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Abstract. The current physical load is proposed to be monitored and estimated 

by heart beat analysis based on the statistical analysis of accumulated and mov-

ing window data subsets with construction of kurtosis-skewness diagram. This 

approach was applied to the data gathered by the wearable heart monitor for 

various types and levels of physical activities, and for people with various fit-

ness. The different physical activities, loads, and fitness can be distinguished 

from changes of heart beat distribution type on the kurtosis-skewness diagram. 

Some metrics for estimation of the instant and accumulated effect (physical fa-

tigue) of physical loads were proposed that allow to derive models for explana-

tion of the observed behavior by extreme value theory. 
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1 Introduction 

Quantitative characterization and interpretation of the physiological signals is non-

trivial task which attract attention of experts from various fields of science including 

medicine, biology, chemistry, electrical engineering, computer science, etc [1]. The 

main aim of this presentation report is to present the current work in progress that is 

dedicated to monitor and predict the type and level of physical load by the heart beat 

analysis during the physical exercises without information on limb and body accelera-

tions in contrast to the widely used instant acceleration-based methods [2]. 

2 State of the Art 

Estimation of the actual physical load and fatigue is of great importance nowadays in 

the context of human-machine interactions, especially for health care and elderly care 

applications [3,4]. Recently various techniques were applied to measure physical load, 

stress, and fatigue by heart-rate analysis, especially by measuring the heart period 

variability [5]. Usually, to recognize the type of the actual physical load the heart 

monitors are used along with other wearable sensors like accelerometers, power me-

ters, etc [2], which give information on the instant state. To take into account the 



complex instant physiochemical and psychological state, the more complicated wear-

able devices like EEG-monitors and brain-computer interfaces are applied including 

various machine learning models [6-8]. In contrast, below the simpler and more avail-

able method for characterization of the actual physical load based on the heartbeat 

analysis by consumer gadgets is presented along with incentives for some models. 

3 Preliminary Analysis 

The proposed method is based on monitoring the human heart behavior in the sim-

plest available way, namely, by heart beat/heart rate (HB/HR) monitor in consumer 

gadgets. Usually, HB/HR variability is high in a rest state, and it is much lower during 

an exercise, and this phenomenon is actively investigated to track and estimate stress 

states [5]. In contrast to the this well-known approach, the main idea of the method 

proposed here is to consider the time series of HB/HR values as statistical ensembles 

of values: a) accumulated from the beginning of the physical activity; b) contained 

inside the sliding timeslot window. These ensembles are processed by calculation of 

some parameters of statistical distributions (mean, standard deviation, skewness, and 

kurtosis). Finally, these statistical parameters are plotted on the Pearson (kurtosis-

skewness) diagram (see below in Fig.1), where kurtosis values are plotted versus 

square of skewness [9]. The similar approach was successfully applied in various 

fields of science, including physics, materials science, finance, geoscience, etc. [9-

11]. The measurements of heart activity during exercises were performed by Ar-

mour39 heart rate monitor by Under Armour with the attachment point at breast. For 

the initial feasibility study several persons of various fitness and age were involved in 

exercises like standing, walking upstairs, squats, dumbbells, push-ups. 

4 Results 

The time series of HB values were collected during various physical exercises and 

they were considered as statistical samplings. Then distributions of HB values in these 

samplings were analyzed (by calculation of mean, standard deviation, skewness, and 

kurtosis) and plotted on the Pearson diagram (Fig.1). For the better visualization the 

size of symbol grows with the time of experiment and the bigger symbols corresponds 

to the later time moments. The rose cloud of points denote the results of bootstrapping 

analysis in the standing position. In a standing position (red circles in Fig.1, left) the 

distribution of HB values is close to the normal distribution. Then with the start of the 

physical exercise (walking upstairs) the distribution of HB values (blue squares in 

Fig.1, left) moves away from the location of normal distribution (black asterisk in 

Fig.1, left), but confines itself in the region of beta-distributions (gray zone in Fig.1, 

left). After the end of exercises the HB distribution returns to the location of normal 

(black asterisk in Fig.1) and uniform (black triangle in Fig.1) distributions. The fol-

lowing metrics were proposed to characterize the accommodation and recovery levels 

during these exercises (Fig.2): the distance from the normal distribution (Metric1) and 

from the uniform distribution (Metric2) on the Pearson diagram. 



3 

  

Fig. 1.The Pearson diagram for HB distributions vs. exercise time: for standing position and 

walking upstairs (left); for squats, dumbbells of various weights, push-ups (right).  

 

Fig. 2.Kurtosis, square of skewness, and Metric1of the HB distribution vs. exercise time: ac-

cumulated (left); contained inside the sliding timeslot window (right). 

5 Discussion and Conclusion 

The location of statistical ensembles of HB values is close to the location of the nor-

mal distribution in rest, but with time of exercises it moves away to others like beta-

distribution, Weibull distribution, and gamma-distribution (Fig.1), and then return to 

the place of the normal distribution after the end of the exercises. From theoretical 

point of view this tendency can be roughly explained by the well-known extreme 

value models [11], where such change of distribution can be explained by appearance 

of correlation among neighboring events (HBs here) in contrast to normal distribution 

of HBs in a rest state. Now these results hardly have simple explanations especially as 

to influence of some specific experimental parameters (like age, gender, weight, fit-

ness, mood, weather, etc.). But due to the recent success of various machine learning 

methods for analysis of the complex processes the incentive to apply some of them 



naturally appeared. The application of machine learning for the analysis of HB distri-

butions is under work right now and the preliminary results will be published else-

where in details [12]. But at this stage even the metrics proposed (Fig.2) can be used 

for monitoring and comparing levels of the physical loads and accommodation in 

addition to the well-known methods. The previous results shown that predictions are 

very sensitive to experimental parameters and the much larger datasets should be 

used. The further progress can be reached by sharing the similar datasets in the spirit 

of open science, volunteer data collection and processing [13-14]. In conclusion, the 

results on the change of HB distribution type under physical load allow to propose the 

new approach for monitoring and characterizing complex human activity patterns by 

widely available consumer gadgets, and give additional incentives for their modeling. 
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