investigating the interactions
among the system components. In this work, we focus on the robustness
property, a behaviour observed in several biological systems that allows
them to preserve their functions despite external and internal perturba-
tions. We first propose a new formal definition of robustness using the
formalism of continuous Petri nets. Then, we demonstrate the validity
of our definition by applying it to the models of three different robust
biochemical networks.
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1 Introduction

From the discovery of DNA structure, in 1953, there has been an increasing
interest in the study of living cells, to understand their morphological and func-
tional organization. A cell, in fact, is a very complex system. It consists of a
huge number of components that interact with each other essentially through
chemical reaction networks. The cell’s global behaviour, both internal and with
the environment, emerges from such an interaction.

Chemical reaction networks, called pathways in the context of cells, govern
the basic activities of cells and how the cell reacts to external stimuli. They
are often based on long series of chemical reactions, also known as signalling
cascades, activated by an initial stimulus (a chemical in the environment or
entering the cell), that is perceived by a transductor (e.g. a receptor protein in
the cell surface). The transductor causes the cascade of reactions to start, leading
to the amplification and the filtering of the stimulus (or input signal), in order to
allow to suitably regulate and reconfigure cell activities as a response. Signalling
pathways play a crucial role for the cell functioning. Many severe diseases, such
as cancer and diabetes, are caused by the malfunctioning or the corruption of a
crucial signalling pathway.

In this particular context, the main challenge is to explore how the compo-
nents of the cells interact with each other as a system, reproducing the observed
behaviours, and how the concentration of particular species can influence the
whole complex structure. To achieve this goal, one of the possible solutions is
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to follow the systems biology approach that allows us to design predictive and
multiscale models. Systems biology, in fact, has two main purposes: to analyze
the interactions between single parts of each cell and to examine the working
principles in its entirety, exploring their robust and complex structure.

In this perspective, we focus on the definition of the robustness property, a
fundamental feature of complex evolving systems, for which the functionality of
the system remain essentially intact despite the presence of internal and external
perturbations.

In nature, there are different mechanisms ensuring robustness, such as system
control, redundancy, modularity and structural stability [13]. System control is
based on negative and positive feedback which, together, amplify the pathway
input signals filtering out noise (other chemicals that may interfere). In this
context, the most popular example is the chemotaxis of E. Coli [1] because it
shows an evident robust adaptation to environmental changes. Redundancy plays
a key role in robustness: pathways often have different ways to produce the same
molecules, allowing them to tolerate problems such as the absence of a specific
reactant. Modularity ensures that, if there is a damage in one of the parts of
the system, this does not affect also the other components. In this way, it is
possible to avoid a total collapse, due to a local error. Cells are clearly organized
into functional units separated by membranes (the nucleus, the Golgi apparatus,
endosomes, etc.). Structural stability is the quality according to which a system
is able to adapt to changes even in presence of different external perturbations.
Some examples of this can be found in gene regulatory circuits, that are stable
for a broad range of stimuli and genetic polymorphisms [12].

It emerges that robustness can be seen as an internal quality or as an ar-
chitectural characteristic of the system that enables complex systems to evolve
after a specific environmental perturbation. The robustness of a pathway can
be tested by performing wet-lab (in vitro) experiments, or through mathemat-
ical or computational (in silico) approaches on a pathway model. Model-based
approaches are usually based either on mathematical analysis methods, or on nu-
merical and simulation methods. Unfortunately, the applicability of all of these
approaches is often hampered by the complexity of the models to be analyzed
(often expressed in terms of ODEs or Markov chains).

To avoid analyzing complex models, Shinar and Feinberg in [22,23] proposed
a sufficient condition that, in some particular cases, allows robustness to be de-
rived directly from a syntactical property of the pathway, without the need of
studying or simulating its dynamics. The sufficient condition states that a mass
action system can be considered robust if it admits a positive steady state, the
underlying reaction network has a deficiency (that is a measure of linear inde-
pendence among its reactions) equal to one and there are distinct non-terminal
complexes that differ only in a single species (see [7] for the details).

This approach has the great advantage to prove robustness without executing
the system. Indeed, verifying robustness would require, in general, to consider
all possible initial states of the system. In particular, regarding the signalling
pathways, it would be necessary to test the system behaviour by examining all
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the possible combinations of initial concentrations of chemical species and, in
practice, this would require a huge number of simulations. On the other hand,
the sufficient condition proposed in [22,23] is not general: its syntactic constraint
make them applicable to a particular class of robust pathways.

A further step towards the formal study of robustness was made in [4], where
the authors introduced the concept of adaptability of a system. This consists in
the capacity of the system to adapt itself to initial concentrations of chemi-
cal species. From this work emerges the possibility to have different degrees in
robustness representing how the system reacts to internal and external changes.

The first problem in formally studying robustness is that in the literature
there is no formal characterization of this property, able to generalize the dif-
ferent aspects of robustness and adaptability of a biochemical network. For this
reason, we propose a formal definition of robustness based on the continuous
Petri nets formalism, able to capture different aspects of this property. In par-
ticular, we focus on the role of the initial concentrations of the species involved
in the chemical reactions to study how they influence the system functionality.

In many biochemical networks the initial set of chemical species can have
impact on the internal features of the system. An example is the chemotaxis of
the E. coli, in which the enzymes initial concentration has effect on the bacterium
perception of the external environment.

With our definition, we are able to describe and study which perturbation
influences more the functionality of the system and how. We validate our def-
inition by modelling and simulating three different systems, two related to the
Escherichia coli organism (the EnvZ/OmpR and the isocitrate dehydrogenase
(IDH ) regulatory systems) and the last one dealing with enzyme activity at sat-
uration. By simulations, we verify the robustness of the system and, changing
the initial parameters, we test the degree of the robustness.

We proceed by first introducing the continuous Petri nets formalism in Sec-
tion 2.1, which is the base of our new formal definition of robustness presented
in Section 2.2. In Section 3 we validate our definition using the three biochemical
examples. Finally, Section 4 contains some conclusions and future work.

2 Formal definition of the robustness property

Many formalisms have been used in Computer Science to describe biological sys-
tems at different abstraction levels, as for example Petri nets [10,21], P Systems
[18,19] and Hybrid Automata [2,11,14].

In this work, we formalize the robustness property, using the formalism of
continuous Petri nets. Petri nets have many applications in different areas, since
they are able to model static and dynamic behavioural aspects. They are a valid
tool to study concurrent and parallel programs [17], communication protocols,
decision models and neural networks.

2.1 Continuous Petri nets formalism definition

Formally, we can define a continuous Petri net N [8] as a quintuple:
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Fig. 1: Example of use of Petri net. In this case, it shown how represent the chemical

reaction: 2 H2 + O2
k

2 H2O. (A) and (B) represent two different markings for the
same Petri net. The marking in (B) is obtained from the one in (A) as the result of
firing transition with the rate k.

N =< P, T, F,W,m0 >

where:

– P is the set of continuous places, conceptually one for each considered kind
of system resource;

– T is the set of continuous transitions that consume and produce resources;

– F ⊆ (P×T )
⋃

(T×P )→ R≥0 represents the set of arcs in terms of a function
giving the weight of the arc as result: a weight equal to 0 means that the arc
is not present;

– W : F → R≥0 is a function, which associates each transition with a rate;

– m0 is the initial marking, that is the initial distribution of tokens (repre-
senting resource instances) among places. A marking is defined formally as
m : P → R≥0.

The tokens are movable objects, assigned to places, that are consumed by transi-
tions in the input places and produced in the output places. Graphically, a Petri
net is drawn as a graph with nodes representing places and transitions. Circles
are used for places and rectangles for transitions. Tokens are drawn as black dots
inside places. Graph edges represent arcs and are labeled with their weights. For
simplicity, the labels of arcs with weight 1 is omitted. To faithfully model bio-
chemical network, the marking of a place is not an integer, but a positive real
number, called token value, representing the concentration of chemical species.
To each transition is associated a chemical rate, which represents a continuous
flow.

Figure 1 shows a simple example of continuous Petri net modeling the chemi-

cal reaction 2 H2 + O2
k

2 H2O taken from [17]. In sub-figure (A), each place,
H and O, has two tokens: the transition is enabled since it requires two tokens
from H2 and only one from O2. Sub-figure (B) shows the situation after the
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transition has been fired: the tokens are moved to the output places. Note that
in (B) the transition is no longer enabled.

The dynamics of a Continuous Petri net can be expressed in terms of ODEs
(in agreement with the standard mass action kinetics of chemical reactions).
Each place corresponds to a continuous variable whose value corresponds the
place’s marking. The dynamics of the variable is expressed by a differential
equation consisting of a summation of terms corresponding to the transitions
connected to the place. The term has a positive sign if the the place is connected
to the transition by an outgoing arc. The sign is negative otherwise. Moreover,
the term is the product of the weight of the arc with the values of the variables
corresponding to all the places providing resources to the transition (i.e., having
and outgoing arc connecting them to the transition). Those variables have as
exponent the weight of the arc connecting them to the transition.

For example, considering the continuous Petri net in Figure 1. The ODEs
describing the dynamics of the Petri net are as follows:

dH2

dt
= −2kH2

2O2
dO2

dt
= −kH2

2O2
dH2O

dt
= +2kH2

2O2

An alternative (stochastic) dynamics can be given by using the terms of the
ODEs computed for each transition as rates of a Continuous Time Markov Chain
(CTMC). Both ODEs and CTMCs offer standard analytical ways to compute
the steady state of the system.

Hereinafter, we refer to Continuous Petri nets simply as Petri nets and we
assume their dynamics to be expressed in terms of ODEs.

2.2 Formal definition of robustness

Given a biochemical network, like a signalling pathway, our idea is to verify
whether, even by varying the initial concentrations of some chemical species, the
output of the chemical reactions remains either constant or bounded within a
given interval of values. We will assume the initial concentration of the input
molecules of the pathway to vary within given intervals, and the initial con-
centrations of all the other molecules (that are neither input, nor output) to
be fixed. Under these assumptions, we define the property of robustness of the
system and we formalize it by using Petri nets.

We introduce some auxiliaries definitions. First, we extend the concept of
marking. Recall that in section 2.1 we defined the initial marking as an assign-
ment of a fixed value to each place p. Now, we generalize the idea of initial
marking by considering a marking as an assignment of a interval of values to
each place p of the Petri net.

We first define the domain of intervals.

Definition 1 (Intervals). We define the interval domain

I = {[n,m] | n,m ∈ R≥0 ∪ {+∞} and n ≤ m}.

Moreover we say that x ∈ [n,m] iff n ≤ x ≤ m.
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Fig. 2: Example of Petri nets, in which A and B are marked as input of the system
(red dot-line) and E is marked as output (green dots).

We now define interval markings.

Definition 2 (Interval marking). An interval marking is a function m[ ] :
P → I. We call M[ ] the domain of all interval markings.

A non-trivial interval marking (i.e., an interval marking in which at least one
interval is non-trivial) represents an infinite set of markings, one for each possibile
combination of values of the non-trival intervals. Therefore, given an interval
marking, we relate it with the markings as in the original Petri nets formalism
in the following way:

Given a m ∈M and m[ ] ∈M[ ] , m ∈ m[ ] iff ∀p ∈ P,m(p) ∈ m[ ] (p).

In a Petri net PN we assume that there exists at least one place p that we
consider as the input of the network. In addition, we assume that there exists
also a (unique) place p that we consider the output of the net. See Figure 2 for an
example. Within this framework, we can give our formal definition of robustness.

Definition 3 (α-Robustness). A Petri net PN with output place O is defined
as α-robust with respect to a given interval marking m[ ] iff ∃k ∈ R such that
∀m ∈ m[ ], the marking m′ corresponding to the steady state reachable from m,
is such that

m′(O) ∈ [ k − α

2
, k +

α

2
] .

Given the previous definition, it can be observed that:

– wider are the intervals of the initial interval marking, more robust is the
network, because it means that the system gives the same output regardless
the initial inputs;

– smaller is the value of α, more robust is the system.

Here, we have given a general definition that can be modified in different ways.
For example, rather than considering the marking at the steady states, it could
be possible to consider the marking reached at a given time T , or when the
system terminates its execution (no transition is enabled).
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Fig. 3: Example of robust biochemical network, considering the species A as output
of the system.

It is worth noting that our definition is general enough to capture several
notions of robustness available in literature. For example, by considering the
initial intervals [1,∞] for the initial concentration of the input species and α = 0
we obtain a formal definition for the robustness notions considered in [4,22].

A simple example of robust biochemical network is given by the following
two reactions:

A + B
k1

2 B B
k2

A

The Petri net representation of the network is shown in Figure 3 (on the left
with the initial marking, on the right with the steady state marking). In this
case, the steady state is such that

A =
k2
k1

B = θ − k2
k1

where θ is the sum of initial concentrations of A and B. If A is the output of
the system, then its concentration in the steady state does not depend from
the initial quantity of the (input) chemical species A and B (0-robustness with
k = k2

k1
).

If we consider [10, 20] as the initial interval for both A and B, we obtain that
θ will be in [20, 40]. So, for B as the output we obtain:

B = [20− k2
k1
, 40 +

k2
k1

]

Thus, for output B we have α-robustness with α = 20, suggesting that B is not
independent from the initial concentrations of A and B.

Moreover, in Figure 4 we can see a network that is never robust neither con-

sidering A as output, nor B. Their chemical reactions are: A
k1

B, B
k2
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A. In this case, the concentrations of A and B at the steady state are both always
influenced by the input values. The reason of this behaviour is related to the fact
that in this case the chemical species are transformed, but not consumed.

[10, 20] 

k2 k1

[10, 20] 

A

B

Initial state

k1/k2

k2 k1

[20-k1/k2, 
40-k1/k2] 

A

B

Steady state

[20,40] [35,45]

k1

k2

A B

[33,51] [22,45]

k1

k2

A B

Initial state Steady state

Fig. 4: Example of non robust network. In this case we chose k1 = 2 and k2 = 3.

3 Validating the definition of robustness

To validate our definition of robustness, we consider three examples of biolog-
ical networks. The first two, the two component EnvZ/OmpR osmoregulatory
signalling system and the isocitrate dehydrogenase regulatory system of E. coli,
show an absolute concentration robustness (the α parameter of Definition 3 will
be equal to 0). The third example models an enzyme kinetics at saturation
behaviour, inspired from the Lotka-Volterra reactions [9,24], which shows a con-
centration robustness that it is not absolute (in this case the α parameter of
Definition 3 will be greater than 0).

3.1 EnvZ/OmpR osmoregulatory signalling system

In bacteria and in particular in E. coli, the EnvZ/OmpR system has the function
to regulate the expression of two porins, OmpF and OmpC, which are proteins
having many roles in the cell, as for example nutrients transportation, elimina-
tion of toxins and many others [5].

The regulatory system consists of two components. The first one is the histine
kinase EnvZ, a particular kind of protein having the role to transmit informa-
tion, adding and removing a phosphate to an aspartame acid, usually on the
other component of the signalling pathway, the response regulator OmpR, which
mediates a response of the cell to changes in its environment. The role of EnvZ is
bifunctional because it phosphorylates and dephosphorylates OmpR: the model
predicts that when EnvZ is much less abundant than OmpR, or when the concen-
tration of this species is sufficiently high, the steady state level of OmpRP (the
phosporylated form of OmpR) is insensitive to variations in the concentration
of Envz and OmpR.
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Table 1: The initial concentrations, the rates and the chemical reactions of
EnvZ/OmpR system. The concentration of X and Y, marked by the symbol �, can
vary to prove the robustness in YP .

Initial concentrations Rates Chemical reactions

X = 25 � k1, k2, k3, k4 = 0.5 XD
k1
k2

X

Y = 150 � k5, k11 = 0.1 XT
k3
k4

X

XT = 0 k6, k9 = 0.02 XT
k5

XP

XP = 0 k7, k8, k10 = 0.5 XP + Y
k6
k7

XPY

XP Y = 0 XPY
k8

X + YP

YP = 10 XD + YP

k9
XDYP

XDYP = 0 XDYP

k10
XD + YP

XD = 50 XDYP

k11
XD + Y

Modeling and simulation of the EnvZ/OmpR system in E.coli. The
main components of this chemical network are EnvZ and OmpR [5,23], denoted
in Table 1 respectively as X and Y. Envz phosporylates OmpR (YP ) and itself
(XP ), by binding and breaking down ATP. In this sequence of chemical reactions,
in fact, ATP and ADP act as cofactor (denoted as T and D).

Fig. 5: The Petri nets model for the reaction network of the EnvZ/OmpR system. The
input of the network are X and Y (red dot line), the output is the concentration of
YP (green dots).

In order to check whether the system satisfies our definition of robustness we
build the Petri nets model shown in Figure 5, where X and Y are considered
as input and YP as output. To study the equilibrium configuration, we compute
the steady state by setting the time-derivatives to zero and solving the obtained
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Fig. 6: Graphical results of the simulation of the EnvZ/OmpR system. We vary the
concentrations of X and Y to show robustness in YP . Note that in the third case the
curve of Y is out of the graph.

equations. At the steady state, the concentration of YP does not depend from
the input chemical species, thus, the system satisfies 0-robustness (absolute con-
centration robustness) for the widest intervals ([1,∞]) of initial concentrations.

To illustrate the robustness of this system we show some simulation results
obtained by using Dizzy [20]: a simulator of chemical reactions. Simulation re-
sults are in Figure 6, where it is shown that the concentration of YP is constant
even varying the initial concentrations of the input species X and Y .

Moreover, note that in this case, we can also apply the theorem in [22]: the
deficiency [7] of the network is 1 and the sufficient conditions required by the
theorem to assure robustness in YP can be verified (see [3] for details).

3.2 The isocitrate dehydrogenase regulatory system

In the literature, metabolic and regulatory pathways that contain multifunc-
tional proteins, as the Envz/OmpR system described above, have frequently
been observed to exhibit robustness, thanks to their ability to perform their
tasks even in presence of internal and external perturbations. Among several ex-
amples, there is the isocitrate dehydrogenase regulatory system (IDHKP-IDH)
of E. coli [6].

This system controls the partioning of carbon flux and it is useful when the
bacterium of E. coli grows on substances, like for example an acetate, which
contains only a small quantity of carbon. Without this regulation system, in
fact, the organism would not have enough carbon available for biosynthesis of
cell constituents [23].

Modeling and simulation of the IDHKP-IDH system. The isocitrate
dehydrogenase regulatory system works regulating the phosphorylation level of
the TCA cycle enzyme isocitrate dehydrogenase (IDH ), denoted as I in Table 2.
In its active form, the protein I has the role of regulating how much carbon will
flow through the system, while it is inactive in its phosporylated form IP . The
enzyme E is bifunctional: it phosporylates and dephosporylates I.
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Table 2: The initial concentrations, the rates and the chemical reactions of IDHKP-
IDH system. The concentration of E and IP , marked by the symbol �, can vary to
prove the robustness in I.

Initial concentrations Rates Chemical reactions

E = 0.001 � k1, k4 = 0.02 E + IP
k1
k2

EIP

I=100 k2, k3, k5, k11 = 0.5 EIP
k3

E + I

IP = 10000 � k6 = 0.1 EIP + I
k4
k5

EIPI

EIP = 10 EIPI
k6

EIP + IP

E

IP

EIP

EIPI

I

k1

k2

k3

k4
k5k6

Fig. 7: The Petri nets model for the reaction network of the IDHKP/IDH system. The
input of the network are E and IP (red dot line), the output is the concentration of
I (green dots).

We build the Petri net model of the chemical networks and we identify IP
and E as the input of the model and I as the output, as shown in Figure 7.
By studying the equilibrium configuration, we find that at the steady state the
concentration of I is completely independent from the concentration of IP and
E. Thus, the system shows robustness in this species: choosing a wide range of
possible initial concentrations for the input, we obtain a constant value for I, as
it is possible to notice from the simulation results shown in Figure 8. Therefore,
we verified 0-robustness for the widest interval range of initial concentrations of
the input species.

As in the case of the EnvZ/OmpR system, we have that the theorem in [22]
could be applied to prove absolute concentration robustness of this system.

3.3 Enzyme activity at saturation

The well-known Lotka-Volterra reactions [15,16] can be interpreted as abstract
chemical reactions and, in fact, they have been proposed to investigate the oscil-
latory dynamics of autocatalytic enzymes. Similarly, the logistic equation [25] is
a model of population growth that is commonly used also in the context of bio-
chemical reaction kinetics. It describes the growth of a population by taking the
amount of available environmental resources into account (the carrying capacity
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Fig. 8: Graphical results of the simulation of the IDHKP-IDH system. We change the
concentration of E and IP to test robustness in I.

Table 3: The initial concentrations, the rates and the chemical reactions of enzyme
activity at saturation model. The concentration of P, marked by the symbol �, can
vary to prove the robustness in X.

Initial concentrations Rates Chemical reactions

R = 1000 k1 = 100 R + X
k1

X + X + Z

X = 30 k2 = 10 X
k2

W

Z = 0 k3 = 0.5 Z
k3

R

P = 1 � k4 = 0.01 X + P
k4

P + P

C = 0 k5 = 0.5 P
k5

C
W = 10

of the environment) and it is used also to model enzyme dynamics at saturation.
In this section we consider an abstract model of enzyme activity inspired by the
Lotka-Volterra reactions and the logistic equation.

Modeling and simulation of enzyme activity at saturation model. We
consider an abstract chemical reaction network in which an enzyme R produces
a molecule X. To guarantee the mass conservation, we add to this idealized
example the species Z, which has the role to preserve the concentration of R.

The production of X is autocatalytic (the more X are present, the higher
is the production rate), but the concentration of enzymes R is limited. Hence,
the enzyme activity can easily reach saturation. This reaction system is of the
kind typically modeled by the logistic equation. It is expected to reach a dynamic
equilibrium in which the concentration ofX does not depend on its initial concen-
tration, but only on the concentration of R. We add to this system an additional
molecular species P acting as a “predator” for X (as in Volterra’s equations).
What happens is that X can be consumed and transformed into P , and the
reaction performing this action is autocatalytic (i.e., stimulated by P itself). In
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Fig. 9: The Petri nets model for enzyme activity at saturation system. The input of
the network is P (red dot line), the output is X (green dots).
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Fig. 10: Graphical results of the enzyme activity at saturation model. We change the
concentration of the P to test robustness in X.

this model it can be interesting to investigate how the initial concentration of P
influences the steady state concentration of X.

Building the Petri nets model of the reactions network, as shown in Figure
9, we identify P as the input and X as the output of the network. At the steady
state, it emerges that the concentration of X is always constant and its constant
value only loosely depends on the concentration of P. Indeed, even varying the
concentration of the molecular species P in a wide interval, the concentration of
X at the steady state assumes a value in a very small interval. It is worth noting
that this kind of robustness of the system was not captured by the previous
definitions presented in the literature. Instead, our definition is able to express
not only absolute robustness but also weaker levels of robustness by tuning the
α parameter and the amplitude of the intervals of the input species.

In this case, to apply Definition 3, we choose an interval marking for P =
[1, 20000] and we find, by the means of simulations, that the concentration of X
is in the range [50, 47], as shown in Figure 10. Therefore, the system is α-robust
with α = 3.
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4 Conclusions

In this paper we presented the notion of α-robustness. This new notion is very
general and flexible and allows us to formalize different informal notions of ro-
bustness that are present in the literature. As a first step we verify the relevance
of our definition by considering different behaviours present in nature. To this
aim, we presented here two examples of absolute concentration robustness and
one system that shows a robust behaviour even if it cannot be classified as
robust before the introduction of our more general definition. To illustrate α-
robustness, we computed the steady states and performed some simulations of
the three systems by varying the initial concentrations of the input species.

As future work, we intend to investigate new ways to verify our α-robustness
property. For example, we would like to find sufficient conditions under which
the property could be verified efficiently, without computing the steady state of
the system and without performing simulations in an exhaustive way.

Acknowledgements This work has been supported by the project “Metodolo-
gie informatiche avanzate per l’analisi di dati biomedici (Advanced computa-
tional methodologies for the analysis of biomedical data)” funded by the Uni-
versity of Pisa (PRA 2017 44).

References

1. Uri Alon. An introduction to systems biology: design principles of biological circuits.
CRC press, 2006.

2. Rajeev Alur, Costas Courcoubetis, Thomas A Henzinger, and Pei-Hsin Ho. Hybrid
automata: An algorithmic approach to the specification and verification of hybrid
systems. In Hybrid systems, pages 209–229. Springer, 1993.

3. David F Anderson, Germán A Enciso, and Matthew D Johnston. Stochastic analy-
sis of biochemical reaction networks with absolute concentration robustness. Jour-
nal of The Royal Society Interface, 11(93):20130943, 2014.

4. Naama Barkai and Stan Leibler. Robustness in simple biochemical networks. Na-
ture, 387(6636):913, 1997.

5. Eric Batchelor and Mark Goulian. Robustness and the cycle of phosphorylation
and dephosphorylation in a two-component regulatory system. Proceedings of the
National Academy of Sciences, 100(2):691–696, 2003.

6. Joseph P Dexter and Jeremy Gunawardena. Dimerization and bifunctionality con-
fer robustness to the isocitrate dehydrogenase regulatory system in escherichia coli.
Journal of Biological Chemistry, 288(8):5770–5778, 2013.

7. Martin Feinberg. Chemical reaction network structure and the stability of complex
isothermal reactors—i. the deficiency zero and deficiency one theorems. Chemical
Engineering Science, 42(10):2229–2268, 1987.

8. David Gilbert and Monika Heiner. From petri nets to differential equations–an
integrative approach for biochemical network analysis. In International Conference
on Application and Theory of Petri Nets, pages 181–200. Springer, 2006.

9. Daniel T Gillespie. Exact stochastic simulation of coupled chemical reactions. The
journal of physical chemistry, 81(25):2340–2361, 1977.



Formalizing robustness of biochemical networks 15

10. Peter JE Goss and Jean Peccoud. Quantitative modeling of stochastic systems
in molecular biology by using stochastic petri nets. Proceedings of the National
Academy of Sciences, 95(12):6750–6755, 1998.

11. Thomas A Henzinger. The theory of hybrid automata. In Verification of Digital
and Hybrid Systems, pages 265–292. Springer, 2000.

12. H. Kitano. Systems biology: towards systems-level understanding of biological
systems. kitano h ed, foundations of systems biology, 2002.

13. H. Kitano. Biological robustness. Nature Reviews Genetics, 5(11):826–837, 2004.
14. Xiangfang Li, Oluwaseyi Omotere, Lijun Qian, and Edward R Dougherty. Review

of stochastic hybrid systems with applications in biological systems modeling and
analysis. EURASIP J. on Bioinformatics and Systems Biology, 2017(1):8, 2017.

15. Peter Linz. Analytical and numerical methods for Volterra equations. Siam, 1985.
16. Alfred J Lotka. Contribution to the theory of periodic reactions. The Journal of

Physical Chemistry, 14(3):271–274, 1910.
17. Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of

the IEEE, 77(4):541–580, 1989.
18. Gheorghe Paun. Introduction to membrane computing., 2006.
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