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Abstract. Understanding human gaze behaviour in social context, as
along a face-to-face interaction, remains an open research issue which is
strictly related to personality traits. In the effort to bridge the gap be-
tween available data and models, typical approaches focus on the analysis
of spatial and temporal preferences of gaze deployment over specific re-
gions of the observed face, while adopting classic statistical methods.
In this note we propose a different analysis perspective based on novel
data-mining techniques and a probabilistic classification method that re-
lies on Gaussian Processes exploiting Automatic Relevance Determina-
tion (ARD) kernel. Preliminary results obtained on a publicly available
dataset are provided.
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haviour · Gaussian Process · Classification · Personality · Big Five.

1 Introduction

The Latins would say ‘oculus animi index’ to refer the amount of personal infor-
mation provided by a person’s eyes. The gaze, indeed, is an important component
of social interaction and a crucial non-verbal signal adopted as a basic form of
communication [30]. Humans profoundly entrust on gaze cues during social and
cooperative tasks with other conspecifics. This effect negatively emerges when
referring to persons with autistic-like traits that may have troubles in under-
standing signals coming from the eye region of the other’s face [1].

Eye movements are shown to be relevant and strictly related to the expression
and perception of emotional states [3, 2, 29], cognitive goals [13, 48, 7], personality
traits [44, 41, 36, 12, 28] and is known to play a key role in regulatory functions, as
conversational turn-taking [20]. In the course of a typical face-to-face interaction,
eye contact is an indicator of trustworthiness and attractiveness [6, 33], although
a long direct gaze could be interpreted as a threat [34].

Neuroimaging studies of face perception confirms that direct eye contact
activates specific brain areas involved in human interaction and face processing,



namely the superior temporal sulcus (STS) [25]. In particular, the intraparietal
sulcus (IPS) appears to specifically support the recognition of another person’s
gaze direction [40, 14]. These results confirm that person perception is increased
when gaze is directed toward the viewer.

Having said that, and without going deeper in neurobiological details, it looks
obvious that in order to realise effective and ‘empathic’ computational systems
that naturally interacts with humans (HCI) it is necessary to understand or,
at least, take into consideration the processes behind human gaze deployment.
These could eventually be involved to mediate the interaction with a virtual
or physical agent, in particular when dealing with humanoid robots that in-
clude eyes (for synthesis) [9], or with ones that gauge the counterpart’s gaze (for
recognition) [49].

In this work we will focus on the involvement of personality traits as indicator
of specific gaze patterns. Personality is an information typically expressed by
adopting the Big Five personality traits [23], also known as the five factor model
(FFM). The five factors have been defined as agreeableness, conscientiousness,
extraversion, neuroticism and openness to experience. These are assessed via
standard psychological tests to the participants of an experiment.

Fig. 1. Investigating subject’s personality traits from gaze behaviour in face-to-face
interaction (time-varying face stimuli). Full arrows highlight the Data → Model road
to explanation and prediction; dashed arrows trace the feedback information to meet
the quest for suitable predictor variables, model revision and experimental design.



Previous results suggest that personality influences visual information pro-
cessing and social gazing, but most of these approaches present some drawbacks,
such as small dataset size [12], focus on very specific personality traits [28], adop-
tion of non-natural stimulus [44] and in general, for the analysis, they all rely
on classical statistical methods applied to spatial and temporal gaze features
extracted from raw data.

As to the latter point, here we offer a different perspective. It has been ar-
gued [21] that statistical rituals striving for an unthinking “search for statistical
significance” have led to to “irrelevant theory, questionable conclusions, and has
kept statisticians from working on a large range of interesting current prob-
lems” [10]. Breiman, in particular has acknowledged that beyond classic data
analyses, algorithmic modeling has developed rapidly in realms outside statis-
tics (involving complex prediction problems such as speech recognition, image
recognition, nonlinear time series prediction), and it has gained currency since it
can be used both on large complex data sets and as a more accurate and infor-
mative alternative to data modelling on smaller data sets [10]. In this view the
classic data modelling approach starts with assuming a treatable model relating
predictor variables to response variables (e.g., a linear regression model) and
model validation is performed through classical tests (goodness-of-fit, residual
examination, etc). In contrast, machine learning-based modelling relies upon an
algorithm that operates on input data (usually in the form of a feature vector)
to predict the responses; here, model validation is in terms of measured predic-
tive accuracy. However, these two “cultures” [10] need not be mutually exclusive
options. After all statistics starts with data and builds models (cfr. Fig. 1) in
order to be able to: i) forecast what the responses are going to be to future input
variables (prediction level); ii) to derive information about how nature is associ-
ating the response variables to the input variables (explanation level). The roots
of statistics, as in science, lie in working with data and checking theory against
data [10]. If focus is brought back on actually solving the problem, then in many
complex and concrete cases this attitude is likely to lead to the adoption of a
hybrid methodology. It is worth mentioning that, though algorithmic models can
give better predictive accuracy than data models, it is often objected that an
emphasis on predictive accuracy leads to complex, uninterpretable models that
generalise poorly and offer little explanatory insight. However, the trade-off be-
tween predictive accuracy and interpretability is less grievous than deemed [26].
Indeed, it has been shown in the machine learning field that by searching for
parsimonious versions of the adopted model (in the Occam’s sense), it is possi-
ble to achieve predictive performance close to optimal, while gaining explanatory
insights into the relevant mechanisms of the phenomenon under consideration
[26].

Such a synergistic perspective is the methodological rationale behind the
work presented here and it is summarised at a glance in Fig. 1. Techniques com-
ing from different research areas will be adopted, both for feature extraction
and classification. In particular, we show how the Automatic Relevance Deter-
mination (ARD) approach, which has been originally conceived in the Bayesian



machine-learning framework as an effective tool for pruning large numbers of ir-
relevant features [37], is suitable to lead to a sparse subset of predictor variables.
These bear explanatory value, while avoiding cumbersome classic statistical pro-
cedures for selecting features, or even more complex machine learning-based ap-
proaches (e.g., [5], for the specific case of gaze analysis).

Results obtained on a public dataset [19] acquired during a face-to-face exper-
iment will provide additional levels of explanation of gaze behaviours adopting
a probabilistic approach. An overview of the method is given in Section 2, while
Section 3 presents the simulation results, and a conclusive discussion is given in
Section 4.

2 Method

Gaze shifts are the result of two main oculomotor actions (as shown in Fig. 2):
fixations and saccades. The former are concerned with bringing onto the fovea
salient objects of a scene, while the latter are rapid transitions of the eye that
permit to jump from spotting one location of the viewed scene to another. It is
worth noting that the saliency of an object is in principle strictly related to a
given task [47]. The study presented here relies on eye-tracking data collected
from subjects along a free-viewing (no external task) experiment. Though this
choice might be questionable in general [47], in our case the free-viewing condi-
tion is suitable for dynamically inferring the history of their “internal” selection
goals and motivation, and thus their personal idiosyncrasies, as captured by the
resulting attentive behaviour.

Beyond fixations and saccades, in the presence of moving objects (that are
likely to occur in dynamic scenes) an additional action arises, called smooth
pursuit. This is typically associated with fixations since the focus remain on the
same stimulus, but in this case a movement of the eyes is required.

Recent research has shown that the pupil signal from video-based eye trackers
contains an additional event, namely post-saccadic oscillations (PSOs). These are
very important for a precise temporal classification of the events. PSOs in fact,
have shown to influence fixation and saccade durations by at least 20 ms [35].

In the following we will refer to a visual scan path as the result of a stochastic
process; namely a time series defined as {(r1, t1), (ri, ti), · · · }, where ri = (xi, yi)
identifies a specific gaze location at time ti in presence of a natural scene I.

I 7→ {(r1, t1), (ri, ti), · · · } (1)

A classification step [39] is eventually required to distinguish between the four
oculomotor actions presented above. This allows to parse the raw data time series
into a higher level representation of events: fixations f = (r, ts, te), saccades s =
(rs, re, ts, te), smooth pursuits p = (rs, re, ts, te) and PSO o = (rs, re, ts, te). In
the case of saccades, smooth pursuits and PSO, rs and re represent respectively
the start and end gaze location. Likewise ts and te stand for start and end time
of the event.



2.1 Feature extraction

Considering a given scan path W = {(fi, si,pi,oi)}Ni=1, with N the number
of events, we derive features related to the spatial and temporal properties of
specific events. Given the stochastic nature of eye movements, these too can be
seen as random variables (RVs) generated by an underlying random process.
Such properties include fixation duration, saccade amplitude, saccade direction
and event frequency.

Saccade amplitudes and directions are important because lie at the heart of
systematic tendencies or “biases” in oculomotor behaviour. These can be thought
of as regularities that are common across all instances of, and manipulations to,
behavioural tasks [45, 46]. One remarkable example is the amplitude distribution
of saccades and that typically exhibit a positively skewed, long-tailed shape [47,
45, 46]. Other paradigmatic examples of systematic tendencies in scene viewing
are: initiating saccades in the horizontal and vertical directions more frequently
than in oblique directions; small amplitude saccades tending to be followed by
long amplitude ones and vice versa [45, 46]. Indeed, biases affecting the manner
in which we explore scenes with our eyes are well known in the psychological
literature (see [31] for a thorough review), and have been exploited in compu-
tational models of eye guidance [4, 17, 32] providing powerful new insights for
unvealing covert strategies about where to look in complex scenes.

As an additional property we also take into consideration the pupil dilation.
This information is typically adopted for emotion-related tasks, in particular to
assess the level of arousal [8]. To the best of our knowledge, this is the first time
pupillometric data are adopted to study personality traits.

di

Fixation i

Fixation i-1

Fixation i+1

li
Saccade i

Saccade i+1

ai

Fig. 2. (Left) Visualisation of a typical visual scan path record. (Right) Sequence of
three fixations with indication of extracted features: fixation duration (di), saccade
amplitude (li) and saccade direction (ai).

Fixation duration The duration of the i-th occurrence of the identified fixations
measures the time spent spotting a specific location and it is obtained as di =



tei − tsi . These durations D = {di}Ni=1 can be seen as gamma-distributed random
variables D ∼ Γ (a, b), whose probability density function (pdf) is defined as

f(d | a, b) =
1

baΓ (a)
da−1 exp

(
−d
b

)
(2)

Here Γ (·) is the gamma function; the parameters of shape Da = a, that closely
approximates a normal distribution when large, and scale Db = b are fitted via
maximum likelihood estimation (MLE).

Saccade amplitude For what concern saccades, one of the properties taken in
consideration is their amplitude. This measure the absolute length of the eye
movement and is obtained as the Euclidean distance between the start and end
locations of each saccade, li =

√
(xsi − xei )2 + (ysi − yei )2 where rsi = (xsi , y

s
i ),

rei = (xei , y
e
i ) and (rei , r

s
i ) ∈ si. In this case, the amplitudes L = {li}Ni=1 are

assumed to be sampled from an α-stable distribution L ∼ f(ξ;α, β, γ, δ). These
form a four-parameter family of continuous probability densities [22], where the
parameters are the skewness β (measure of asymmetry), the scale γ (width of
the distribution), the location δ and the characteristic exponent α, or index
of the distribution that specifies the asymptotic behavior of the distribution
as l−1−α. Thus, relatively long gaze shifts are more likely when α is small.
For α ≥ 2 the usual random walk (Brownian motion) occurs; if α < 2, the
distribution of lengths is “broad” and the so called Lev́y flights take place. Such
distributions have been shown to suitably capture the statistical behaviour of
gaze shift amplitudes [11, 4], and, more generally, brain activities occurring in
the attention network [18]. There is no closed-form formula for f , which is often
described by its characteristic function E [exp(itx)] =

∫
R exp(itx)dF (x), F being

the cumulative distribution function (cdf). Explicitly,

E [exp(itx)] =

{
exp(−|γt|α(1− iβ t

|t| ) tan(πα2 ) + iδt)

exp(−|γt|(1 + iβ 2
π
t
|t| ln |t|) + iδt)

the first expression holding if α 6= 1, the second if α = 1. Special cases of
stable distributions whose pdf can be written analytically, are given for α =
2, the normal distribution f(x; 2, 0, γ, δ), for α = 1, the Cauchy distribution
f(x; 1, 0, γ, δ), and for α = 0.5, the Lévy distribution f(x; 0.5, 1, γ, δ); for all other
cases, only the characteristic function is available in closed form, and numerical
approximation techniques must be adopted for parameter estimation, e.g., [15],
which will be used here.

Saccade direction The second property obtained from saccades, and usually over-
looked, is the direction of successive eye movements. This property, called sac-
cade direction, measures the angular direction between the start and end location
of a saccade. Recalling that a saccade is represented as si = (rsi , r

e
i , t

s
i , t

e
i ), we

define its angular direction as ai = arctan2(yei − ysi , xei − xsi ), where arctan2

is a function that extends the definition of arctan(y/x) to the four quadrants
(−π, π], taking in consideration the sign combinations of y and x.



The saccade directions are typically non-uniformly distributed, with most
saccades in the horizontal and vertical directions than in oblique [45]. This cir-
cular data can be modelled by adopting a von Mises distribution, whose pdf is
symmetric and unimodal, and is given by

f(a | µ, κ) =
exp(κ cos(a− µ))

2πI0(κ)
, (3)

where I0(·) is the zero-th order modified Bessel function. Its parameters are the
mean direction µ and the dispersion, captured by a concentration parameter κ.
For large values of κ, the distribution is concentrated around the µ direction,
while for κ = 0 the pdf is a uniform distribution.

For heterogeneous data, as in the case of saccade directions, a single von
Mises distribution does not provide an adequate fit, so it will be discarded in
favour of a mixture of two von Mises distributions. Its parameters Aµ = [µ1, µ2]
and Aκ = [κ1, κ2] are estimated using an Expectation-Maximization scheme [27].

Event frequency An additional information about the gaze patterns is provided
by the frequency of each of the four classified events. These are normalised
adopting a classical softmax approach, so that Ej =

ej
(e1+···+e4) , with j = 1, . . . , 4.

Pupil dilation For what concerns pupil dilation, we consider its absolute per-
centage variation vi with respect to the average size in an initial window of
250ms. In this case V = {vi}Ni=1 is assumed to be sampled from an half-normal
distribution, whose pdf is given by

f(v | σ) =

√
2

σ
√
π

exp

(
− v2

2σ2

)
(4)

and its unique parameter Vσ = σ estimated via MLE.
Eventually, the gaze behavior of each subject in the dataset is represented by

a feature vector,, namely the random vector X = [Da,Db,Lγ ,Lδ,Aµ,Aκ,E,Vσ]
(cfr. Fig. 3). A realisation X = xi, summarising the gaze behaviour of subject i
on the observed facial stimuli, will represent the observed input of a probabilistic
classifier presented below.

2.2 Personality trait classification

The classification stage aims at finding a possible nonlinear mapping between a
subset of salient features contained in X and the levels of personality traits Y
acquired in the dataset (the response variables). In the binary case, as the one
described in Section 3, the model is defined as

p(yi | X = xi) = Φ(yif(xi)), (5)

where xi represents the realisation of the random vector X for the i-th subject,
and the yi ∈ {−1, 1} is the result of a probit regression approach that maps



Fig. 3. Fitting of the features extracted from a sample of raw gaze data. (Top) His-
togram of fixations durations, fitted via Gamma distribution and saccades amplitudes
via the α-stable distribution. (Bottom) Saccade directions fitted with a mixture of
von Mises distributions and histogram of pupil dilations overlaid with the half-normal
distribution fit.

the output of a regression model into a class probability, namely the cumulative
density function of a standard normal distribution Φ(z) =

∫ z
−∞N (x | 0, 1)dx.

The function f in Eq. 5 is sampled from a Gaussian Process,

f ∼ GP(· | 0, k) (6)

that assumes prior probability over functions p(f(X)) = p(f(x1), . . . , f(xN )) to
be jointly Gaussian with mean function µ(x) = 0 and covariance matrix K. The
latter is usually chosen as a positive definite kernel function Kij = k(xi,xj ; θ),
θ being the hyperparameters of the kernel function. Such function constrains
similar inputs (xi,xj) to have similar output values (but refer to Rasmussen
and Williams [43] for an in-depth and wide introduction).

Often, in going from data to models, there are many possible inputs that
might be relevant to predicting a particular output. Thus, we need algorithms
that automatically decide which inputs are relevant. In the framework of Gaus-
sian Processes one such tool is naturally provided by automatic relevance deter-
mination (ARD) kernels [37].



The adopted ARD kernel is a more general form of the squared exponential
kernel for multi-dimensional inputs, that can be defined as

k(x,x′; θ) = σ2 exp

[
−1

2

D∑
d=1

(
xd − xd′
wd

)2
]
, (7)

with hyperparameters θ = {σ2, w1 · · ·wD}. Here σ2 is a scale parameter that
determines the variation of function values from their mean. Most important,
a different weight wd, namely the length scale of the function along input di-
mension d, is assumed for each value xd of the d-th feature in X . This controls
the horizontal length scale over which the function varies. In other terms, wd
determines the relevancy of input feature d to the classification problem: xd is
not relevant if 1/wd is small.

The ARD formulation is usually exploited at the training stage, in terms
of an automatic Occam’s razor, in order to prune irrelevant dimensions, thus
helping towards automatically finding the structure of complex models. In our
scenario this will help us identifying predictive features for a specific personality
trait.

3 Data analysis and results

Analysis has been conducted on a large public available dataset [19]. This in-
cludes gaze recordings from 403 participants (202 males, 201 females) watching
videos of another person, initially gazing toward the bottom, then gazing up
at the participant. A 10-item personality questionnaire based on the Big Five
personality inventory [42] has been submitted to each participant, to define val-
ues for each of the five classes: agreeableness, conscientiousness, extraversion,
neuroticism and openness to experience. They have been assessed through two
items, going from 5 to 1, so that the lowest score (p = 2) is high in that trait,
while highest score (p = 10) is low in that trait. It is worth mentioning that
to the best of our knowledge this is the only public dataset the provides gaze
recordings and personality traits values.

In order to highlight the behavioural differences of each personality trait, a
binary classification approach with k-fold cross-validation was adopted (k = 10).
The classes were formed by separating the highest (C1 = {2 ≤ p ≤ 5}) and the
lowest (C2 = {7 ≤ p ≤ 10}) levels of each trait. The neutral value (p = 6) has
been excluded because considered not relevant.

This partitioning led, in some cases, to unbalanced classes that were treated
using the ADASYN oversampling technique [24] inside each fold of the cross-
validation, in order to avoid possible overfitting problems. ADASYN is a novel
extension of SMOTE [16] method that aims at creating, via linear interpolation,
new examples from the minority class next to the bound with the majority one.

Classification results, shown in Figure 4, include a comparison with a linear
discriminant analysis (LDA) and a support vector machine (SVM) with radial
basis function kernel. It shows how the GP classifier outperforms, in general,



the other two methods and is able to correctly guess the personality class, apart
from neuroticism, for the ≥ 73% of cases (chance level is 50%). To provide an
overall quantitative evaluation, the mean value of the accuracy and the values
of other three metrics for each personality trait, over 10 cross-validation folds of
GP classification, are provided in Table 1.

agreeable

conscient

extra
vers

neurot
open

0

20

40

60

80

100
GP

SVM

LDA

Fig. 4. (Left) Heatmap visualisation of fixations recorded from a subject during the ex-
periment. (Right) Mean classification accuracy (and standard dev.) for each personality
trait obtained with GP classification, SVM with Gaussian kernel and LDA.

Table 1. Mean value (and standard dev.) of the accuracy, precision, recall and F-
measure for each personality trait obtained with Gaussian process classifier.

Personality trait Accuracy Precision Recall F-measure

agreeableness
0.77 ± 0.08 0.79 0.96 0.87 GP
0.74 ± 0.06 0.78 0.93 0.85 SVM
0.52 ± 0.06 0.78 0.54 0.64 LDA

conscientiousness
0.82 ± 0.06 0.86 0.94 0.90 GP
0.82 ± 0.06 0.86 0.94 0.90 SVM
0.52 ± 0.06 0.86 0.53 0.65 LDA

extraversion
0.73 ± 0.05 0.74 0.96 0.84 GP
0.71 ± 0.03 0.75 0.92 0.82 SVM
0.50 ± 0.06 0.71 0.54 0.62 LDA

neuroticism
0.58 ± 0.07 0.48 0.44 0.45 GP
0.58 ± 0.07 0.45 0.14 0.22 SVM
0.55 ± 0.07 0.45 0.53 0.49 LDA

openness
0.78 ± 0.09 0.82 0.95 0.88 GP
0.78 ± 0.08 0.82 0.93 0.87 SVM
0.49 ± 0.10 0.78 0.53 0.63 LDA

For what concerns the ARD weights learned during the GP training, these
have been aggregated adopting a ‘winner-takes-all’ approach. In other terms, for



each fold have been considered only the most prominent feature with respect to
each personality trait. Final results are shown in Figure 5.
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Fig. 5. The ARD weights resulting after training the GP classifiers. The x-axis indicates
each of the extracted features X = [Vσ,Da,Db,Lγ ,Lδ,Aµ,Aκ,E], while y-axis reports
the number of ‘wins’ in the cross-validation.

Beyond the predictive accuracy gained by the model, it is remarkable to note
how ARD weights, automatically derived along the training procedure, provide
insights with respect to the most relevant features that characterise, according
to this analysis, the different personality traits. For example, extraversion and
openness to experience are best described in terms of saccade directions; con-
scientiousness is mostly accounted for by the number of saccades and fixation
duration, while the latter is prevalent in explaining agreeablenes. The neuroti-
cism trait, though more difficult to predict than others, is however clearly related
to exploratory behaviour represented by saccade amplitude.

4 Discussion

We presented a novel approach for the analysis of gaze patterns in relation
to personality traits. We adopted a probabilistic classifier based on Gaussian
processes that achieves good results in the recognition of levels of personality
traits.

In particular, the adoption of an ARD kernel that considers different weights
for each feature, allows to automatically detect the most prominent ones in



relation to each trait. Indeed, the motivating rationale behind this study was
not only to attain predictive performance in terms of classification accuracy, but
also to show how machine learning-based modelling could be used for gaining
explanatory insights into relevant mechanisms of the studied phenomenon. This
explanatory gain could be further exploited in subsequent and more focused
refinements of experimental design. For instance, as shown in Figure 5, it results
that the saccades directions, a typically overlooked feature, are a discriminating
factor between subject with high and low levels of openness and extraversion.

As a final specific remark, the reasons behind the low accuracy of the neu-
roticism trait are probably to be found in the nature of the experiment and
in the definition of neuroticism. It is not known, in fact, whether the subjects
present clinical conditions. This could result into an overlapping between mea-
sures of neuroticism addressed via the self-report questionnaire and symptoms
of common mental disorders. Moreover, as pointed in [38], does exist a lack of
consensus on the optimal conceptualization of neuroticism and they suggest to
see it as a mutable score that reflects a person’s level of negative affect during a
particular period.

Finally, as a general remark, must be kept in mind that, as noted in [19]:
many aspects of the experimental design might have influenced the results [. . . ]
The actors we used were all Caucasian between 20 and 40 years old with a neutral
expression and did not speak - all factors that could have influenced observers
strategies.
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